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ABSTRACT

The statistical relationship between elevation roughness and tornado activity is quantified using a spatial

model that controls for the effect of population on the availability of reports. Across a large portion of the central

Great Plains the model shows that areas with uniform elevation tend to have more tornadoes on average than

areas with variable elevation. The effect amounts to a 2.3% [(1.6%, 3.0%)5 95% credible interval] increase in

the rate of a tornado occurrence per meter of decrease in elevation roughness, defined as the highest minus the

lowest elevation locally. The effect remains unchanged if the model is fit to the data starting with the year 1995.

The effect strengthens for the set of intense tornadoes and is stronger using an alternative definition of

roughness. The elevation-roughness effect appears to be strongest over Kansas, but it is statistically significant

over a broad domain that extends fromTexas to SouthDakota. The research is important for developing a local

climatological description of tornado occurrence rates across the tornado-prone region of the Great Plains.

1. Introduction

A tornado is a rotating column of air swirling upward

from the surface and extending from a cumuliform

cloud. The strongest tornadoes develop under rotating

thunderstorms (i.e., supercells). Not all supercells pro-

duce tornadoes. This fact suggests that tornado initiation

is sensitive to an interplay of many processes across a

range of spatial scales, including the scale of a few ki-

lometers at which the flow is described as a converging,

swirling plume (Lewellen et al. 2000). Research shows

that the underlying surface can affect this convergent

inflow (Bluestein 2000; Dunn and Vasiloff 2001; Prociv

2012). A statistically significant decrease in the number

of intense tornadoes with an increase in topographic

variability is found across the eastern two-thirds of the

United States (Karpman et al. 2013), but it is not clear to

what extent population variability confounds this effect.

Research also shows that surface roughness can affect

inflow—in particular, the velocity distribution and flow

curvature (Lewellen 1962; Davies-Jones 1973; Dessens

1972; Leslie 1977). Rough terrain reduces the tangential

velocity (Leslie 1977). An experimental study argues,

however, that the amount of roughness used in these

studies is outside the range encountered in regions where

tornadoes most often occur (Church et al. 1979). A study

by Jagger et al. (2015) for Kansas found fewer tornadoes

in counties with greater elevation variation. They used

elevation standard deviation computed within each

county as a metric for elevation roughness and found a

1.8% reduction in the number of tornadoes for every 1-m

increase in roughness.

In this paper, we examine the finding of Jagger et al.

(2015) in more detail by 1) aggregating the tornado

paths to cell counts over varying grid resolutions and
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domains, 2) applying alternative definitions of elevation

roughness, 3) examining the effect for different ratings

on the enhanced Fujita scale (EF), and 4) excluding

early data records. The main question posed here is,

How general is the elevation-roughness effect? The

approach is ecological, fitting spatial statistical models

to aggregate data rather than to individual tornadoes.

An important application of the model is local tornado

climatological behavior. Methods are described in sec-

tion 2, including the data sources, the procedure to ag-

gregate the data to grid cells, and the spatial model.

Results are presented in section 3. Raw and corrected

tornado rates are compared. The magnitude and un-

certainty of the elevation-roughness effect are quantified.

The robustness of the effect is examined in section 4. The

paper ends with a short summary of the main findings

and a discussion of the results.

2. Methods

a. Data

The large-scale climatological behavior of tornadoes

has been extensively studied (e.g., Brooks et al. 2003;

Dixon et al. 2014). Tornadoes are rare at any one loca-

tion, however, making it difficult to uncover small-scale

relationships like those related to variations in elevation

or other terrain features. The uneven quality of tornado

records (Verbout et al. 2006; Diffenbaugh et al. 2008;

Brooks 2013) confounds simple grouping and averaging

methods. Therefore, in this study we use a spatial model

that is capable of statistically controlling for the in-

consistencies in the data quality. We apply the model to

data aggregated over various domains and at various

spatial scales.

Analysis and modeling are performed using the open-

source R language for statistical computing and freely

available government data, including tornado reports

from the National Weather Service’s Storm Prediction

Center (SPC), population and administrative bound-

aries from the U.S. Census Bureau, and elevation from

NASA’s Shuttle Radar Topography Mission. We over-

lay straight-line tornado paths, population, and eleva-

tion roughness onto a regular latitude–longitude grid

covering the central Great Plains between 958 and

1028W longitude and between 368 and 428N latitude.

