51 research outputs found

    Extensive sequence turnover of the signal peptides of members of the GDF/BMP family: exploring their evolutionary landscape

    Get PDF
    We show that the predicted signal peptide (SP) sequences of the secreted factors GDF9, BMP15 and AMH are well conserved in mammals but dramatic divergence is noticed for more distant orthologs. Interestingly, bioinformatic predictions show that the divergent protein segments do encode SPs. Thus, such SPs have undergone extensive sequence turnover with full preservation of functionality. This can be explained by a pervasive accumulation of neutral and compensatory mutations. An exploration of the potential evolutionary landscape of some SPs is presented. Some of these signal sequences highlight an apparent paradox: they are encoded, by definition, by orthologous DNA segments but they are, given their striking divergence, examples of what can be called functional convergence

    Project management case analysis in technology companies

    Get PDF
    Este artículo tiene como objetivo identificar y analizar tres empresas tecnológicas como Google, Globant y Zemoga, a través del reconocimiento de unas variables comunes de la metodología de Gestión de Proyectos evidenciadas en cada empresa. Entre las variables a destacar están: la innovación, la metodología de gestión de proyectos, la estructura organizacional, el trabajo en equipo, la complejidad y la cultura organizacional. Este análisis de las variables muestra como el ambiente de trabajo y los incentivos a la innovación dentro de la organización, pueden generar una relación simbiótica entre los empleados y la empresa lo que aumenta las probabilidades de tener éxito en la ejecución de proyectos.This article attempts to identify and analyze success technological companies like Google, Globant and Zemoga by recognizing some common variables of the Project Management model of each one. The variables to stand out are: innovation, methodology for project management, organizational structure, teamwork, complexity and organizational culture. This analysis recognizes common strengths in project management and highlight what elements can lead to successful management in technology companies

    STAG3 is a strong candidate gene for male infertility

    Get PDF
    Oligo- and azoospermia are severe forms of male infertility. However, known genetic factors account only for a small fraction of the cases. Recently, whole-exome sequencing in a large consanguineous family with inherited premature ovarian failure (POF) identified a homozygous frameshift mutation in the STAG3 gene leading to a premature stop codon. STAG3encodes a meiosis-specific subunit of the cohesin complex, alarge proteinaceous ring with DNA-entrapping ability that ensures sister chromatid cohesion and enables correct synapsis and segregation of homologous chromosomes during meiosis. The pathogenicity of the STAG3 mutations was functionally validated with a loss- of-function mouse model for STAG3 in oogenesis.However,and sincenone of the male members of this family was homozygous for the mutant allele, we only could hypothesized its putative involvement inmale infertility. In this report,we show that male mice devoid of Stag3 display a severe meiotic phenotype that includes a meiotic arrest at zygonema-like shortening of their chromosome axial elements/lateral elements, partial loss of centromeric cohesion at early prophase and maintenance of the ability to initiate but not complete RAD51- and DMC1-mediated double-strand break repair,demonstrating that STAG3 is a crucial cohesin subunit in mammalian gametogenesis and supporting our proposal that STAG3 is a strong candidate gene for human male infertility. © The Author 2014. Published by Oxford University Press. All rights reserved.This work was supported by grant SAF2011-25252 and Junta de Castilla y León (EL and AMP). SC and RAV are supported by the University Paris Diderot-Paris7, the Ligue Nationale contre le Cancer, the Centre National de la Recherche Scientifique (CNRS) and the GIS-Institut des Maladies Rares.Peer Reviewe

    Combined comparative genomic hybridization and transcriptomic analyses of ovarian granulosa cell tumors point to novel candidate driver genes

    Get PDF
    Background: Ovarian granulosa cell tumors (GCTs) are the most frequent sex cord-stromal tumors. Several studies have shown that a somatic mutation leading to a C134W substitution in the transcription factor FOXL2 appears in more than 95% of adult-type GCTs. Its pervasive presence suggests that FOXL2 is the main cancer driver gene. However, other mutations and genomic changes might also contribute to tumor formation and/or progression. Methods: We have performed a combined comparative genomic hybridization and transcriptomic analyses of 10 adult-type GCTs to obtain a picture of the genomic landscape of this cancer type and to identify new candidate co-driver genes. Results: Our results, along with a review of previous molecular studies, show the existence of highly recurrent chromosomal imbalances (especially, trisomy 14 and monosomy 22) and preferential co-occurrences (i.e. trisomy 14/monosomy 22 and trisomy 7/monosomy 16q). In-depth analyses showed the presence of recurrently broken, amplified/duplicated or deleted genes. Many of these genes, such as AKT1, RUNX1 and LIMA1, are known to be involved in cancer and related processes. Further genomic explorations suggest that they are functionally related. Conclusions: Our combined analysis identifies potential candidate genes, whose alterations might contribute to adult-type GCT formation/progression together with the recurrent FOXL2 somatic mutation.Peer reviewe

