262 research outputs found

    A Functional Link Between Bir1 and the <i>Saccharomyces cerevisiae</i> Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis

    Get PDF
    The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here, we report a genome-wide genetic interaction screen in Saccharomyces cerevisiae using the bir1-17 mutant, identifying through quantitative fitness analysis deletion mutations that act as enhancers and suppressors. Gene knockouts affecting the Ctf19 kinetochore complex were identified as the strongest enhancers of bir1-17, while mutations affecting the large ribosomal subunit or the mRNA nonsense-mediated decay pathway caused strong phenotypic suppression. Thus, cells lacking a functional Ctf19 complex become highly dependent on Bir1 function and vice versa. The negative genetic interaction profiles of bir1-17 and the cohesin mutant mcd1-1 showed considerable overlap, underlining the strong functional connection between sister chromatid cohesion and chromosome biorientation. Loss of some Ctf19 components, such as Iml3 or Chl4, impacted differentially on bir1-17 compared with mutations affecting other CPC components: despite the synthetic lethality shown by either iml3∆ or chl4∆ in combination with bir1-17, neither gene knockout showed any genetic interaction with either ipl1-321 or sli15-3. Our data therefore imply a specific functional connection between the Ctf19 complex and Bir1 that is not shared with Ipl1

    OVERLAND FLOW TRANSPORT OF SEDIMENT AND NUTRIENTS FROM LANDS UNDER DIFFERENT MANAGEMENT REGIMES IN THE ATHERTON TABLELAND

    Get PDF
    Abstract A series of field rainfall simulations were carried out to study the impact of different land-use and management techniques on sediment and nutrient movement in the southern Atherton Tableland. Both farm management techniques and landscape factors appear to influence sediment and nutrient loss in runoff. The highest sediment concentration was produced on a cattle track and was substantially higher than sediment concentrations produced at all other experimental plots. In general higher sediment concentrations were associated with beef farms where the soil was most heavily impacted by cattle trampling. Loss of dissolved nitrate was at its highest on dairy sites which had greater nutrient inputs through fertilisation and nitrogen fixation by leguminous plants than either beef or rainforest sites. Nitrate concentration in runoff on the organic dairy farm was similar to the concentration at the dairy farm where mineral fertiliser was used. The position in the landscape was found to influence nitrate concentration, with the highest concentrations being measured in the lower toeslopes. Results indicate that farms should be managed and designed according to landscape features. They also demonstrate the importance of undertaking landscape scale rather than point scale studies

    Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac

    Get PDF
    Using an animal model system and depletion-rescue strategies, we have addressed the requirement and functions of armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF) and p120 catenins in early vertebrate embryogenesis. We find that xARVCF and Xp120 are essential to development given that depletion of either results in disrupted gastrulation and axial elongation, which are specific phenotypes based on self-rescue analysis and further criteria. Exogenous xARVCF or Xp120 cross-rescued depletion of the other, and each depletion was additionally rescued with (carefully titrated) dominant-negative RhoA or dominant-active Rac. Although xARVCF or Xp120 depletion did not appear to reduce the adhesive function of C-cadherin in standard cell reaggregation and additional assays, C-cadherin levels were somewhat reduced after xARVCF or Xp120 depletion, and rescue analysis using partial or full-length C-cadherin constructs suggested contributory effects on altered adhesion and signaling functions. This work indicates the required functions of both p120 and ARVCF in vertebrate embryogenesis and their shared functional interplay with RhoA, Rac, and cadherin in a developmental context

    Studies of viomycin, an anti-tuberculosis antibiotic: Copper(II) coordination, DNA degradation and the impact on delta ribozyme cleavage activity

    Get PDF
    Viomycin is a basic peptide antibiotic, which is among the most effective agents against multidrug-resistant tuberculosis. In this paper we provide the characteristics of its acid base properties, coordination preferences towards the Cu(II) ions, as well as the reactivity of the resulting complexes against plasmid DNA and HDV ribozyme. Careful coordination studies throughout the wide pH range allow for the characterisation of all the Cu(II)-viomycin complex species. The assignment of proton chemical shifts was achieved by NMR experiments, while the DTF level of theory was applied to support molecular structures of the studied complexes. The experiments with the plasmid DNA reveal that at the physiological levels of hydrogen peroxide the Cu(II)-viomycin complex is more aggressive against DNA than uncomplexed metal ions. Moreover, the degradation of DNA by viomycin can be carried out without the presence of transition metal ions. In the studies of antigenomic delta ribozyme catalytic activity, viomycin and its complex are shown to modulate the ribozyme functioning. The molecular modelling approach allows the indication of two different locations of viomycin binding sites to the ribozyme