The choice is based on our interest in the effect of eleva-

tion variation separate from the effects of other surface-

roughness features like forests or other vegetation.

The data used in the study and the code to create the

figures and results are archived online (https://github.

com/jelsner/Roughness). The SPC database, which

contains all reported tornadoes in theUnited States over

the period 1950–2014, was obtained from the Internet

(http://www.spc.noaa.gov/gis/svrgis/zipped/tornado.zip).

The database is in ‘‘shapefile’’ format, with each tornado

provided as a straight-line track. The native coordinate

reference system of the tornado database is Lambert

conformal conic (LCC). Start locations are recorded to

two-digit decimal precision prior to 2009 and four-digit

precision afterward. Locations aremore accurate later in

the record, when estimates were made with GPS. Ele-

vation is obtained from a digital elevation model as a

georeferenced tagged image file (TIF; http://www.

viewfinderpanoramas.org/DEM/TIF15/) at 3-arc-s reso-

lution (;80m). The raster dataset contains elevation

abovemean sea level in meters with an accuracy of67m

per pixel. Population is obtained from the ‘‘gridded

population of the world’’ dataset, version 3, from the

Socioeconomic Data and Applications Center at Co-

lumbia University (http://sedac.ciesin.columbia.edu/data/

collection/gpw-v3). The dataset contains raw estimates of

population density for 2010. Values are given as persons

per square kilometer.

b. Tornado counts by grid cell

We start with a regional domain between 958 and

1028W longitude and between 368 and 428N latitude

(Fig. 1). First, a grid over the domain is created at a

spatial resolution of 0.258 in latitude and longitude, re-

sulting in 24 cells in the north–south direction and

28 cells in the east–west direction (672 total). The res-

olution is chosen as a compromise between too fine and

too coarse; cells are chosen to be large enough to capture

at least a few tornadoes but small enough to be relevant

to the scale of the physical mechanisms involved. Sen-

sitivity of the results to this choice is examined in

section 4.

Next, the tornado paths are placed onto the grid, and

the number of paths that intersect each cell are counted.

The tornado path is a buffered line segment of the

straight-line track given in the tornado database. The

size of the buffer is determined by one-half of the path

width. Path width is given as the average cross-path

distance before 1994 and the maximum distance after

that year. No adjustment is made for this difference

because the effect on the counts is estimated to be less

than 1% given the size of the cells relative to the average

path width. The overlay is performed after projecting

the geographic grid to the LCC coordinate reference

system of the tornado database.

There are 6749 tornadoes with paths that intersect the

domain, which results in an average of 14.3 tornadoes

per 0.258 grid cell with a standard deviation of 7.19 tor-

nadoes (Fig. 2). The variance-to-mean ratio is 3.61. The

highest number of tornadoes in any cell is 47 (two cells),
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and the lowest number is 1 (Fig. 3). There are 81 cells

with 12 or 13 tornadoes. Because others have used the

Poisson distribution for modeling tornado counts (Tippett

et al. 2012, 2014), we show it here for comparison. The

Poisson distribution is clearly not the appropriate distri-

bution for our modeling purpose because the observed

cell counts have a large spread.

c. Elevation, elevation roughness, and population
density

Values of elevation, elevation roughness, and pop-

ulation data are added to each grid cell. The 80-m-pixel

elevation raster is first cropped to the extent of the

domain. Elevation roughness is computed as the

largest difference in elevation in a pixel relative to

the elevation in the eight neighboring pixels (Wilson

et al. 2007). The high-resolution values of elevation

and elevation roughness are aggregated and interpolated

(bilinear) to match the resolution of the cells in the do-

main. The distribution of roughness values is shown in

Fig. 4. Population-density values are similarly cropped,

aggregated, and interpolated to match the resolution of

the cells in the domain.

