
Available at:
http://hdl.handle.net/2078.1/163160

[Downloaded 2019/04/19 at 04:24:56 ]

"Constraining Ceres’ interior from its rotational motion"

Rambaux, N. ; Castillo-Rogez, J. ; Dehant, Véronique ; Kuchynka, P.

Document type : Article de périodique (Journal article)

Référence bibliographique

Rambaux, N. ; Castillo-Rogez, J. ; Dehant, Véronique ; Kuchynka, P.. Constraining Ceres’ interior
from its rotational motion. In: Astronomy & Astrophysics, Vol. 535, no.2011, p. A43 (2011)

DOI : 10.1051/0004-6361/201116563



A&A 535, A43 (2011)
DOI: 10.1051/0004-6361/201116563
c© ESO 2011

Astronomy
&

Astrophysics

Constraining Ceres’ interior from its rotational motion

N. Rambaux1,2, J. Castillo-Rogez3, V. Dehant4, and P. Kuchynka2,3

1 Université Pierre et Marie Curie, UPMC–Paris 06, France
e-mail: [nicolas.rambaux;kuchynka]@imcce.fr

2 IMCCE, Observatoire de Paris, CNRS UMR 8028, 77 avenue Denfert-Rochereau, 75014 Paris, France
3 Jet Propulsion Laboratory, Caltech, Pasadena, USA

e-mail: julie.c.castillo@jpl.nasa.gov
4 Royal Observatory of Belgium, 3 avenue Circulaire, 1180 Brussels, Belgium

Received 24 January 2011 / Accepted 14 July 2011

ABSTRACT

Context. Ceres is the most massive body of the asteroid belt and contains about 25 wt.% (weight percent) of water. Understanding
its thermal evolution and assessing its current state are major goals of the Dawn mission. Constraints on its internal structure can be
inferred from various types of observations. In particular, detailed knowledge of the rotational motion can help constrain the mass
distribution inside the body, which in turn can lead to information about its geophysical history.
Aims. We investigate the signature of internal processes on Ceres rotational motion and discuss future measurements that can possibly
be performed by the spacecraft Dawn and will help to constrain Ceres’ internal structure.
Methods. We compute the polar motion, precession-nutation, and length-of-day variations. We estimate the amplitudes of the rigid
and non-rigid responses for these various motions for models of Ceres’ interior constrained by shape data and surface properties.
Results. As a general result, the amplitudes of oscillations in the rotation appear to be small, and their determination from spaceborne
techniques will be challenging. For example, the amplitudes of the semi-annual and annual nutations are around ∼364 and ∼140 milli-
arcseconds, and they show little variation within the parametric space of interior models envisioned for Ceres.
Conclusions. Owing to the small amplitudes of the nutation and the very long-period of the precession motion, the measurements of
the rotational variations will be challenging to obtain. We also estimate the timescale for Ceres’ orientation to relax to a generalized
Cassini state, and find that the tidal dissipation within that object has probably been too small to drive any significant damping of its
obliquity since formation. However, combining the shape and gravity observations of Dawn offers the prospect to identify departures
of non-hydrostaticity on both global and regional scales, which will be instrumental in constraining Ceres’ past and current thermal
state. We also discuss the existence of a possible Chandler mode in the rotational motion of Ceres, whose potential excitation by
endogenic and/or exogenic processes may help us to detect the presence of liquid reservoirs within the asteroid.

Key words. planets and satellites: dynamical evolution and stability – celestial mechanics

1. Introduction

The Dawn spacecraft will encounter and be inserted in orbit
around Ceres in 2015. During the nominal mission, the aster-
oid will be mapped with high-resolution imaging at visual and
infra-red wavelengths (VIR instrument), and its gravity field will
be determined to the tenth degree and order (Konopliv et al.
2011; McCord et al. 2011). A major goal of the Dawn mission
is to constrain the internal structure of Ceres, and in particular
quantify the extent of differentiation, thus internal evolution that
has been experienced by this dwarf planet (Russell et al. 2007;
McCord et al. 2011).

While the primary objective of the high-resolution camera
VIR is to map the surface composition and features of Ceres,
an interesting contribution of these observations will be to char-
acterize Ceres’ rotational motion. Rotation properties have been
shown to provide important constraints on the interiors of plan-
etary bodies, (e.g., Mathews et al. 2002; Koot et al. 2010;
Williams et al. 2001; Margot et al. 2007; Dehant et al. 2009)
because they depend on both their mass distributions and vis-
coelastic properties. The departures from a uniform rotation and
changes in the orientation of a body are indeed responses to
an external forcing such as the gravitational force of another
celestial body of the solar system or the Sun. These responses

depend on the structure and composition of the interior. In partic-
ular, the possible presence of liquid layers inside a body and the
elastic or inelastic properties of the solid parts drive the object’s
response to the external forcing. For example, when there are
liquid layers within a body, such as Mercury or the icy satellites,
the librational response of the solid part is amplified. A similar
effect is expected for the nutation when considering rapid orien-
tation changes in for example Earth and Mars (resonance to the
Free Core Nutation). The rotational behavior of Ceres is thus de-
termined by its composition and physical properties. Hence the
observation of the response of Ceres to any forcing may provide
information about its interior.

The purpose of this paper is to investigate the temporal vari-
ations in Ceres’ rotation in order to identify potential observa-
tions to be performed by the Dawn mission. To date, obser-
vations of Ceres’ surface have been obtained with the Hubble
Space Telescope (HST), adaptive optics (Keck Telescope), and
occultations. However, it has proven difficult to identify surface
landmarks with enough accuracy to constrain the polar orien-
tation and rotation of the asteroid (Thomas et al. 2005; Carry
et al. 2008; Drummond & Christou 2008). Owing to the non-
spherical shape of Ceres related to the centrifugal potential, the
gravitational potential of the Sun exerts a non-zero torque on
Ceres’ dynamical figure. Consequently, Ceres’ axis of figure is
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Table 1. Range of main parameters used in the models tested for this study for the stratified model (Fig. 1).