    RESULTS AND INTERPRETATION OF SOIL LOSS MEASUREMENTS FROM STEEP SLOPES IN THE PHILIPPINES

    Get PDF
    Abstract Measurements of runoff-event soil loss and one-minute rates of rainfall and runoff are reported for runoff plots installed on the tropical Philippine island of Leyte. Plots were either under traditional crops cultivated using farmer practices, or kept bare. Plots were of length 12 m and at slopes of 50% to 70%. Soil loss for the cultivated crop was 35 t ha -1 y -1 , and 63 t ha -1 y -1 for the bare soil plots. An erodibility parameter β calculated for bare-plot data exceeded the value 1 for lower stream power events, indicating enhancement of flow-driven erosion by other processes, such as rainfall impact. This conclusion held whether an original erosion model was employed, or a subsequent model development designed to acknowledge the special effects of very high sediment concentrations and shallow flows common at the site

    Non-Enzymatic Template-Directed Recombination of RNAs

    Get PDF
    RNA non-enzymatic recombination reactions are of great interest within the hypothesis of the “RNA world”, which argues that at some stage of prebiotic life development proteins were not yet engaged in biochemical reactions and RNA carried out both the information storage task and the full range of catalytic roles necessary in primitive self-replicating systems. Here we report on the study of recombination reaction occuring between two 96 nucleotides (nts) fragments of RNAs under physiological conditions and governed by a short oligodeoxyribonucleotide template, partially complementary to sequences within each of the RNAs. Analysis of recombination products shows that ligation is predominantly template-directed, and occurs within the complementary complex with the template in “butt-to-butt” manner, in 1- or 3- nts bulges or in 2–3 nts internal loops. Minor recombination products formed in the template-independent manner are detected as well

    Selection of aptamers for a protein target in cell lysate and their application to protein purification

    Get PDF
    Functional genomics requires structural and functional studies of a large number of proteins. While the production of proteins through over-expression in cultured cells is a relatively routine procedure, the subsequent protein purification from the cell lysate often represents a significant challenge. The most direct way of protein purification from a cell lysate is affinity purification using an affinity probe to the target protein. It is extremely difficult to develop antibodies, classical affinity probes, for a protein in the cell lysate; their development requires a pure protein. Thus, isolating the protein from the cell lysate requires antibodies, while developing antibodies requires a pure protein. Here we resolve this loop problem. We introduce AptaPIC, Aptamer-facilitated Protein Isolation from Cells, a technology that integrates (i) the development of aptamers for a protein in cell lysate and (ii) the utilization of the developed aptamers for protein isolation from the cell lysate. Using MutS protein as a target, we demonstrate that this technology is applicable to the target protein being at an expression level as low as 0.8% of the total protein in the lysate. AptaPIC has the potential to considerably speed up the purification of proteins and, thus, accelerate their structural and functional studies

    The in vitro loose dimer structure and rearrangements of the HIV-2 leader RNA

    Get PDF
    RNA dimerization is an essential step in the retroviral life cycle. Dimerization and encapsidation signals, closely linked in HIV-2, are located in the leader RNA region. The SL1 motif and nucleocapsid protein are considered important for both processes. In this study, we show the structure of the HIV-2 leader RNA (+1–560) captured as a loose dimer. Potential structural rearrangements within the leader RNA were studied. In the loose dimer form, the HIV-2 leader RNA strand exists in vitro as a single global fold. Two kissing loop interfaces within the loose dimer were identified: SL1/SL1 and TAR/TAR. Evidence for these findings is provided by RNA probing using SHAPE, chemical reagents, enzymes, non-denaturing PAGE mobility assays, antisense oligonucleotides hybridization and analysis of an RNA mutant. Both TAR and SL1 as isolated domains are bound by recombinant NCp8 protein with high affinity, contrary to the hairpins downstream of SL1. Foot-printing of the SL1/NCp8 complex indicates that the major binding site maps to the SL1 upper stem. Taken together, these data suggest a model in which TAR hairpin III, the segment of SL1 proximal to the loop and the PAL palindromic sequence play specific roles in the initiation of dimerization
    corecore