Elevation roughness is a physical variable that is

related to the spatial variation in elevation and that

differs from roughness length, which is the vertical

length scale (parameter) of the logarithmic wind profile

and which is important for estimating momentum,

heat, and mass exchange between the ground and the

atmosphere (Toda and Sugita 2003). The roughness

length is approximately one-tenth of the height of the

surface-roughness elements (WMO 2008). Therefore,

in the open areas, without trees or other obstructions,

that are typical across most of the study domain, an

elevation-roughness value of 15m is comparable to a

roughness length of 0.75 (1.5/2).

The average population density is 11.7 persons per

square kilometer, with a standard deviation of 44.07

persons per square kilometer. The correlation (Pear-

son, here and throughout) between population density

and tornado frequency is 10.28 [(10.21, 10.35) 5 95%

confidence interval]. The correlation between population

FIG. 1. Study area (red outline). The area includesmost of Kansas, the southern two-thirds of

Nebraska, and the northern third of Oklahoma as well as parts of Iowa, Missouri, and Texas.

The background map is produced using functions in the ggmap package (Kahle and

Wickham 2013).
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density and elevation is 20.21 [(20.28, 20.14) 5 95%

confidence interval], indicating, as expected, that

relatively fewer people live on the higher plains

across the western part of the domain. The correla-

tion between population density and elevation

roughness is 10.007 [(20.07, 10.08) 5 95% confi-

dence interval], indicating no relationship between

where people live and roughness in this part of the

country. Population density and elevation roughness

are mapped in Fig. 5.

The relationships between tornado occurrence and pop-

ulation density and between tornado occurrence and ele-

vation roughness across the cells are displayed in Fig. 6. The

graphs illustrate that tornadoes are reported with greater

frequency in grids with higher population density and are

reported with a significantly lower frequency in grids with

higher elevation roughness, although there is considerable

scatter about these log-linear bivariate relationships. The

relationships suggest that further investigation is warranted.

In particular, the relationship between tornadoes and

FIG. 2. Tornado counts. Paths are shown in gray, and the number of tornadoes intersecting each cell is shown

with a color scale.
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elevation roughness needs to account for the relationship

between tornadoes and population. Spatial correla-

tion also needs to be considered. Therefore, we choose

a model that includes elevation roughness and population

density as well as a term for the spatial correlation.

d. Spatial statistical model

The number of tornadoes in each cell Ts is assumed

to follow a negative binomial distribution (Elsner and

Widen 2014) with mean ms. The model is

T
s
jm

s
, n;NegBin(m

s
,n), (1)

m
s
5 exp(n

s
)3 area

s
, and (2)
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whereNegBin(ms, n) indicates that the conditional tornado

counts (Ts jms, n) are described by a negative binomial

distribution with mean ms and dispersion n. The mean de-

pends on the cell area (exposure) and is linearly related to

the fixed and random effects through the logarithmic link

function ns. The fixed effects include population density

Pops and elevation roughness ERs. The random effect us
follows a Besag formulation (Besag 1975):
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where N is the normal distribution with mean (1/mi) 3

�i;juj and variance (1/mi)t, withmi being the number of

neighboring cells to cell i and t being the precision; i; j

indicates that cells i and j are neighbors.

We assign vague Gaussian priors with known pre-

cision to the bs. To complete the model, the dispersion n

is assigned a vague log-gamma prior and the precision

t is assigned a vague log-Gaussian prior. The priors and

the likelihood are combined with the Bayes rule to ob-

tain the posterior distributions for the model parame-

ters. The integrals cannot be solved analytically, and

therefore we use the method of integrated nested Lap-

lace approximation (INLA), which provides a fast

FIG. 3. Count distributions: (left) observed tornadoes by grid cell and (right) modeled counts in the same cells if one

assumes a Poisson distribution with a mean of 14.4 tornadoes per grid cell.

FIG. 4. Histogram of elevation roughness in the grid cells.
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alternative to Markov chain Monte Carlo simulation for

models that have a latent Gaussian structure (Rue et al.

2009). This is done with functions from the INLA package

(Rue et al. 2014).

3. Results

a. Smoothed raw and corrected rates

We first fit the model using only the random-effect

term. The result is a map of smoothed report anomalies

relative to the regional average (Fig. 7). The map is

similar to one obtained using kernel-density estimation

(Dixon et al. 2014). Brownish colors indicate cells with

tornado rates above the domain average, and blue

shades indicate cells with rates below the average. Plots

in the top and right margins of the map show the cu-

mulative anomalies in the east–west and north–south

directions, respectively. The pattern features regions of

above-average activity in south and west-central Kansas

and south-central Nebraska. A region of below-average

activity is noted over west-central Nebraska.