Layer Thickness Density Viscosity Shear modulus
(km) (kg/m3) η (Pa s) μ (GPa)

Dry Silicate Core 0−275 3300 1021 30
Hydrated Silicate Core 125−414 2700 1020 30
Outer Icy Shell 25−70 931 1012−1019 3.3

Notes. Ceres’ mean radius and density are 476.2 km and 2078 kg/m3, respectively.

expected to exhibit a precessional motion around its normal to
the orbital plane and the periodic part of the torque generates a
nutational motion along the precessional cone. In addition, in the
reference frame of Ceres, the spin axis describes a polar motion
or wobble around the figure axis, and, finally, tidal deformations
arising from the Sun induce perturbations in its rotational veloc-
ity, leading to length-of-day (l.o.d.) variations.

The first part of this article describes the shape and interior
structure parameters used to model Ceres. We then review the
observed pole position and briefly discuss its secular evolution.
In Sect. 4, we introduce the main equations used to determine
the rotational parameters of the body. The geophysical and ro-
tational models are then combined to compute the rotational
motion of Ceres as a function of polar motion and precession-
nutation (Sect. 5). On the basis of these results, we discuss
the prospects for characterizing Ceres’ rotation with the Dawn
mission, and the constraints these observations will provide on
Ceres’ interior (Sect. 6).

2. The shape and interior structure of Ceres

Available constraints on Ceres’ interior come from ground-based
and space telescope observations and best estimates of the den-
sity and mean radius are gathered and discussed in McCord &
Sotin (2005) and Castillo-Rogez & McCord (2010) (Table 1).
Key information about the interior structure comes from shape
data, which led to constraints on the mean moment of inertia,
assuming that the object is in hydrostatic equilibrium. Evidence
of Ceres’ shape hydrostaticity was first suggested by Millis et al.
(1987) based on 13 ground-based occultation observations, who
concluded that the asteroid is an oblate spheroid. This configu-
ration was confirmed by Thomas et al. (2005) from a dataset of
∼380 images obtained with the HST over 80% of Ceres’ rotation
period, as well as from other observing campaigns (e.g., Carry
et al. 2008; Drummond & Christou 2008). While it is impossi-
ble to rule out the possibility that Ceres bears non-hydrostatic
anomalies with amplitudes on the order of the current uncer-
tainty in the shape data (∼2 km), we assume as a working hy-
pothesis that the asteroid is in hydrostatic equilibrium. We dis-
cuss the validity of this assumption in Sect. 6.

Several shape models have been suggested in the past
decade, inferred from different measurement techniques.
Although the data are globally consistent, they are in slight
disagreement, as summarized in Zolotov (2009) and Castillo-
Rogez & McCord (2010). This difference is in part caused by
the difference in the surface coverage enabled by the various
techniques. As pointed out by Rivkin & Volquardsen (2009),
longitudinal variations in the surface composition are likely to
induce a bias in the interpretation of optical images obtained
over a short longitudinal range. The difference between the (a−c)
radii differences (where (a) and (c) are the equatorial and polar
radii, respectively) inferred by Thomas et al. (2005) and Carry
et al. (2008) is significant, on the order of 8 km, i.e., beyond

the error bars of 2 km estimated in both cases. The difference
between the equatorial (a) and the polar (c) radii varies from
31.5 to 35.5 km. The upper bound suggests the absence of large
density gradients across Ceres’ interior. Zolotov (2009) inferred
from that observation that Ceres is not chemically differenti-
ated and that a small density gradient is due to the variation
in porosity with depth, while Castillo-Rogez & McCord (2010)
showed that even a warm icy satellite model whose core is dom-
inated by hydrated silicate is consistent with that upper bound.
Castillo-Rogez (2011) demonstrated that hydrated minerals de-
hydrate in response to the moderate temperature increase under-
gone by Ceres in the course of its evolution. A smaller value
of (a − c) is the signature of an increasing concentration with
depth, for example caused by an inner core composed of dry sili-
cates (ordinary chondrite-like composition) that has not evolved
since accretion or result from the dehydration of hydrated sil-
icates (Castillo-Rogez & McCord 2010). To compute the rigid
and non-rigid responses of Ceres to external perturbations, we
assume that the asteroid is stratified in a rocky and icy shell, af-
ter Castillo-Rogez & McCord (2010). The main characteristics
of this interior model are summarized in Fig. 1, and the geophys-
ical parameters tested in this study are presented in Table 1.

The mean moment of inertia is computed from the density
profile:

I =
8π
3

∫
Vbody

ρ(r)r4dr, (1)

where Vbody is the volume of the body, and ρ(r) is the density
inside the body as a function of radius r. The geophysical in-
formation contained in the global shape and degree-two grav-
ity coefficients is contained in the secular tidal Love numbers ks
(Munk & MacDonald 1960, and defined in Eq. (23))

J2 =
1
3

mks

(R
a

)2

, (2)

where m is the rotational parameter equal to Ω2R3/GM, Ω is the
angular rotation rate, G the gravitational constant, M the aster-
oid mass, and R is mean radius. To relate the internal structure
to the observables, we can used the Radau-Darwin relationship
written, in its approximated form, as (Van Hoolst et al. 2008)

I
MR2

=
2
3

⎛⎜⎜⎜⎜⎝1 − 2
5

√
4 − ks

4 + ks

⎞⎟⎟⎟⎟⎠ , (3)

where the body is assumed to be in hydrostatic equilibrium. We
can then calculate the values of the equatorial and polar moments
of inertia A and C from:

C
MR2

=
I

MR2
+

2
3

J2, (4)

A
MR2

= −J2 +
C

MR2
, (5)
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Fig. 1. Interior model of Ceres used in this
study. The panels show, from left to right, the
petrological structure, the corresponding den-
sity profile, and the viscosities assumed in the
different layers.

where J2 is the degree-two gravity coefficient. For the model
presented in Fig. 1, we obtain a mean moment of inertia I/MR2

equal to 0.347, A/MR2 = B/MR2 = 0.3394, and C/MR2 =
0.3623.

