531 research outputs found

    Renewable Para-Xylene

    Get PDF
    This report details a process designed to renewably produce 400 million pounds of para-xylene per year from corn dry grind, sugar cane molasses (SCM), or woody biomass while minimizing water use. The para-xylene should be suitable for the production of polymers and plastics, and should be economical and green. All three feedstocks are equally suitable for the process and available for use. The process is designed for SCM and consumes a total feed of 9.35 billion pounds of molasses per year. Corn dry grind is simply too expensive, and biomass, while cheaper per pound, imposes too many additional pre-processing costs. The molasses first undergoes hydrolysis then hydrogenation, followed by condensation and separation involving distillation and crystallization. Transalkylation and aqueous phase reforming are also employed to boost yield and create a self-contained process. Several key assumptions are inherent in this process’s design. First, all reactor yields come directly from specific examples in the literature. Second, results found in the patents for glycerol were assumed valid for sorbitol as well, since not all patents used the same materials for their examples. Third, the economic analysis assumes that raw materials for catalyst manufacture can be purchased in bulk for a quarter of the price for small quantities. This assumption was suggested by Dr. Fabiano. Based on these assumptions, the process designed herein meets the desired non-financial criteria, but results in an investor’s rate of return of negative 2.90% and a net present value of negative $196 million. However, further research into the catalyst or reactor yields could easily allow the process to break even or offer an attractive return

    Saving Face: Comparing the Effects of Endorsement Marketing Strategies on Millennial Americans

    Get PDF
    The rapid boom of social media in the 21st century has positioned it as a key instrument in the realm of marketing. Social media has also given rise to a new kind of endorser: the influencer. The present study tested the effects of expert influencers vs traditional celebrities on brand attitude and purchase intentions of makeup products, within a cohort of millennials. Results showed respondents tended to favor the expert influencer in terms of perceived expertise, brand attitude and purchase intention. This has important implications for marketers when it comes to deciding upon an endorser for their brand, with expert influencers having an advantage in the eyes of consumers

    Constraining Ceres' interior from its Rotational Motion

    Get PDF
    Context. Ceres is the most massive body of the asteroid belt and contains about 25 wt.% (weight percent) of water. Understanding its thermal evolution and assessing its current state are major goals of the Dawn Mission. Constraints on internal structure can be inferred from various observations. Especially, detailed knowledge of the rotational motion can help constrain the mass distribution inside the body, which in turn can lead to information on its geophysical history. Aims. We investigate the signature of the interior on the rotational motion of Ceres and discuss possible future measurements performed by the spacecraft Dawn that will help to constrain Ceres' internal structure. Methods. We compute the polar motion, precession-nutation, and length-of-day variations. We estimate the amplitudes of the rigid and non-rigid response for these various motions for models of Ceres interior constrained by recent shape data and surface properties. Results. As a general result, the amplitudes of oscillations in the rotation appear to be small, and their determination from spaceborne techniques will be challenging. For example, the amplitudes of the semi-annual and annual nutations are around ~364 and ~140 milli-arcseconds, and they show little variation within the parametric space of interior models envisioned for Ceres. This, combined with the very long-period of the precession motion, requires very precise measurements. We also estimate the timescale for Ceres' orientation to relax to a generalized Cassini State, and we find that the tidal dissipation within that object was probably too small to drive any significant damping of its obliquity since formation. However, combining the shape and gravity observations by Dawn offers the prospect to identify departures of non-hydrostaticity at the global and regional scale, which will be instrumental in constraining Ceres' past and current thermal state. We also discuss the existence of a possible Chandler mode in the rotational motion of Ceres, whose potential excitation by endogenic and/or exogenic processes may help detect the presence of liquid reservoirs within the asteroid.Comment: submitted to Astronomy and Astrophysic

    Identification of a novel gene required for competitive growth at high temperature in the thermotolerant yeast Kluyveromyces marxianus

    Get PDF
    It is important to understand the basis of thermotolerance in yeasts to broaden their application in industrial biotechnology. The capacity to run bioprocesses at temperatures above 40 \ub0C is of great interest but this is beyond the growth range of most of the commonly used yeast species. In contrast, some industrial yeasts such as Kluyveromyces marxianus can grow at temperatures of 45 \ub0C or higher. Such species are valuable for direct use in industrial biotechnology and as a vehicle to study the genetic and physiological basis of yeast thermotolerance. In previous work, we reported that evolutionarily young genes disproportionately changed expression when yeast were growing under stressful conditions and postulated that such genes could be important for long-term adaptation to stress. Here, we tested this hypothesis in K. marxianus by identifying and studying species-specific genes that showed increased expression during high-temperature growth. Twelve such genes were identified and 11 were successfully inactivated using CRISPR-mediated mutagenesis. One gene, KLMX_70384, is required for competitive growth at high temperature, supporting the hypothesis that evolutionary young genes could play roles in adaptation to harsh environments. KLMX_70384 is predicted to encode an 83 aa peptide, and RNA sequencing and ribo-sequencing were used to confirm transcription and translation of the gene. The precise function of KLMX_70384 remains unknown but some features are suggestive of RNA-binding activity. The gene is located in what was previously considered an intergenic region of the genome, which lacks homologues in other yeasts or in databases. Overall, the data support the hypothesis that genes that arose de novo in K. marxianus after the speciation event that separated K. marxianus and K. lactis contribute to some of its unique traits

