10 research outputs found

    Design and Performance Analysis of Peltier & Piezoelectric Human Energy Harvesting Hybrid Model for WBAN Application

    Get PDF
    Wireless body area network (WBAN) has evolved from Wireless personal area network (WPAN), a prominent area of research with vast applications in last decade. In WBAN, various wirelessly interconnected body node (BN) are implanted in or around the human body. Also due to advancement in technology a miniature low power device/BN is developed. The main challenge in WBAN body node is to maintain finite size of battery as well as to increase its capacity. Hence this issue can be resolved by using energy harvesting. Generally researchers have used piezoelectric, electromagnetic or solar harvester only. But, in this research energy harvesting using the hybrid optimization of Piezoelectric and Peltier sensors by controlling on-off timing of body nodes is introduced. A hybrid optimized algorithm is developed using MATLAB 2015b platform and extensive simulation is performed considering four different human gestures (relaxing, walking, running and fast running) which in turn improves overall Quality of Service (QoS) including average (packet loss, end to end delay, throughput) and overall detection efficiency

    Molecular characterization of bread wheat (Triticum aestivum) genotypes using SSR markers

    Get PDF
    An experiment was conducted during winter (rabi) seasons of 2019–20 and 2020–21 at the research farm of CCS Haryana Agricultural University to study the genetic diversity of 80 bread wheat (Triticum aestivum L.) genotypes, using 43 polymorphic SSR markers. A total of 84 alleles were discovered, with an average of 3 alleles amplified per locus. The average value of the allelic PIC varied from 0.26 to 0.82. Primers, viz. Xgwm 129, Xgwm 131, TaGST, CFA2147, Xwmc48, Xbarc 1165 and Xwmc169 may be deemed particularly informative given their high PIC values. Indices of dissimilarity varied from 0.14 to 0.42. Eighty wheat genotypes were clustered into two main groups with 35 and 45 genotypes each using the dendrogram constructed on the basis of molecular data of polymorphic markers. Using STRUCTURE, genotypes were classified into 4 major sub-populations having Fst values 0.351, 0.363, 0.508 and 0.313, respectively. Future breeding operations in wheat cultivars for tolerance to abiotic stress should consider genotypes clustering into different groups. Assessing the molecular genetic diversity is a reliable approach to identify cultivars by analyzing of specific regions of the cultivars DNA based on their unique genetic profiles

    Blockchain Technology and Artificial Intelligence Based Decentralized Access Control Model to Enable Secure Interoperability for Healthcare

    Get PDF
    Healthcare, one of the most important industries, is data-oriented, but most of the research in this industry focuses on incorporating the internet of things (IoT) or connecting medical equipment. Very few researchers are looking at the data generated in the healthcare industry. Data are very important tools in this competitive world, as they can be integrated with artificial intelligence (AI) to promote sustainability. Healthcare data include the health records of patients, drug-related data, clinical trials data, data from various medical equipment, etc. Most of the data management processes are manual, time-consuming, and error-prone. Even then, different healthcare industries do not trust each other to share and collaborate on data. Distributed ledger technology is being used for innovations in different sectors including healthcare. This technology can be incorporated to maintain and exchange data between different healthcare organizations, such as hospitals, insurance companies, laboratories, pharmacies, etc. Various attributes of this technology, such as its immutability, transparency, provenance etc., can bring trust and security to the domain of the healthcare sector. In this paper, a decentralized access control model is proposed to enable the secure interoperability of different healthcare organizations. This model uses the Ethereum blockchain for its implementation. This model interfaces patients, doctors, chemists, and insurance companies, empowering the consistent and secure exchange of data. The major concerns are maintaining a history of the transactions and avoiding unauthorized updates in health records. Any transaction that changes the state of the data is reflected in the distributed ledger and can be easily traced with this model. Only authorized entities can access their respective data. Even the administrator will not be able to modify any medical records
    corecore