Nextweaddpopulationdensity (logbase 2) and elevation

roughness to themodel as fixed effects.We tested elevation

as a fixed effect but found it to be insignificant. Thedeviance

information criterion (DIC) for themodelwith the twofixed

effects is 4035, which compares with 4149 for the random-

effects-only model. DIC measures the relative quality of a

statistical model given the set of data. The smaller the DIC

is, the better is the model. Taken individually, population

density reduces the DIC to 4055 and elevation roughness

reduces it to 4118. Thus, it is clear that population density

and roughness significantly improve the model.

The random-effect term is the tornado anomaly after

controlling for population and roughness (Fig. 7b). The

random effect is the best guess at regional tornado ac-

tivity independent of population and roughness (non-

climatic influences). Values are again expressed as a

percent difference from the regional average. The map

features a corridor of above-average activity from north-

central Oklahoma northward through west-central

Kansas and then northeastward through south-central

Nebraska. There is a distinct westward shift in the

dominant north–south axis of above-average anomalies

relative to the smoothed-report anomalies. This is clear

by comparing the plots in the top margins of Fig. 7.

b. Population and elevation-roughness effects

Magnitudes of the fixed effects are summarized by the

corresponding coefficient’s posterior density. The co-

efficient on the logarithm (base 2) of population density

has a posterior mean of 0.1171 [(0.0948, 0.1395) 5 95%

credible interval] (Fig. 8). This translates to a 12.4%

f[exp(0.1171)2 1]3 100%g increase in the tornado rate
for a doubling of the population holding elevation

roughness constant. This result is consistent with Jagger

et al. (2015) who show an 11% increase for a population

doubling using population values at the lower-resolution

county level from Kansas.

FIG. 5. (a) Population density, and (b) elevation roughness.
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The coefficient on the elevation-roughness term has

a posterior mean of 20.0230 [(20.0301, 20.0159) 5
95% credible interval] (Fig. 8b). This translates to a

2.3% increase in the tornado rate for every meter of

decrease in roughness, holding population constant. The

magnitude of the elevation-roughness effect can be in-

terpreted as follows: a cell with 10 tornadoes and a

roughness of 25m would expect to have on average al-

most 16 tornadoes if it had a roughness of only 5m

[10(11 0.023)2525 5 15.8].

This relationship between tornado frequency and

roughness has been quantified for tornado activity using

county-level aggregation (Jagger et al. 2015), but here

we provide a quantification at a finer spatial scale. The

magnitude of the effect is consistent with Jagger et al.

(2015), who show a similar 2% increase in tornado oc-

currence for everymeter of decrease in roughness across

Kansas, controlling for population, where the ‘‘terrain’’

roughness was defined as the standard deviation in ele-

vation in each county.

4. Robustness of the elevation-roughness effect

After establishing a model for tornadoes that includes

elevation roughness as a significant fixed effect, we ex-

amine by how much the relationship between tornadoes

and elevation roughness changes as we adjust the period

of record, the EF rating, the spatial resolution, the def-

inition of roughness, and the domain. We start with

changing the study period. The number of tornadoes is

reduced to 4898 using data only since 1975 and to 2940

using data only since 1995. The magnitude of the rough-

ness term increases slightly for the model fit using the

later years but the difference is not large (Table 1). The

slight increasemight be related to better data quality later

in the period and to the fact that the population density is

for 2010 only (see, e.g., Elsner et al. 2013a). The ability to

spot a distant tornado improves when the landscape is

flat. This observational bias could masquerade as an

elevation-roughness effect. If this is the case, the data bias

should decrease over time with the increasing number of

storm spotters and chasers getting close to tornadoes to

diminish this observational bias. Because we see that the

effect actually increases slightly using data over the most

recent period, we conclude that an observational bias

related to visibility is not likely to be the explanation.