We compute the complex tidal Love number k2, from the in-
tegration of the equations of motion by, e.g., Takeuchi & Saito
(1972) (see Tobie et al. 2005; and Castillo-Rogez et al. 2011,
for details about the computational approach). Ceres’ dissipa-
tion factor is inferred from the imaginary part of k2. Mechanical
attenuation is computed after the composite dissipation law in-
troduced by Castillo-Rogez et al. (2011). That model is based
on the observation that the attenuation spectrum of planetary
materials shows a major shift in frequency-dependence as a
function of the Maxwell time τM characterizing these materi-
als (ratio of the viscosity to the shear modulus). At forcing fre-
quencies greater than 2π/τM, the dependence of the dissipation
factor Q on the angular frequency χ is such that Q−1 ∼ χ−γ with
γ = 0.2−0.4. At low frequencies, the dissipation factor follows
a Maxwellian behavior such that γ = 1. This change reflects an
evolution in the microstructural mechanisms driving dissipation
which are anelasticity-driven at high frequency and viscosity-
driven at low frequency1. Castillo-Rogez et al. (2011) parame-
terized anelasticity using the Andrade model, with application to
Iapetus, an icy satellite subject to a tidal stressing of a few kPa.
The tidal stress amplitude in Ceres is on the order of 100 Pa,
thus a priori we expect the response to that stress to involve the
same physical mechanisms described by Castillo-Rogez et al.
(2011) for Iapetus. For the parameters displayed in Table 1, we
find that k2 is on the order of 10−3. Considering the absence of
robust constraints on Ceres’ temperature profile, a detailed cal-
culation of the dissipation factor is meaningless. However, that

1 Anelastic strain is recoverable, but is a source of internal friction
as it involves the motion of lattice defects. Viscoelastic strain involves
the same defects, but is not recoverable.The anelasticity of planetary
materials has been well-studied, and a review can be found in McCarthy
& Castillo-Rogez (2011).

parameter can be roughly quantified as a function of frequency.
Castillo-Rogez et al. (2011) demonstrated that the dissipation
factor of a water-rich object tends toward 1 at Ceres’ orbital pe-
riod (1681 days), but can be significantly greater than 100 at
forcing periods as short as Ceres’ spin period.

3. Ceres’ pole position

3.1. Polar orientation

The precession-nutation theory of Ceres is defined for a given
pole position of Ceres in space. However, the determination of
the pole position of Ceres is difficult because of the size of the
object and the lack of outstanding spectral features on its sur-
face. In this first section, we use the available observations based
on adaptive optics and HST (Thomas et al. 2005; Drummond &
Christou 2008; Carry et al. 2008) to address Ceres’ pole posi-
tion. The orientation data for Ceres’ pole are provided in the
International Celestial Reference Frame (ICRF) and are listed in
Table 2. The first column represents the right ascension αs, the
second column the declination δs, and the last column the er-
ror bars. Figure 2 displays the three spin pole determinations of
Table 2 projected onto the XY plane of the ICRF, i.e. XICRF and
YICRF

XICRF = cos δ cosα, (6)

YICRF = cos δ sinα. (7)

The three determinations overlap and their intersection is cen-
tered on αs = 289.658 deg, δs = 63.189 deg, i.e. (XICRF =
0.1517, YICRF = −0.4248), indicated by a cross in Fig. 2.

3.2. Obliquity

Figure 2 shows the position of the orbital pole (black point) com-
puted from the Horizons ephemerides (Giorgini et al. 1996) and
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Table 2. Polar orientation of Ceres in right ascension (αs), declina-
tion (δs), and uncertainties on each parameter (Δ).

References αs (deg) δs (deg) Δ (deg)
Thomas et al. (2005) 291 59 5
Drummond & Christou (2008) 293 63 4
Carry et al. (2008) 288 66 5

Orbital orientation
αn (deg) δn (deg)

Horizons (Giorgini et al. 1996) 293.39 62.85

Fig. 2. Projection of the positions of the pole of rotation in the ICRF
plane inferred by Thomas et al. (2005), red line; Carry et al. (2008),
blue dotted line; Drummond & Christou (2008), green shaded line, from
space telescope and ground-based measurements. The black dot repre-
sents the position of the orbital pole (Giorgini et al. 1996). The cross
represents the mean intersection of the three measurements and the el-
lipses the uncertainties.

listed as the last line of Table 2. The orbital pole location coin-
cides with the mean value of the pole position from Drummond
et al. (2008). It is then interesting to investigate the informa-
tion contained in the obliquity value, as previously suggested by
Bills & Nimmo (2010). The obliquity ε is defined as the angle
between the normal to the orbital plane and the figure axis of
Ceres. If Ceres’ obliquity has reached its equilibrium position
as a consequence of internal dissipation, it is possible to obtain
a relationship between the obliquity and the moment of inertia
known as a Cassini state (e.g. Yoder 1995)

ν

n
sin (ε − I) = −3

4
sin 2ε

C − A
C

, (8)

where ν = −50.48 kyr and I = 10.6 deg are the precession period
and inclination of the orbit of Ceres with respect to the ecliptic
plane (which is taken to be coincident with the Laplace plane),
n is the mean motion, and A,C are the moments of inertia of
Ceres (here, A = B < C). This formulae comes from the gener-
alized Cassini states that result from an equilibrium position of
the spin axis by taking into account the precessing orbit of the
body (Colombo 1966; Peale 1969; Henrard & Murigande 1987;
Lemaitre et al. 2006). By using a simple uniform precessional or-
bital period at 50.48 ky (Bills & Nimmo 2010) and our model of
Ceres differentiated into a rocky core and icy shell (Sect. 2), we
obtain an equilibrium obliquity of ∼0.01 deg. This small value
is mainly due to the long precession period (∼50.48 kyr) with
respect to the orbital period (1681 days). The secular motion of
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Fig. 3. Obliquity of Ceres as a function of the orientation of its spin ori-
entation in the equatorial reference frame. The nominal value detected
by Thomas et al. (2005) is αs = 291 ± 5 deg and βs = 59 ± 5 deg. The
curves represent isocontours every 2 degrees.

Ceres is influenced by the oscillation at −22 kyr (see Bills &
Nimmo 2010) and in this case the equilibrium obliquity is equal
to 0.02 deg. Relaxation to the Cassini state is achieved when the
obliquity ε meets this equilibrium criterion.

