107 research outputs found

    Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation

    Get PDF
    Neurofibrillary tangles, which are major pathological hallmarks of Alzheimer’s disease (AD), are composed of paired helical filaments (PHFs) containing hyperphosphorylated tau. Specific kinases regulate tau phosphorylation and are closely linked to the pathogenesis of AD. We have characterized a human tau-tubulin kinase 1 (TTBK1) gene located on chromosome 6p21.1. TTBK1 is a serine/threonine/tyrosine kinase that is conserved among species and belongs to the casein kinase 1 superfamily. It is specifically expressed in the brain, especially in the cytoplasm of cortical and hippocampal neurons. TTBK1 phosphorylates tau proteins in both a Mg2+- and a Mn2+-dependent manner. Phosphopeptide mapping and immunoblotting analysis confirmed a direct tau phosphorylation by TTBK1 at Ser198, Ser199, Ser202 and Ser422, which are also phosphorylated in PHFs. TTBK1 also induces tau aggregation in human neuronal cells in a dose-dependent manner. We conclude that TTBK1 is a neuron-specific dual kinase involved in tau phosphorylation at AD-related sites and is also associated with tau aggregation

    Molecular and Genetic Evidence for a Virus-Encoded Glycosyltransferase Involved in Protein Glycosylation

    Get PDF
    AbstractThe major capsid protein, Vp54, of chlorella virus PBCV-1 is a glycoprotein that contains either one glycan of ∼30 sugar residues or two similar glycans of ∼15 residues. Previous analysis of PBCV-1 antigenic mutants that contained altered Vp54 glycans led to the conclusion that unlike other glycoprotein-containing viruses, most, if not all, of the enzymes involved in the synthesis of the Vp54 glycan are probably encoded by PBCV-1 (I.-N. Wang et al., 1993, Proc. Natl. Acad. Sci. USA 90, 3840–3844). In this report we used molecular and genetic approaches to begin to identify these virus genes. Comparing the deduced amino acid sequences of the putative 375 PBCV-1 protein-encoding genes to databases identified seven potential glycosyltransferases. One gene, designated a64r, encodes a 638-amino-acid protein that has four motifs conserved in “Fringe type” glycosyltransferases. Analysis of 13 PBCV-1 antigenic mutants revealed mutations in a64r that correlated with a specific antigenic variation. Dual-infection experiments with different antigenic mutants indicated that viruses that contained wild-type a64r could complement and recombine with viruses that contained mutant a64r to form wild-type virus. Therefore, we conclude that a64r encodes a glycosyltransferase involved in synthesizing the Vp54 glycan. This is the first report of a virus-encoded glycosyltransferase involved in protein glycosylation

    A cytoplasm-specific activity encoded by the Trithorax-like ATX1 gene

    Get PDF
    Eukaryotes produce multiple products from a single gene locus by alternative splicing, translation or promoter usage as mechanisms expanding the complexity of their proteome. Trithorax proteins, including the Arabidopsis Trithorax-like protein ATX1, are histone modifiers regulating gene activity. Here, we report that a novel member of the Trithorax family has a role unrelated to chromatin. It is encoded from an internal promoter in the ATX1 locus as an isoform containing only the SET domain (soloSET). It is located exclusively in the cytoplasm and its substrate is the elongation factor 1A (EF1A). Loss of SET, but not of the histone modifying ATX1-SET activity, affects cytoskeletal actin bundling illustrating that the two isoforms have distinct functions in Arabidopsis cells

    An ortholog of the Vasa intronic gene is required for small RNA-mediated translation repression in \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e

    Get PDF
    Small RNAs (sRNAs) associate with Argonaute (AGO) proteins in effector complexes, termed RNA-induced silencing complexes (RISCs), which regulate complementary transcripts by translation inhibition and/or RNA degradation. In the unicellular alga Chlamydomonas, several metazoans, and land plants, emerging evidence indicates that polyribosome-associated transcripts can be translationally repressed by RISCs without substantial messenger RNA (mRNA) destabilization. However, the mechanism of translation inhibition in a polyribosomal context is not understood. Here we show that Chlamydomonas VIG1, an ortholog of the Drosophila melanogaster Vasa intronic gene (VIG), is required for this process. VIG1 localizes predominantly in the cytosol and comigrates with monoribosomes and polyribosomes by sucrose density gradient sedimentation. A VIG1- deleted mutant shows hypersensitivity to the translation elongation inhibitor cycloheximide, suggesting that VIG1 may have a nonessential role in ribosome function/structure. Additionally, FLAG-tagged VIG1 copurifies with AGO3 and Dicer-like 3 (DCL3), consistent with it also being a component of the RISC. Indeed, VIG1 is necessary for the repression of sRNA-targeted transcripts at the translational level but is dispensable for cleavagemediated RNA interference and for the association of the AGO3 effector with polyribosomes or target transcripts. Our results suggest that VIG1 is an ancillary ribosomal component and plays a role in sRNA-mediated translation repression of polyribosomal transcripts

