491 research outputs found

    There are No Causality Problems for Fermi's Two Atom System

    Full text link
    A repeatedly discussed gedanken experiment, proposed by Fermi to check Einstein causality, is reconsidered. It is shown that, contrary to a recent statement made by Hegerfeldt, there appears no causality paradoxon in a proper theoretical description of the experiment.Comment: 6 pages, latex, DESY 94-02

    The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event

    Full text link
    Proxima Centauri, our closest stellar neighbour, is a low-mass M5 dwarf orbiting in a triple system. An Earth-mass planet with an 11 day period has been discovered around this star. The star's mass has been estimated only indirectly using a mass-luminosity relation, meaning that large uncertainties affect our knowledge of its properties. To refine the mass estimate, an independent method has been proposed: gravitational microlensing. By taking advantage of the close passage of Proxima Cen in front of two background stars, it is possible to measure the astrometric shift caused by the microlensing effect due to these close encounters and estimate the gravitational mass of the lens (Proxima Cen). Microlensing events occurred in 2014 and 2016 with impact parameters, the closest approach of Proxima Cen to the background star, of 1\farcs6 ±\pm 0\farcs1 and 0\farcs5 ±\pm 0\farcs1, respectively. Accurate measurements of the positions of the background stars during the last two years have been obtained with HST/WFC3, and with VLT/SPHERE from the ground. The SPHERE campaign started on March 2015, and continued for more than two years, covering 9 epochs. The parameters of Proxima Centauri's motion on the sky, along with the pixel scale, true North, and centering of the instrument detector were readjusted for each epoch using the background stars visible in the IRDIS field of view. The experiment has been successful and the astrometric shift caused by the microlensing effect has been measured for the second event in 2016. We used this measurement to derive a mass of 0.1500.051+0.062^{\textrm{+}0.062}_{-0.051} (an error of \sim 40\%) \MSun for Proxima Centauri acting as a lens. This is the first and the only currently possible measurement of the gravitational mass of Proxima Centauri.Comment: 10 pages, 6 figures, accepted by MNRA

    Characterization of the Benchmark Binary NLTT 33370

    Full text link
    We report the confirmation of the binary nature of the nearby, very low-mass system NLTT 33370 with adaptive optics imaging and present resolved near-infrared photometry and integrated light optical and near-infrared spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show significant orbital motion between 2013 February and 2013 April. Optical spectra reveal weak, gravity sensitive alkali lines and strong lithium 6708 Angstrom absorption that indicate the system is younger than field age. VLT-SINFONI near-IR spectra also show weak, gravity sensitive features and spectral morphology that is consistent with other young, very low-mass dwarfs. We combine the constraints from all age diagnostics to estimate a system age of ~30-200 Myr. The 1.2-4.7 micron spectral energy distribution of the components point toward T_eff=3200 +/- 500 K and T_eff=3100 +/- 500 K for NLTT 33370 A and B, respectively. The observed spectra, derived temperatures, and estimated age combine to constrain the component spectral types to the range M6-M8. Evolutionary models predict masses of 113 +/- 8 M_Jup and 106 +/- 7 M_Jup from the estimated luminosities of the components. KPNO-Phoenix spectra allow us to estimate the systemic radial velocity of the binary. The Galactic kinematics of NLTT 33370AB are broadly consistent with other young stars in the Solar neighborhood. However, definitive membership in a young, kinematic group cannot be assigned at this time and further follow-up observations are necessary to fully constrain the system's kinematics. The proximity, age, and late-spectral type of this binary make it very novel and an ideal target for rapid, complete orbit determination. The system is one of only a few model calibration benchmarks at young ages and very low-masses.Comment: 25 pages, 3 tables, 13 figures, accepted for publication in The Astrophysical Journa

    Two Transiting Earth-size Planets Near Resonance Orbiting a Nearby Cool Star

    Get PDF
    Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation. While Kepler detected many such planets, all but a handful orbit faint, distant stars and are not amenable to precise follow up measurements. Here, we report the discovery of two small planets transiting K2-21, a bright (K = 9.4) M0 dwarf located 65±\pm6 pc from Earth. We detected the transiting planets in photometry collected during Campaign 3 of NASA's K2 mission. Analysis of transit light curves reveals that the planets have small radii compared to their host star, 2.60 ±\pm 0.14% and 3.15 ±\pm 0.20%, respectively. We obtained follow up NIR spectroscopy of K2-21 to constrain host star properties, which imply planet sizes of 1.59 ±\pm 0.43 Earth-radii and 1.92 ±\pm 0.53 Earth-radii, respectively, straddling the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes. The planets have orbital periods of 9.32414 days and 15.50120 days, respectively, and have a period ratio of 1.6624, very near to the 5:3 mean motion resonance, which may be a record of the system's formation history. Transit timing variations (TTVs) due to gravitational interactions between the planets may be detectable using ground-based telescopes. Finally, this system offers a convenient laboratory for studying the bulk composition and atmospheric properties of small planets with low equilibrium temperatures.Comment: Updated to ApJ accepted version; photometry available alongside LaTeX source; 10 pages, 7 figure