From the right ascension αn and declination δn of the orbit
pole, we could express the obliquity as

cos ε = sin δs sin δn + cos δs cos δn cos (αs − αn). (9)

To compute the orbit pole coordinates, we use the Horizons
ephemeris that provides the orbital coordinates in the ecliptic
reference frame (the orbital inclination of Ceres and the ascend-
ing node are 10.6 deg and 80.5 deg, respectively). We then ex-
press these coordinates in the ICRF by using the Earth’s obliq-
uity. The final coordinates of the orbital pole are reported in
Table 2. The obliquity is equal to 4.01 degrees for the mean pole
orientation of Thomas et al. (2005), 0.23 deg for Drummond &
Christou (2008), and 3.91 deg for Carry et al. (2008). The ob-
servation of Drummond & Christou (2008) seems to be close to
that expected if Ceres is relaxed to a Cassini state. The uncer-
tainty in the obliquity is represented in Fig. 3 in the case of the
measurement obtained by Thomas et al. (2005). The obliquity
is between 0 and 10 degrees i.e. that contains the Cassini state
but displays a very large uncertainty. For this paper, we use as a
working reference for Ceres’ orientation the upper value of the
obliquity of 9.6 deg. The reason for using this large value, while
data overlap for an obliquity value of ∼3 deg, is that it will yield
upper bounds on our estimates of the rotational perturbations.
This will help us to assess whether or not these perturbations
can be measured with spaceborne techniques.

Bills & Nimmo (2010) predicted that the obliquity of Ceres
is ∼12 deg based on a secular orbital model of Ceres. However,
available observations (e.g. Thomas et al. 2005) and the location
of the orbital pole yielded by the Horizons ephemeris indicate
that the obliquity is most likely between 0 and 10 deg. The dis-
crepancy seems to reside in the initial value used in Eq. (20) of
Bills & Nimmo (2010) and could be resolved by using the initial
values output by the Horizons ephemerides.
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3.3. Damped obliquity

We now estimate the timescale for Ceres to evolve toward that
equilibrium state. The obliquity damping rate ε̇ may be com-
puted from equations (e.g., Néron de Surgy et al. 1996; Levrard
et al. 2007) describing the secular rotational evolution of Ceres
(for an orbit without planetary perturbations) given by

ε̇ =
Kn
CΩ

sin ε

[
cos ε f1(e)

Ω

2n
− f2(e)

]
, (10)

Ω̇ = −Kn
C

[
f1(e)

1 + cos ε2

2
Ω

n
− f2(e) cos ε

]
, (11)

where

f1(e) =
1 + 3e2 + 3e4/8

(1 − e2)9/2
,

f2(e) =
1 + 15e2/2 + 45e4/8 + 5e6/16

(1 − e2)6
, (12)

e is the eccentricity, and the constant K is defined as

K = 3
k2

Q
GM2

Re

( M�
M

)2 (Re

D

)6

n, (13)

where G is the gravitational constant, M� the mass of the Sun,
D Ceres’ semi-major axis, Re its equatorial radius, andΩ the an-
gular rotation rate. The parameters k2 and Q correspond to the
tidal Love number and dissipation factor, respectively, at the or-
bital frequency. For the sake of simplicity, we assume for this
calculation that these parameters remain constant. The inverse
dependence of that equation on D6 indicates that Ceres’ large
distance to the Sun is a severe limitation to any tidal evolution of
its dynamical properties. In addition, we neglect in this expres-
sion the impact of orbital perturbations.

From the system of equations in Eq. (11), as quoted by
Correia (2009) the timescale of evolution of the rotation rate is
shorter than the timescale for the obliquity evolution. Hence it
is expected that the rotation first reaches its equilibrium that will
take a damping rate on the order of

Ω̇ ∼ 6.14−11 k2

Q
, ε̇ ∼ 1.00−14 k2

Q
, (14)

where time is expressed in years. The parameters k2 and Q
are unknown but may be approached from geophysical model-
ing. We note that Bills & Nimmo (2010) considered a situation
where Ceres’ material is in equilibrium at the dissipation peak.
However, this situation is less than likely. The contribution of
tidal dissipation to the total heat budget of the object is negligi-
ble (below 0.1%) in comparison to insolation and, to a lesser ex-
tent, long-lived radioisotopes. This precludes the ability of that
heat source to drive the geophysical state of the asteroid. For the
reference model chosen for this study (detailed in the previous
section), differentiated in an icy shell and rocky core, k2 is on the
order of 10−3 and Q is on the order of 10. In that case, the dis-
sipation time is on the order of 1013 years for Ω̇ and 1017 years
for ε̇. Hence, we infer that Ceres’ obliquity has probably not
been fully damped over its lifetime. As a consequence, our re-
sult contrasts with the conclusion of Bills & Nimmo (2010) that
Ceres’ obliquity could have been damped in a few hundred Myr,
even if we assume that the asteroid is in a very dissipative state.

4. Rotational model of Ceres

4.1. Euler-Liouville equations

If Ceres were perfectly spherical and rigid, then its rotation
would be uniform. However, the HST measurements have shown
that the figure of Ceres is an oblate body (within the error bars),
from which we inferred an equatorial oblateness α = (C−A)/A =
0.0675 (see Sect. 2). Thus, the Sun exerts a non-zero torque on
Ceres dynamical figure, which responds in the form of the pre-
cession and nutation of its orientation axes. The Sun also raises
tides that deform its surface and perturb its rotational velocity.

Thus, it is convenient to describe Ceres’ rotation using the
approach developed for Earth, which is oblate to first order.
The rotation of the body is described through the classical
Euler-Liouville equation written as (see Moritz & Mueller 1987;
Dehant & Mathews 2007)

dH
dt
+Ω ∧ H = Γ. (15)

This describes the variations in the angular momentum H dis-
turbed by an external torque Γ. This equation is expressed in the
rotating frame tied to the body through the spin velocity Ω and
written in the Tisserand frame (Munk & MacDonald 1960). As
shown in Sect. 6, the wobble damping time is some ten thou-
sands of years and we could assume that the instantaneous axis
of rotation is near the polar principal axis of the body. Thus,

Ω =

⎛⎜⎜⎜⎜⎜⎜⎝
m1
m2

1 + m3

⎞⎟⎟⎟⎟⎟⎟⎠Ω, (16)

where Ω is the mean rotation of the body and the quantities mi

are small and dimensionless. The pair m1,m2 describes the polar
motion of Ceres, i.e. the orientation of the rotational speed in the
body reference frame, while m3 corresponds to the variation in
the rotational speed as shown in the linearized expression

||Ω|| = Ω(1 + m3). (17)

The angular momentum is H = IΩ where I is the tensor of
inertia of the body expressed as

I =

⎛⎜⎜⎜⎜⎜⎜⎝
A 0 0
0 A 0
0 0 C

⎞⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞⎟⎟⎟⎟⎟⎟⎠ , (18)

where the ci j are symmetric and represent the departure from the
reference ellipsoid, i.e. the deformation of the body surface. By
introducing the moment of inertia Eq. (18) into the dynamical
equations Eq. (15) and developing at first order in m j and ci j, the
linearized dynamical equations are