    The relationship between elevation roughness and tornado activity: A spatial statistical model fit to data from the central great plains

    Get PDF
    The statistical relationship between elevation roughness and tornado activity is quantified using a spatial model that controls for the effect of population on the availability of reports. Across a large portion of the central Great Plains the model shows that areas with uniform elevation tend to have more tornadoes on average than areas with variable elevation. The effect amounts to a 2.3% [(1.6%, 3.0%) = 95% credible interval] increase in the rate of a tornado occurrence per meter of decrease in elevation roughness, defined as the highest minus the lowest elevation locally. The effect remains unchanged if the model is fit to the data starting with the year 1995. The effect strengthens for the set of intense tornadoes and is stronger using an alternative definition of roughness. The elevation-roughness effect appears to be strongest over Kansas, but it is statistically significant over a broad domain that extends from Texas to South Dakota. The research is important for developing a local climatological description of tornado occurrence rates across the tornado-prone region of the Great Plains

    The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    Get PDF
    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs

    Stress-induced expression is enriched for evolutionarily young genes in diverse budding yeasts

    Get PDF
    The Saccharomycotina subphylum (budding yeasts) spans 400 million years of evolution and includes species that thrive in diverse environments. To study niche-adaptation, we identify changes in gene expression in three divergent yeasts grown in the presence of various stressors. Duplicated and non-conserved genes are significantly more likely to respond to stress than genes that are conserved as single-copy orthologs. Next, we develop a sorting method that considers evolutionary origin and duplication timing to assign an evolutionary age to each gene. Subsequent analysis reveals that genes that emerged in recent evolutionary time are enriched amongst stress-responsive genes for each species. This gene expression pattern suggests that budding yeasts share a stress adaptation mechanism, whereby selective pressure leads to functionalization of young genes to improve growth in adverse conditions. Further characterization of young genes from species that thrive in harsh environments can inform the design of more robust strains for biotechnology

    Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions

    Get PDF
    Endothelial cells represent the first biological barrier for compounds, including nanoparticles, administered via the intravascular route. In the case of ischemic stroke and other vascular diseases, the endothelium overexpresses specific markers, which can be used as molecular targets to facilitate drug delivery and imaging. However, targeting these markers can be quite challenging due to the presence of blood flow and the associated hydrodynamic forces, reducing the likelihood of adhesion to the vessel wall. To overcome these challenges, various parameters including size, shape, charge or ligand coating have been explored to increase the targeting efficiency. Geometric shape can modulate nanoparticle binding to the cell, especially by counteracting part of the hydrodynamic forces of the bloodstream encountered by the classical spherical shape. In this study, the binding affinity of polystyrene nanoparticles with two different shapes, spherical and rod-shaped, were compared. First, vascular adhesion molecule-1 (VCAM-1) was evaluated as a vascular target of inflammation, induced by lipopolysaccharide (LPS) stimulation. To evaluate the effect of nanoparticle shape on particle adhesion, nanoparticles were coated with anti-VCAM-1 and tested under static conditions in cell culture dishes coated with cerebral microvasculature cells (bEnd.3) and under dynamic flow conditions in microfluidic channels lined with hCMEC/D3 cells. Effect of particle shape on accumulation was also assessed in two in vivo models including systemic inflammation and local brain inflammation. The elongated rod-shaped particles demonstrated greater binding ability in vitro, reaching a 2.5-fold increase in the accumulation for static cultures and 1.5-fold for flow conditions. Anti-VCAM-1 coated rods exhibited a 3.5-fold increase in the brain accumulation compared to control rods. These results suggest shape offers a useful parameter in future design of drug delivery nanosystems or contrast agents for neurovascular pathologies.This study has been partially supported by grants from Instituto de Salud Carlos III (PI13/00292 and PI17/0054), Spanish ResearchNetwork on Cerebrovascular Diseases RETICS-INVICTUS (RD12/0014),Fundación Mutua Madrileña. The Ministry of Economy and Competitiveness of Spain (SAF2017-84267-R). The European Union program FEDER and the European Regional Development Fund–ERDF, MADIA project No. 732678 to FC. Furthermore, F. Campos (CP14/00154) recipients a research contract from Miguel Servet Program of Instituto de Salud Carlos III. National Science Foundation Graduate Research Fellowship under Grant DGE-1745303S
    corecore