Next, we examine the roughness effect for subsets of

the tornado database stratified by EF rating. The effect

increases from a 2.3% increase in the tornado rate per

meter of decrease in roughness for all tornadoes to a

3.6% increase in the tornado rate per meter of decrease

in roughness for EF31 (intense) tornadoes. We note

that the difference in effects between all tornadoes and

intense tornadoes is likely not significant, however.

The elevation-roughness effect changes with gridcell

size. To demonstrate, we increase the resolution by re-

ducing the cell size from the original 0.258 to 0.1258 (2688
cells) and then to 0.06258 (10 752 cells). Themodel is fit to

the data aggregated at these two additional resolutions,

andwenote that increasing the resolution drops the effect

down to 1.7% per meter of decrease in roughness (Table

1). To check whether the elevation-roughness effect

FIG. 6. Tornadoes vs (a) population and (b) elevation roughness. The number of tornadoes in each grid cell is given

on a logarithmic scale. The population density is on a log(base 2) scale. The line is the best-fit linear regression using

the logged variables. The shaded area is the 95% confidence interval.
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continues to decrease with increasing resolution, we treat

the set of tornadogenesis locations as a point process. A

point process is a realization of spatial locations that can

be statistically modeled in a manner similar to data that

are aggregated by area [see Elsner et al. (2013b) for an

application of a point-process model to tornadoes].

The model has the same form as that used in Eq. (3). We

find that the effect is a 1.9% increase in tornado rate per

meter of decrease in roughness.

The elevation-roughness effect also depends on the

definition of roughness. We show this influence by

replacing elevation roughness with an index of rugged-

ness. The ruggedness index is defined as the mean of the

absolute difference between the value of a pixel and the

value of its eight surrounding pixels (Wilson et al. 2007).

The larger the differences are, the more rugged (less

smooth) is the elevation. In this case, the effect increases

to 6.5% [(4.5%, 8.4%)5 95% credible interval] increase

in the tornado rate per meter of decrease in roughness,

which is significantly higher than the effect when using

the maximum minus the minimum to define roughness.

The elevation-roughness effect might be specific to

the domain chosen. This hypothesis is tested by fitting

the model to tornadoes occurring over broader and

smaller domains. Here we expand and contract the

study domain by 18 to the north, south, east, and west.

Within the expanded domain, there are 11024 tornadoes

(1955–2014), and within the contracted domain, there are

3480 tornadoes. The model is fit separately to the data

over these domains. Over the larger domain, the magni-

tude of the roughness effect, as quantified by the posterior

mean, is smaller, at a 1.8% increase in the tornado rate

per meter of decrease in roughness. Over the smaller

domain, the magnitude is larger, at a 3.1% increase in the

tornado rate per meter of decrease in roughness. More

homogeneous terrain type might explain the larger effect

over the smaller domain.

Last, the model is fit to data over an extended domain

that includes areas farther north into South Dakota

(458N) and farther south into central Texas (308N). Over

this much-larger area, the elevation-roughness term

has a posterior mean of 1.6% [(1.2%, 2.0%) 5 95%

credible interval] increase in tornado rate per meter of

decrease in roughness, consistent with results from the

model fit to data over the original, smaller domain. Thus,

we conclude that a significant elevation-roughness effect

occurs throughout much of the Great Plains, although it

appears to be largest in a region centered on Kansas.

5. Summary and discussion

Studies about the influence of surface features on

tornadoes date back to at least the mid-twentieth cen-

tury, yet the observational literature on this topic is

FIG. 7. (a) Smoothed and (b) ‘‘unexplained’’ tornado anomalies. Smoothed values are from the random-effect term

obtained by fitting the model without the fixed effects and are expressed as a percentage above or below the regional

average. The unexplained values are from the random-effect term on a model that includes population and elevation

roughness. Cumulative anomalies in the east–west and north–south directions are shown in the margins.
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limited. A recent study by Karpman et al. (2013) shows

an elevation influence on tornadoes. That study used

relatively coarse data (150 arc s, or ;5km) and did not

control for population. Here we provide a comprehen-

sive treatment of this problem by using the best avail-

able data across a large portion of the central Great

Plains and by employing a model that controls statisti-

cally for population.