AΩṁ1 + (C − A)Ω2m2 + Ωċ13 − Ω2c23 = L1

AΩṁ2 − (C − A)Ω2m1 + Ωċ23 + Ω
2c13 = L2 (19)

CΩṁ3 + Ωċ33 = L3

or by introducing complex notations, as usual for Earth rotation
studies, m = m1+ im2, L = L1+ iL2, and c = c13+ ic23, we obtain
one complex equation for the polar motion

Aṁ − iαAΩm + ċ + iΩc =
L
Ω

(20)

and one equation for the l.o.d. variations

CΩṁ3 + Ωċ33 = L3. (21)

We note that, for the approximation of an axisymmetric body, the
polar motion and l.o.d. variation are described by independent
dynamical equations.
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4.2. Deformed tensor of inertia

The centrifugal and tidal potentials deform the body and that
deformation may be expressed as (Dehant et al. 2005)

c = αA
k2

ks
m − 3αA

k2

ks

W21

Ω2d2
, (22)

where the first term results from the centrifugal potential and the
second one from the tidal potential and especially the tesseral
potential W21 (see Sect. 4.4), G is the gravitational constant, d is
the mean Sun-Ceres distance, k2 is the tidal Love number, and ks
the secular Love number defined as (Munk & MacDonald 1960)

ks = 3
(C − A)G
Ω2R5

, (23)

where R the radius of the surface.
The c33 tensor varies as a function of the centrifugal and tidal

potentials after (Greff-Lefftz et al. 2000)

c33 = −4
3
αA

k2

ks
m3 − 2αC

k2

ks

W20

Ω2d2
, (24)

where W20 is the zonal potential (see Sect. 4.4).

4.3. Gravitational torque

The tesseral degree-two tidal potential W acts on the Ceres’
equatorial bulge. Thus involves an equatorial torque such that
(Dehant & Mathews 2007)

L1 + iL2 = −3iαA
d2

W21, (25)

where the complex potential W21 is developed in the next sec-
tion. The torque L3 is equal to zero because of the symmetry
axis of Ceres.

4.4. The tidal potential

The gravitational tidal potential induced by the Sun may be ex-
pressed in both a frame tied to Ceres (MBRF = mean body ref-
erence frame) and the celestial frame (MCRF = mean celestial
reference frame). Choosing one reference frame, phenomena in-
duced by the gravitational forcing have to be expressed in the
same frame, with the particularities that the frequency in the
frame tied to Ceres and the frequency in space are related by
the rotational velocity of the body (see Eq. (29)). Hence a con-
stant torque applied in the MCRF will appear to be periodic in
the MBRF at the rotational frequency and vice versa.

Following the method of Dehant & Mathews (2007),
the degree-two potential exerted by the Sun on Ceres in the
MBRF is developed as W2 = W20 +W21 where

W20 =
GM
d3

(
z2 − 1

3

)
(26)

and

W21 =
GM
d3

(xz + iyz), (27)

where the W20 leads to the zonal part and W21 leads to the sec-
torial part of the tidal torque. Here, the sectorial part is zero be-
cause of the axi-symmetric of the body’s shape. The cosine di-
rections (x, y, z) are the direction of the Sun in the MBRF. They

are evaluated from the Horizons ephemeris (Giorgini et al. 1996)
and rotated from the ecliptic frame to the MBRF by using the
polar direction of Ceres with a right ascension of 286 deg and
declination of 54 deg consistent with an obliquity of 9.2 deg.
The uncertainty related to the direction of the polar direction of
Ceres is discussed in Sect. 3.1.

The zonal part is developed as a Fourier series W20 =

W j
20eiω j t, where W j

20 also contains the phases, and the tesseral
part is developed as a Fourier series with prograde (index +) and
retrograde (index −) components

W21 = W+21eiω j t +W−21eiω− j t, (28)

where we used the same notations as Roosbeek (1995) and
Roosbeek & Dehant (1998). The prograde and retrograde cir-
cular motions allow us to express the elliptical motion in two
symmetric motion components. The frequencies ω j of the tidal
potential are expressed in the MBRF, and they are related to the
prograde and retrograde frequencies (Δω j,−Δω j) expressed in
the space MCRF, by means of

ω j = Δω j − Ω,
ω− j = −Δω j −Ω, (29)

where Ω is the rotation period close to nine hours. Henceforth,
the periods appear to be long in space and short in the frame tied
to Ceres.

For Earth, one goes from the terrestrial reference frame tied
to the planet to the celestial frame using several rotation matri-
ces. These rotations first bring the terrestrial frame attached to
the figure axis of the Earth to the intermediate pole, account-
ing for polar motion; a rotation is then performed along the true
equator of date around this intermediate pole, accounting for the
Earth’s rotation (uniform part and l.o.d. or UT1 variations). The
precession and nutations are then accounted to bring the true
equator of date to the celestial frame. Precession and nutations
are thus those of the true equator of date. One has to keep in
mind however that the choice concerning the intermediate frame
is purely conventional. The more logical choice is of course re-
lated to the way in which UT1 or the l.o.d. variations are ex-
pressed. In the recently adopted conventions for Earth, the inter-
mediate frame is the equator of the Celestial Intermediate Pole
(CIP), a conventional pole that has no retrograde diurnal mo-
tion in a reference frame tied to the Earth, and only long-period
motions (precession, nutations) in space. The instantaneous ro-
tation pole and the mean rotation pole are not identical; they
differ by small changes in their direction caused by the atmo-
sphere, ocean, and hydrology excitation of polar motion on very
short periods. When computing the precession and nutations,
these axes have identical long-period motions in space and retro-
grade diurnal motion in a frame tied to the Earth. As, for Ceres,
we can ignore the differences at short period in space. We then
work with the instantaneous rotation pole (m1,m2) in a frame
tied to Ceres. Long-term motion in that frame will be related to
the Chandler Wobble, if excited. Long-term motion of the pole
in space or retrograde diurnal motions in the frame tied to Ceres
represent precession and nutations. We have a one-to-one rela-
tion between the frequencies of these motions in a frame tied to
Ceres and in space.