    Functional Exploration of the Adult Ovarian Granulosa Cell Tumor-Associated Somatic FOXL2 Mutation p.Cys134Trp (c.402C>G)

    Get PDF
    International audienceBACKGROUND: The somatic mutation in the FOXL2 gene c.402C>G (p.Cys134Trp) has recently been identified in the vast majority of adult ovarian granulosa cell tumors (OGCTs) studied. In addition, this mutation seems to be specific to adult OGCTs and is likely to be a driver of malignant transformation. However, its pathogenic mechanisms remain elusive. METHODOLOGY/PRINCIPAL FINDINGS: We have sequenced the FOXL2 open reading frame in a panel of tumor cell lines (NCI-60, colorectal carcinoma cell lines, JEG-3, and KGN cells). We found the FOXL2 c.402C>G mutation in the adult OGCT-derived KGN cell line. All other cell lines analyzed were negative for the mutation. In order to gain insights into the pathogenic mechanism of the p.Cys134Trp mutation, the subcellular localization and mobility of the mutant protein were studied and found to be no different from those of the wild type (WT). Furthermore, its transactivation ability was in most cases similar to that of the WT protein, including in conditions of oxidative stress. A notable exception was an artificial promoter known to be coregulated by FOXL2 and Smad3, suggesting a potential modification of their interaction. We generated a 3D structural model of the p.Cys134Trp variant and our analysis suggests that homodimer formation might also be disturbed by the mutation. CONCLUSIONS/SIGNIFICANCE: Here, we confirm the specificity of the FOXL2 c.402C>G mutation in adult OGCTs and begin the exploration of its molecular significance. This is the first study demonstrating that the p.Cys134Trp mutant does not have a strong impact on FOXL2 localization, solubility, and transactivation abilities on a panel of proven target promoters, behaving neither as a dominant-negative nor as a loss-of-function mutation. Further studies are required to understand the specific molecular effects of this outstanding FOXL2 mutation

    Genome-Wide Linkage in a Highly Consanguineous Pedigree Reveals Two Novel Loci on Chromosome 7 for Non-Syndromic Familial Premature Ovarian Failure

    Get PDF
    Background: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10–15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients. Methodology/Principal Findings: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LODmax of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations. Conclusions/Significance: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function

    Genome-Wide Linkage in a Highly Consanguineous Pedigree Reveals Two Novel Loci on Chromosome 7 for Non-Syndromic Familial Premature Ovarian Failure

    Get PDF
    BACKGROUND: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10-15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients.¦METHODOLOGY/PRINCIPAL FINDINGS: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LOD(max) of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations.¦CONCLUSIONS/SIGNIFICANCE: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function

    Structure mosaïque et instabilité de l'ADN ribosomal humain (implications dans la sénescence et la cancérogenèse)

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    [STAG3 in premature ovarian failure].

    No full text
    International audienc

    A genomic basis for the evolution of vertebrate transcription factors containing amino Acid runs.

    No full text
    We have previously shown that polyAla (A) tract-containing proteins frequently present runs of glycine (G), proline (P), and histidine (H) and that, in their ORFs, GC content at all codon positions is higher than that in the rest of the genome. In this study, we present new analyses of these human proteins/ORFs. We detected striking differences in codon usage for A, G, and P in and out of runs. After dividing the ORFs, we found that 5' halves were richer in runs than 3' halves. Afterward, when removing the runs, we observed that the run-rich halves (grouped irrespectively of their 5' or 3' position) had a marked statistical tendency to have more homo- and hetero-dicodons for A, G, P, and H than the run-poor halves. This suggests that, in addition to the necessary GC-rich genomic background, a specific codon organization is probably required to generate these coding repeats. Homo-dicodons may indeed provide primers for run formation through polymerase slippage. The compositional analysis of human HOX genes, the most polyAla-rich family, and their comparison with their zebrafish homologs, support these hypotheses and suggest possible effects of genomic environment on ORF evolution and organismal diversification
    corecore