54 research outputs found

    Measurement of D s <sup>±</sup> production asymmetry in pp collisions at √s=7 and 8 TeV

    Get PDF
    The inclusive Ds±D_s^{\pm} production asymmetry is measured in pppp collisions collected by the LHCb experiment at centre-of-mass energies of s=7\sqrt{s} =7 and 8 TeV. Promptly produced Ds±D_s^{\pm} mesons are used, which decay as Ds±ϕπ±D_s^{\pm}\to\phi\pi^{\pm}, with ϕK+K\phi\to K^+K^-. The measurement is performed in bins of transverse momentum, pTp_{\rm T}, and rapidity, yy, covering the range 2.5<pT<25.02.5<p_{\rm T}<25.0 GeV/c/c and 2.0<y<4.52.0<y<4.5. No kinematic dependence is observed. Evidence of nonzero Ds±D_s^{\pm} production asymmetry is found with a significance of 3.3 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-010.htm

    Search for CP violation in Λb0→pK− and Λb0→pπ− decays

    Get PDF
    A search for CP violation in Λb0→pK− and Λb0→pπ− decays is presented using a sample of pp collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0fb−1. The CP -violating asymmetries are measured to be ACPpK−=−0.020±0.013±0.019 and ACPpπ−=−0.035±0.017±0.020, and their difference ACPpK−−ACPpπ−=0.014±0.022±0.010, where the first uncertainties are statistical and the second systematic. These are the most precise measurements of such asymmetries to date

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]&lt;2.20(2.56) and Γ[Ξb(6333)0]&lt;1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Measurement of the CKM angle γ\gamma using B0DK0B^0 \rightarrow D K^{*0} with DKS0π+πD \rightarrow K^0_S \pi^+ \pi^- decays

    Get PDF
    A model-dependent amplitude analysis of the decay B0D(KS0π+π)K0B^0\rightarrow D(K^0_S\pi^+\pi^-) K^{*0} is performed using proton-proton collision data corresponding to an integrated luminosity of 3.0fb1^{-1}, recorded at s=7\sqrt{s}=7 and 8TeV8 TeV by the LHCb experiment. The CP violation observables x±x_{\pm} and y±y_{\pm}, sensitive to the CKM angle γ\gamma, are measured to be \begin{eqnarray*} x_- &=& -0.15 \pm 0.14 \pm 0.03 \pm 0.01, y_- &=& 0.25 \pm 0.15 \pm 0.06 \pm 0.01, x_+ &=& 0.05 \pm 0.24 \pm 0.04 \pm 0.01, y_+ &=& -0.65^{+0.24}_{-0.23} \pm 0.08 \pm 0.01, \end{eqnarray*} where the first uncertainties are statistical, the second systematic and the third arise from the uncertainty on the DKS0π+πD\rightarrow K^0_S \pi^+\pi^- amplitude model. These are the most precise measurements of these observables. They correspond to γ=(8022+21)\gamma=(80^{+21}_{-22})^{\circ} and rB0=0.39±0.13r_{B^0}=0.39\pm0.13, where rB0r_{B^0} is the magnitude of the ratio of the suppressed and favoured B0DK+πB^0\rightarrow D K^+ \pi^- decay amplitudes, in a KπK\pi mass region of ±50MeV\pm50 MeV around the K(892)0K^*(892)^0 mass and for an absolute value of the cosine of the K0K^{*0} decay angle larger than 0.40.4.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-007.htm

    First experimental study of photon polarization in radiative B-s(0) decays

    Get PDF
    The polarization of photons produced in radiative B0s decays is studied for the first time. The data are recorded by the LHCb experiment in pp collisions corresponding to an integrated luminosity of 3  fb−1 at center-of-mass energies of 7 and 8 TeV. A time-dependent analysis of the B0s→ϕγ decay rate is conducted to determine the parameter AΔ, which is related to the ratio of right- over left-handed photon polarization amplitudes in b→sγ transitions. A value of AΔ=−0.98+0.46−0.52+0.23−0.20 is measured. This result is consistent with the standard model prediction within 2 standard deviations

    Search for dark photons produced in 13 TeV pppp collisions

    Get PDF
    Searches are performed for both promptlike and long-lived dark photons, A 0 , produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using A 0 → μ þ μ − decays and a data sample corresponding to an integrated luminosity of 1 . 6 fb − 1 collected with the LHCb detector. The promptlike A 0 search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived A 0 search is restricted to the low-mass region 214 <m ð A 0 Þ < 350 MeV. No evidence for a signal is found, and 90% confidence level exclusion limits are placed on the γ – A 0 kinetic-mixing strength. The constraints placed on promptlike dark photons are the most stringent to date for the mass range 10 . 6 <m ð A 0 Þ < 70 GeV, and are comparable to the best existing limits for m ð A 0 Þ < 0 . 5 GeV. The search for long-lived dark photons is the first to achieve sensitivity using a displaced-vertex signature