5. Description of the rigid rotational motion

5.1. Polar motion

We first solve the polar motion by introducing the potential ex-
pressed in Eq. (28) and using a Fourier transform eiσt to express
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Table 3. Ceres rigid Polar motion (k2 = 0).

Freq ω j Per Amp Freq ω− j Per Amp
(rad/days) (days) (mas) (rad/days) (days) (mas)
–16.617 –0.37813 0.1683
–16.613 –0.37821 0.0299 –16.620 –0.3780 –0.0101
–16.609 –0.37830 0.1638 –16.624 –0.3780 0.0011
–16.605 –0.37838 0.0449 –16.628 –0.3779 –0.0003
–16.605 –0.37840 0.0009 –16.629 –0.3779 0.0000
–16.602 –0.37847 0.0085 –16.632 –0.3778 –0.0001
–16.598 –0.37855 0.0014 –16.635 –0.3777 0.0000

Notes. The prograde motions are shown in the left columns of the table
whereas the right part of the table contains the retrograde motions.

the budget equations at a given frequency in Eq. (20). The com-
plex polar motion is then

m = mceiσcte−λt (30)

+
∑

j

[−3αW+21

Ω2d2

Ω − (Ω + ω j)k2/ks

ω j −Ωα + α(Ω + ω j)k2/ks
ei(ω j t+φ j)

+
−3αW−21

Ω2d2

Ω − (Ω + ω− j)k2/ks

ω− j −Ωα + α(Ω + ω− j)k2/ks
ei(ω− j t+φ j)

]
,

hence consists of a free mode (first term) and a sum of forced
modes, which are prograde and retrograde.

The frequency of the free mode is called the Chandler fre-
quency σc by analogy with Earth rotation and is written as

σc = αΩ
k2

s − |k2|ks cos δ + |k2|α(ks cos δ − |k2|)
k2

s + 2α|k2|ks cos δ + α2|k2|2 · (31)

Its period is about 5.48 days and the correction for the defor-
mation k2 = |k2|e(−iδ), where δ is the phase lag representing the
dissipative part, which is between 3% and 5% of its value. This
contrast to the Earth’s case, for which the deformation induces
a difference of 100 days in the period. The difference in behav-
ior comes mainly from the value of α that differs by about one
order of magnitude between the two bodies. The amplitude mc
and the phase φc of the Chandler mode depend on the dynamical
and geophysical history of the body (see discussion in Sect. 6.2).
The amplitude of the Chandler mode is damped on a typical
timescale 1/λ, a function of the imaginary part of the Love num-
ber and expressed as

λ =
αΩ|k2|ks sin δ(α + 1)

k2
s + 2α|k2|ks cos δ + α2|k2|2 · (32)

Its value depends strongly on the interior model as discussed in
Sect. 6.

The forced terms of Ceres’ rigid polar motion are shown in
Table 3. The polar motion of Ceres oscillates on short periods
close to nine hours and its motion projected onto the surface of
Ceres is very small (see Fig. 4). Its amplitude multiplied by the
mean radius of Ceres is ∼0.5 mm, and summing all the contri-
butions regardless of the phase yields an amplitude no greater
than 1 mm.

5.2. Precession-nutation of Ceres

The rotational motion of Ceres’ polar axis describes in the
inertial reference frame, the MCRF, a precessional nutational

Fig. 4. The polar motion of Ceres is circular and has a main term that
oscillates on 840 days.

motion. The rotation angles and their derivatives are easily com-
puted by using the kinematic Euler equation allowing us to ex-
press the instantaneous rotation pole components in terms of the
nutation angles as

θ̇ + iψ̇ sin θ = ΩmeiΩt, (33)

where Ω accounts for the expression of the pole in space due to
the rotation around the Z-axis. Hence, after integrating Eq. (33),
except for the case ω j = −Ω that leads to the precessional mo-
tion, we obtain the nutation series

Δθ + iΔψ sin θ = −i
Ω

Ω + σc
mcei(Ω+σc)te−λt (34)

+i
∑
j�0

[ −Ω
Δω j

m+j ei(Δω j t+φ j) +
Ω

Δω j
m−j e−i(Δω j t+φ j)

]
.

The rigid nutations of Ceres are described by the periodic com-
ponents of the last equation and are listed in Table 4. The ampli-
tudes of the long-period nutations are positively affected because
the amplitude is inversely proportional to the forcing frequency.
The main term (in absolute amplitude) is the semi-annual nu-
tation 2λc related to the obliquity of Ceres, and then the terms
related to harmonics. We also note the presence of a term related
to Jupiter’s mean longitude λJ. The amplitude of the annual nu-
tation is around 364 mas, which represents a 0.84 m surface dis-
placement, for a mean radius of 476 km. The detection of this
small displacement requires tracking of Ceres’ surface with a
beacon for an extensive period of time.

The first term in Eq. (34) represents the Chandler mode ob-
served from space. In this case, it has a period of 9h40 min i.e.
an increase of 36 min with respect to the proper rotation of the
body. The precessional motion of the figure axis is represented
by the oscillation at ω j = −Ω in the body reference frame that is
purely imaginary m0 = 0.1576 mas, leading to a precession time
of 226 981.8 years that is longer than the 218 654.2 year period
calculated with the classical formulae

ψ̇ = −3
2

n2

Ω

C − A
C

cos ε. (35)

The discrepancy between the two results (4%) is essentially due
to the ephemeris length used in the frequency analysis of the
potential.
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Table 4. Ceres rigid nutations (k2 = 0) and corresponding argument
with λc and λJ mean longitudes of Ceres and Jupiter.

Arg Freq Per Amp Nut prog Amp Nut retro
(rad/days) (days) (mas) (mas)

2λc 0.00747 840.8 –364.296 2.504
λc 0.00374 1681.7 –133.129 –44.976
3λc 0.01121 560.6 –66.627 –0.400
4λc 0.01495 420.4 –9.449 –0.054
4λc − λJ 0.01204 521.7 –1.256 0.009
5λc 0.01868 336.3 –1.217 0.007

Notes. The amplitudes are truncated at 10−4 mas.

Table 5. m3 variations of Ceres for a tidal Love number k2 =
0.017−i 1.27× 10−7 with frequencies expressed in the inertial reference
frame.

Freq Per Amp in-phase Amp out-of-phase
(rad/days) (days) (mas) (mas)
0.00374 1681.9 0.00072 0.0
0.00747 840.8 0.00020 0.0
0.01121 560.6 0.00004 0.0
0.00457 1374.3 0.00001 0.0

Notes. The amplitudes are truncated at 10−5 mas.