Three-quarters of all tornadoes in this domain occur

in April–June. On average, at this time of the year,

a dryline forms over the high plains and separates moist

air originating over the Gulf of Mexico from dry air

originating over the southwestern United States and

high plateau of Mexico (e.g., Schultz et al. 2007).

Thunderstorms, in the form of discrete supercells, tend

to form east of the dryline along a roughly north–south

axis. This climatological behavior is evident in the

smoothed tornado-rate anomalies shown in Fig. 7.

Regions with uniform elevation over this tornado-

favorable domain tend to have more tornadoes relative

to regions with greater elevation roughness. The effect

amounts to a 2.3% increase in the tornado rate (using

0.258 cells) per meter of decrease in elevation roughness.

The magnitude of the effect is consistent over time. The

effect is stronger for an alternative definition of rough-

ness (ruggedness). The effect is also stronger for the

subset of tornadoes with higher damage ratings, but

the difference is not significant.

Speculation on the physical interpretation centers on

the possibility that elevation roughness reduces the

fluxes of angular momentum into the mesocyclones,

leading to fewer tornadoes. Although decreasing angular

momentummay tend to decrease tornado intensity, some

exceptions occur. For example, surface roughness is

shown to decrease corner-flow swirl ratio and, in some

cases, could cause a vortex flow to make a transition

from a medium swirl ratio to a critical swirl ratio

(Lewellen et al. 2000). In a flow with critical swirl ratio

(i.e., vortex breakdown), the near-surface vortex is

strengthened substantially relative to the vortex flowaloft

(Fiedler and Rotunno 1986; Lewellen et al. 2000), and

the change in swirl ratio could offset the roughness effect.

This possibility will need to be tested with a high-

resolution dynamical model. In particular, as noted in

section 2c, the surface roughness length is different than

the elevation roughness used here, and therefore relating

the twomight help in the design of numerical simulations.

TABLE 1. Elevation-roughness effect (as percent increase in

tornado rate per meter of decrease in roughness) in models of

tornado occurrence. The effect has units of percent increase in

tornadoes per meter decrease in roughness. Uncertainty is given by

a 95% credible interval shown in parentheses. The first row gives

the base case, and the boldface type in the first three columns in-

dicates three groups of sensitivity tests against the base case.

Start

year

EF

range

Grid

size

Tornado

reports

Elev-roughness

effect

1955 EF01 0.2508 6749 2.3% (1.6%, 3.0%)

1975 EF01 0.2508 4898 2.3% (1.5%, 3.1%)

1995 EF01 0.2508 2940 2.5% (1.4%, 3.6%)

1955 EF11 0.2508 3054 2.6% (1.7%, 3.4%)

1955 EF21 0.2508 1159 3.1% (1.9%, 4.3%)

1955 EF31 0.2508 368 3.6% (1.9%, 5.3%)

1955 EF01 0.125° 6749 2.0% (1.4%, 2.6%)

1955 EF01 0.0625° 6749 1.7% (1.3%, 2.1%)

FIG. 8. Posterior density of the elevation roughness and population effects. The values are given as (a) percent

increase in the tornado rate per doubling of the population and (b) percent increase in the tornado rate per meter

of decrease in elevation roughness. The 95% credible interval is shown with the vertical gray lines. The red line

indicates no effect.
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Results are valid only for the domains considered.

The significance of the roughness effect will likely be less

in regions outside the Great Plains where factors like

variations in vegetation might play a role similar to el-

evation roughness. We did not look at vegetation di-

rectly in this study, but vegetation is strongly correlated

with elevation in this part of the country. We found that

elevation is not a significant factor when included in the

model. Further, it is noted that elevation roughness is

negatively correlated with the tornado frequency at the

county level in South Dakota and Illinois and signifi-

cantly so for Kansas and Mississippi [see Table 1 of

Jagger et al. (2015)], indicating that the results are

somewhat general across the eastern half of the United

States. Further, the study used aggregate data and so the

interpretations do not necessarily apply at the level of

individual tornadoes. Last, the effect cannot be extrap-

olated to infer that tornadoes will never occur where

elevation roughness is extreme (see, e.g., Monteverdi

et al. 2014). That is, no amount of elevation variation

will guarantee safety from a tornado. Tornadoes can and

do occur in mountainous regions.
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