    Measurement of CPCP asymmetry in Bs0DsK±B_s^0 \to D_s^{\mp} K^{\pm} decays

    Get PDF
    We report the measurements of the CPCP-violating parameters in Bs0DsK±B_s^0 \to D_s^{\mp} K^{\pm} decays observed in pppp collisions, using a data set corresponding to an integrated luminosity of 3.0fb13.0\,\text{fb}^{-1} recorded with the LHCb detector. We measure Cf=0.73±0.14±0.05C_f = 0.73 \pm 0.14 \pm 0.05, AfΔΓ=0.39±0.28±0.15A^{\Delta \Gamma}_f = 0.39 \pm 0.28 \pm 0.15, AfΔΓ=0.31±0.28±0.15A^{\Delta \Gamma}_{\overline{f}} = 0.31 \pm 0.28 \pm 0.15, Sf=0.52±0.20±0.07S_f = -0.52 \pm 0.20 \pm 0.07, Sf=0.49±0.20±0.07S_{\overline{f}} = -0.49 \pm 0.20 \pm 0.07, where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of the Bs0B_s^0 mixing phase, 2βs-2\beta_s, to obtain a measurement of the CKM angle γ\gamma from Bs0DsK±B_s^0 \to D_s^{\mp} K^{\pm} decays, yielding \gamma = (128\,_{-22}^{+17})^\circ modulo 180180^\circ, where the uncertainty contains both statistical and systematic contributions. This corresponds to 3.8σ3.8\,\sigma evidence for CPCP violation in the interference between decay and decay after mixing.We report the measurements of the CP -violating parameters in Bs0_{s}^{0}  → Ds_{s}^{∓} K±^{±} decays observed in pp collisions, using a data set corresponding to an integrated luminosity of 3.0 fb1^{−1} recorded with the LHCb detector. We measure Cf_{f} = 0.73 ± 0.14 ± 0.05, AfΔΓ_{f}^{ΔΓ}  = 0.39 ± 0.28 ± 0.15, AfΔΓ=0.31±0.28±0.15 {A}_{\overline{f}}^{\varDelta \varGamma }=0.31\pm 0.28\pm 0.15 , Sf_{f} = −0.52 ± 0.20 ± 0.07, Sf=0.49±0.20±0.07 {S}_{\overline{f}}=-0.49\pm 0.20\pm 0.07 , where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of the Bs0_{s}^{0} mixing phase, −2βs_{s} , to obtain a measurement of the CKM angle γ from Bs0_{s}^{0}  → Ds_{s}^{∓} K±^{±} decays, yielding γ = (12822+17_{− 22}^{+ 17} )° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This corresponds to 3.8 σ evidence for CP violation in the interference between decay and decay after mixing

    Measurement of the electron reconstruction efficiency at LHCb

    Get PDF
    The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb−1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+→ J/ψ(e+e−)K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%

    Measurement of CP observables in B-+/- -&gt; D(*)K-+/- and B-+/- -&gt; D(*)pi(+/-) decays

    No full text
    Measurements of CP observables in B ± →D (⁎) K ± and B ± →D (⁎) π ± decays are presented, where D (⁎) indicates a neutral D or D ⁎ meson that is an admixture of D (⁎)0 and D¯ (⁎)0 states. Decays of the D ⁎ meson to the Dπ 0 and Dγ final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± π ∓ , K + K − and π + π − final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb −1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± →D ⁎ K ± and B ± →D ⁎ π ± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± →DK ± and B ± →Dπ ± decays is an update of previous LHCb measurements. The B ± →DK ± results are the most precise to date

    Search for the C ⁣PC\!P-violating strong decays ηπ+πη\to π^+π^- and η(958)π+πη^\prime(958) \to π^+π^-

    No full text
    A search for the C ⁣PC\!P-violating strong decays ηπ+π\eta \to \pi^+\pi^- and η(958)π+π\eta^\prime(958) \to \pi^+\pi^- has been performed using approximately 2.5×1072.5 \times 10^{7} events of each of the decays D+π+π+πD^+ \to \pi^+\pi^+\pi^- and Ds+π+π+πD_s^+ \to \pi^+\pi^+\pi^-, recorded by the LHCb experiment. The data set corresponds to an integrated luminosity of 3.0 fb1^{-1} of pppp collision data recorded during LHC Run 1 and 0.3 fb1^{-1} recorded in Run 2. No evidence is seen for D(s)+π+η()D^+_{(s)} \to \pi^+ \eta^{(\prime)} with η()π+π\eta^{(\prime)} \to \pi^+\pi^-, and upper limits at 90% confidence level are set on the branching fractions, \mathcal{B}(\eta \to \pi^+\pi^-) < 1.6 \times 10^{-5} and \mathcal{B}(\eta^\prime \to \pi^+\pi^-) < 1.8 \times 10^{-5}. The limit for the η\eta decay is comparable with the existing one, while that for the η\eta^\prime is a factor of three smaller than the previous limit
    corecore