6. Geophysical constraints from space
observations

6.1. Non-rigid contributions: l.o.d.

In Sect. 4, we introduced the rotational equations for a non-rigid
body. The application of these equations to the geophysical mod-
els shows that the non-rigid contributions to the shape deforma-
tion bear a negligible effect on both polar motion and nutations.
However, the variations in the moments of inertia in response to
the tidal forcing exerted on the body generate a non-zero torque
along the figure axis that would perturb the uniform rotational
motion in the form of l.o.d. variations. By combining Eq. (21)
and the inertia deformation in Eq. (24), we deduce the variations
in the l.o.d. m3

m3 =
2α k2

ks

1 − 4
3α

A
C

k2
ks

W j
20

Ω2d2
· (36)

The resulting oscillations in the m3 variations are under
0.001 mas (Table 5), largely below the expected accuracy for
space-borne observational techniques. The term at 1374.3 days
is related to Jupiter with the combination 2λc − λJ.

6.2. Wobble

The rotational motion of Ceres appears to be relatively uniform
because all the nutational oscillations, polar motion, and l.o.d.
variations have very small amplitudes. Therefore, if a sizeable
departure from a quiet rotation is detected by the Dawn mission
at a period of about 9h40, then we could assign this motion to the
Wobble. The presence of a Chandler mode is indeed expected as
soon as any perturbation, exterior or interior to the body, shifts
the figure axis from its equilibrium position. However, this mode
is also damped because of the internal dissipation. The Chandler
mode expressed in the inertial reference frame has a period of
9h40 min, i.e., around 36 min longer than the proper rotation of
the body. As the nutations in the inertial frame have long periods

Fig. 5. Period of the Chandler model as a function of the value of the
Love number k2. The lower bound of k2 corresponds to a fully frozen
model, while the upper bound is expected if Ceres contains a global
ocean.

(harmonics of the orbital period), then any observed departure
of the uniform rotation at the short period of 9h40 might be at-
tributed to the Chandler mode. The Chandler period is sensitive
to the value of the Love number k2 as shown in Fig. 5, where the
period is expressed in both the reference frame MBRF (5.5 days)
and MCRF (9h40). We consider a wide range of possible values
for k2 covering the spectrum of possible models envisioned for
Ceres. This parameter is computed at the period of the Chandler
mode of 5.5 days, i.e. the period in the body reference frame.
The damping timescale Tλ is proportional to Q and the damping
timescale can be as long as 120 000 years for dissipative models
with large Q and as short as few decades if the object is very dis-
sipative. Thus, the damping timescale could be very short, hence
a non-zero Chandler mode requires a continuous physical pro-
cess or a recent impulse to be observable today.

In the Earth’s case, the Chandler wobble is mainly excited
by the atmosphere and the ocean. In the case of Ceres, there is
no atmosphere, but Ceres is in a rich dynamical environment,
the asteroid belt, thus is exposed to a constant meteoritic flux.
This meteoritic flux may involve impacts exciting the Chandler
mode for Ceres. The wobble excitation may be expressed by us-
ing Peale (1975) expression introduced in the case of the Moon

me = − ic
Aα

H(t − t0) +

(
− c

A
+

ic
Aα
+

N
Aα

)
H(t − t0)eiαΩ(t−t0), (37)

where me represents the polar response of the impact, N repre-
sents the maximum angular momentum potentially induced on
Ceres by a collision (N = mvR with m and v corresponding to
the mass and velocity of the bolide, respectively, and R Ceres’
radius). The parameter H(t − t0) is the Heaviside function asso-
ciated with an impact at time t0. This expression contains two
components: the angular momentum transfer and the modifica-
tion of the moment of inertia caused by the ejected matter and
formation of a crater. The subsequent response of the pole is
composed of a constant offset due to the first term in Eq. (37)
and a term due to the excitation of the Chandler mode. We use
the formulation of Gauchez & Souchay (2006) for crater mod-
eling and the scaling law is borrowed from Holsapple (1993).
We search for possible impact configurations leading to the ex-
citation of the Chandler mode with an amplitude of 10 arcsec,
i.e., a displacement at the surface of 20 m (the amplitude ob-
served today would be damped because of the dissipation of the
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Chandler mode, so these events have to be recent). This may be
achieved for a cometary projectile (heliocentric) with a diameter
of 2.5 km, a density of 0.6 g/cm3, and a velocity of 20 km s−1;
or by a neighboring asteroid of 4 km diameter with a density of
1.3 g/cm3, colliding at 5 km s−1 (Farinella & Davis 1992).

To estimate the probability of this impact on Ceres, we
survey main-belt asteroids with absolute magnitude brighter
than 14. The population contains approximately 25 000 objects
(see Jedicke et al. 2002). Trajectories of all the considered as-
teroids were calculated for a 100-year time interval assuming
Keplerian orbits. A fictional object evolving on the same orbit as
Ceres, but with a cross-section 10 000 times greater would ex-
perience 200 collisions with other asteroids. Scaling this value
to Ceres’ size and a time span of 150 000 years, we obtain
0.003 impacts on Ceres during that timeframe. An asteroid di-
ameter of 4 km corresponds approximately to an absolute mag-
nitude of 15. According to Jedicke et al. (2002), these objects are
two to three times more abundant than the population considered
here. As a consequence, the corresponding number of impacts
onto Ceres amounts to approximately 0.007 per 150 000 yrs. The
probability that Ceres experienced in the past 150 000 years a
collision with an object larger than 4 km appears to be small
(less than 1%). Such an estimate is more difficult to calculate in
the case of cometary collisions owing to the lack of constraints
on the possible reservoirs of comets.

Another consequence of collision with large objects is the
alteration of the moments of inertia of Ceres that may lead to
shift in its figure axis (first term in Eq. (37)). The long-term con-
sequence of that effect needs to be studied in detail. This would
require to properly model the respective timescales for the relax-
ation of the crater and the equatorial bulge. As noted by Nimmo
& Matsuyama (2007), both processes depend on the mechani-
cal properties of the icy shell, thus should proceed on the same
timeframe, which increases the complexity of the problem. For
Ceres, we expect the low subsurface viscosity to promote rapid
crater relaxation preventing the re-orientation.