    A cytoplasm-specific activity encoded by the Trithorax-like ATX1 gene

    Get PDF
    Eukaryotes produce multiple products from a single gene locus by alternative splicing, translation or promoter usage as mechanisms expanding the complexity of their proteome. Trithorax proteins, including the Arabidopsis Trithorax-like protein ATX1, are histone modifiers regulating gene activity. Here, we report that a novel member of the Trithorax family has a role unrelated to chromatin. It is encoded from an internal promoter in the ATX1 locus as an isoform containing only the SET domain (soloSET). It is located exclusively in the cytoplasm and its substrate is the elongation factor 1A (EF1A). Loss of SET, but not of the histone modifying ATX1-SET activity, affects cytoskeletal actin bundling illustrating that the two isoforms have distinct functions in Arabidopsis cells

    COMPARISON OF MODIFICATION SITES FORMED ON HUMAN SERUM ALBUMIN AT VARIOUS STAGES OF GLYCATION

    Get PDF
    Background—Many of the complications encountered during diabetes can be linked to the nonenzymatic glycation of proteins, including human serum albumin (HSA). However, there is little information regarding how the glycation pattern of HSA changes as the total extent of glycation is varied. The goal of this study was to identify and conduct a semi-quantitative comparison of the glycation products on HSA that are produced in the presence of various levels of glycation. Methods—Three glycated HSA samples were prepared in vitro by incubating physiological concentrations of HSA with 15 mmol/l glucose for 2 or 5 weeks, or with 30 mmol/l glucose for 4 weeks. These samples were then digested and examined by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the glycation products that were formed. Results—It was found that the glycation pattern of HSA changed with its overall extent of total glycation. Many modifications including previously-reported primary glycation sites (e.g., K199, K281, and the N-terminus) were consistently found in the tested samples. Lysines 199 and 281, as well as arginine 428, contained the most consistently identified and abundant glycation products. Lysines 93, 276, 286, 414, 439, and 524/525, as well as the N-terminus and arginines 98, 197, and 521, were also found to be modified at various degrees of HSA glycation. Conclusions—The glycation pattern of HSA was found to vary with different levels of total glycation and included modifications at the 2 major drug binding sites on this protein. This result suggests that different modified forms of HSA, both in terms of the total extent of glycation and glycation pattern, may be found at various stages of diabetes. The clinical implication of these results is that the binding of HSA to some drug may be altered at various stages of diabetes as the extent of glycation and types of modifications in this protein are varied

    Protein-Protein Interactions of Tandem Affinity Purified Protein Kinases from Rice

    Get PDF
    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    The Mutational Landscape in Chronic Myelomonocytic Leukemia and Its Impact on Allogeneic Hematopoietic Cell Transplantation Outcomes: A Center for Blood and Marrow Transplantation Research (CIBMTR) Analysis

    Get PDF
    Somatic mutations are recognized as an important prognostic factor in chronic myelomonocytic leukemia (CMML). However, limited data are available regarding their impact on outcomes after allogeneic hematopoietic cell transplantation (HCT). In this registry analysis conducted in collaboration with the Center for International Blood and Marrow Transplantation Registry database/sample repository, we identified 313 adult patients with CMML (median age: 64 years, range, 28- 77) who underwent allogeneic HCT during 2001-2017 and had an available biospecimen in the form of a peripheral blood sample obtained prior to the start of conditioning. In multivariate analysis, a CMML-specific prognostic scoring system (CPSS) score of intermediate-2 (HR=1.46, P=0.049) or high (HR=3.22, P=0.0004) correlated significantly with overall survival. When the molecularly informed CPSS-Mol prognostic model was applied, a high CPSS-Mol score (HR=2 P=0.0079) correlated significantly with overall survival. The most common somatic mutations were in ASXL1 (62%), TET2 (35%), KRAS/NRAS (33% combined), and SRSF2 (31%). DNMT3A and TP53 mutations were associated with decreased overall survival (HR=1.70 [95% CI: 1.11-2.60], P=0.0147 and HR=2.72 [95% CI: 1.37-5.39], P=0.0042, respectively) while DNMT3A, JAK2, and TP53 mutations were associated with decreased disease-free survival (HR=1.66 [95% CI: 1.11-2.49], P=0.0138, HR=1.79 [95% CI: 1.06-3.03], P=0.0293, and HR=2.94 [95% CI: 1.50-5.79], P=0.0018, respectively). The only mutation associated with increased relapse was TP53 (HR=2.94, P=0.0201). Nonetheless, the impact of TP53 mutations specifically should be interpreted cautiously given their rarity in CMML. We calculated the goodness of fit measured by Harrell\u27s C-index for both the CPSS and CPSS-Mol, which were very similar. In summary, via registry data we have determined the mutational landscape in patients with CMML who underwent allogeneic HCT, and demonstrated an association between CPSS-Mol and transplant outcomes although without major improvement in the risk prediction beyond that provided by the CPSS
    corecore