We also checked for the possible occurrence of close encoun-
ters during the Dawn mission lifetime, which could excite Ceres’
spin axis by an impulse of its gravitational torque. From realistic
(non Keplerian) asteroid orbits, we found no close encounter be-
tween 2010 and 2020 that could modify the rotational dynamics
of Ceres. The encounters are insufficiently close or the bodies in-
volved are not massive enough. This estimate accounts only for
main-belt asteroids with absolute magnitudes brighter than 14.

Another source of excitation of the Chandler wobble may
be an equatorial sea inside Ceres. Such a water reservoir was
suggested by Castillo-Rogez & McCord (2010) based on the
observation that Ceres’ surface temperature at the equator is
close to the eutectic temperature of salt impurities expected
in the asteroid. Several astrophysical models also suggest that
Ceres accreted a significant fraction of ammonia hydrates (up
to 7wt.% of the ice phase, Dodson-Robinson et al. 2009), and
possibly also methanol hydrates (Mousis et al. 2008). The pres-
ence of these compounds would help to preserve a deep liquid
layer over extended periods of time, e.g. the ammonia hydrate
peritectic temperature in Ceres’ pressure conditions is ∼176 K
(Hogenboom et al. 1997), i.e., similar to Ceres’ surface tempera-
ture. The excitation process is then related to possible current cir-
culation and loading because of the fluid reservoir. Deep liquid
layer may result in increased dissipation, as suggested by Tyler
(2008) in the case of outer planet icy satellites. Although the
modeling of this process is beyond the scope of this paper, cir-
culation in closed ocean systems and its signature on the rotation

is an important topic in planetary sciences (e.g., Tyler 2008; Noir
et al. 2009).

6.3. Hydrostatic state

There are multiple sources of departure from hydrostatic equilib-
rium on the large scale, starting with the large contrast in temper-
ature between the equator and the poles, of at least 50 K (Fanale
& Salvail 1988). Castillo-Rogez & McCord (2010) suggested
that Ceres’ equatorial temperature might promote the preser-
vation of a regional deep liquid layer, while the polar regions
remained entirely frozen. The contrast in density between wa-
ter ice and liquid water saturated in brines can be up to 60%
(e.g., Prieto-Ballesteros & Kargel 2005), which would increase
the difference between A and C by about 5%. Another source of
density anomalies are mascons (mass concentrations), for exam-
ple caused by topography anomalies at the silicate core, as in-
ferred for Ganymede from Galileo measurements (e.g., Palguta
et al. 2009). Schenk & McKinnon (2008) suggested in the case
of Enceladus that an unrelaxed core is responsible for the depar-
ture of the satellite’s shape from hydrostaticity, by ∼1.5 km, even
if the outer shell of the satellite is likely to have already relaxed.
Topographic features, for example, unrelaxed craters are another
source of density anomalies.

A knowledge of the principal axis moment of inertia is key
to estimating the departure from hydrostatic equilibrium that is
generally assumed to interpret degree-two gravity and oblate
shape data in terms of interior properties through simple rela-
tionships (Eq. (2), Zharkov et al. 1985). A determination of the
mean moment of inertia I from (A + B + C)/3 independently of
the former equation by using the rotational motion of the body
(see Ferrari et al. 1980; Konopliv et al. 2006) would enable the
detection of large variations in internal structure. Unfortunately,
the amplitudes of the nutation and the precessional motion of
Ceres are very small. Their measurement requires the tracking
of a landmark at the surface of Ceres with an accuracy better
than 10 cm, and this for at least six months. In addition, since
it is unlikely that Ceres’ obliquity is fully damped (Sect. 3), we
cannot rely on the assumption that Ceres is in the generalized
Cassini state as a means of determining its principal axis mo-
ments of inertia. Therefore, the comparison of gravity and shape
data appears to be the best way of inferring the presence of non-
hydrostatic anomalies (with the Chandler mode, if detected) in
the case of Ceres.

The extent of global relaxation can also be assessed from the
comparison of the secular Love numbers inferred independently
of the shape hs and the degree-two gravity field ks (e.g. Dermott
& Thomas 1988).

The Love number ks can be inferred from the degree-two
gravity field such as Eq. (2). If the object is in hydrostatic
equilibrium, then the Love numbers are related by (e.g., Zharkov
et al. 1985)

hs = ks + 1. (38)

Departure from this relationship provides a measure of the non-
hydrostaticity of Ceres. The Dawn mission is likely to yield the
gravity field of Ceres to degree 10 as an outcome of the nomi-
nal mission (Konopliv et al. 2011). The ratio of the gravity data
to the topography (admittance) is generally used to constrain
the degree of isostatic relaxation achieved by geological features
(e.g., Simons et al. 1994). For example, Nimmo et al. (2010) in-
terpreted Rhea’s degree-three gravity coefficient inferred by Iess
et al. (2007) from the Cassini Orbiter, as the signature of un-
relaxed impact craters. Line-of-sight gravity measurements are
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also most appropriate for detecting lateral variations in density,
to be compared against the topography measurements inferred
from high-resolution imaging.

7. Conclusion

We have characterized the main components of Ceres’ rotation
and quantified them by assuming that Ceres can be differenti-
ated into a rocky core and icy shell. First, our modeling predicts
that Ceres’ obliquity is not constrained by the dissipative his-
tory of the asteroid. However, multiple determinations of Ceres’
pole agree that its obliquity lies between 0.01 and 4 deg. The
lower bound suggests that Ceres could be relaxed to a gener-
alized Cassini state. However, owing to the very long damping
timescale, this situation is unlikely. This uncertainty will be re-
solved by the Dawn mission. In any case, important constraints
can also be inferred by combining shape and gravity data. These
will yield independent determinations of the secular Love num-
ber that will be used to constrain Ceres’ hydrostatic state, from
which the mean moment of inertia of the asteroid can be inferred.

For the stratified, solid model considered in this study, we
have established upper bounds on the rigid and non-rigid com-
ponents of the nutations, polar motion, and l.o.d. These appear to
be too small to be inferred from space measurement techniques.
We then identified that a detectable perturbation of Ceres’ spin
state (wobble) may be the signature of a Chandler mode. This
mode would have to be excited by recent large impacts or cur-
rents in local liquid reservoirs at depth to yield a sizeable sig-
nature. This aspect needs to be quantified in detail as it offers
the prospect to constrain Ceres’ thermal state and geophysical
evolution.
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