    The VLT/NaCo Large program to probe the occurrence of exoplanets and brown dwarfs in wide orbits: I- Sample definition and characterization

    Get PDF
    Young, nearby stars are ideal targets to search for planets using the direct imaging technique. The determination of stellar parameters is crucial for the interpretation of imaging survey results particularly since the luminosity of substellar objects has a strong dependence on system age. We have conducted a large program with NaCo at the VLT in order to search for planets and brown dwarfs in wide orbits around 86 stars. A large fraction of the targets observed with NaCo were poorly investigated in the literature. We performed a study to characterize the fundamental properties (age, distance, mass) of the stars in our sample. To improve target age determinations, we compiled and analyzed a complete set of age diagnostics. We measured spectroscopic parameters and age diagnostics using dedicated observations acquired with FEROS and CORALIE spectrographs at La Silla Observatory. We also made extensive use of archival spectroscopic data and results available in the literature. Additionally, we exploited photometric time-series, available in ASAS and Super-WASP archives, to derive rotation period for a large fraction of our program stars. We provided updated characterization of all the targets observed in the VLT NaCo Large program, a survey designed to probe the occurrence of exoplanets and brown dwarfs in wide orbits. The median distance and age of our program stars are 64 pc and 100 Myr, respectively. Nearly all the stars have masses between 0.70 and 1.50sun, with a median value of 1.01 Msun. The typical metallicity is close to solar, with a dispersion that is smaller than that of samples usually observed in radial velocity surveys. Several stars are confirmed or proposed here to be members of nearby young moving groups. Eight spectroscopic binaries are identified.Comment: 64 pages with Appendix, 15 figures, accepted to A&

    A Search for Variability in Exoplanet Analogues and Low-Gravity Brown Dwarfs

    Get PDF
    We report the results of a JJ-band survey for photometric variability in a sample of young, low-gravity objects using the New Technology Telescope (NTT) and the United Kingdom InfraRed Telescope (UKIRT). Surface gravity is a key parameter in the atmospheric properties of brown dwarfs and this is the first large survey that aims to test the gravity dependence of variability properties. We do a full analysis of the spectral signatures of youth and assess the group membership probability of each target using membership tools from the literature. This results in a 30 object sample of young low-gravity brown dwarfs. Since we are lacking in objects with spectral types later than L9, we focus our statistical analysis on the L0-L8.5 objects. We find that the variability occurrence rate of L0-L8.5 low-gravity brown dwarfs in this survey is 308+16%30^{+16}_{-8}\%. We reanalyse the results of Radigan 2014 and find that the field dwarfs with spectral types L0-L8.5 have a variability occurrence rate of 114+13%11^{+13}_{-4}\%. We determine a probability of 98%98\% that the samples are drawn from different distributions. This is the first quantitative indication that the low-gravity objects are more likely to be variable than the field dwarf population. Furthermore, we present follow-up JSJ_S and KSK_S observations of the young, planetary-mass variable object PSO 318.5-22 over three consecutive nights. We find no evidence of phase shifts between the JSJ_S and KSK_S bands and find higher JSJ_S amplitudes. We use the JSJ_S lightcurves to measure a rotational period of 8.45±0.05 8.45\pm0.05~hr for PSO 318.5-22.Comment: accepted for publication in MNRA

    The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits: II- Survey description, results and performances

    Get PDF
    In anticipation of the VLT/SPHERE planet imager guaranteed time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 in order to identify new faint comoving companions to ultimately carry out a comprehensive analysis of the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10-6 at 1.5''. 12 systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected, 90% of them in 4 crowded fields. With the exception of HD8049B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD\,61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for semi-major axes of [10,2000] AU: typically less than 15% between 100 and 500 AU, and less than 10% between 50 and 500 AU for exoplanets more massive than 5 MJup and 10 MJup respectively, considering a uniform input distribution and with a confidence level of 95%.Comment: 19 pages, 8 figures, 12 Tables, accepted to A&

    Planets Around Low-Mass Stars (PALMS). I. A Substellar Companion to the Young M Dwarf 1RXS J235133.3+312720

    Full text link
    We report the discovery of a brown dwarf companion to the young M dwarf 1RXS J235133.3+312720 as part of a high contrast imaging search for planets around nearby young low-mass stars with Keck-II/NIRC2 and Subaru/HiCIAO. The 2.4" (~120 AU) pair is confirmed to be comoving from two epochs of high resolution imaging. Follow-up low- and moderate-resolution near-infrared spectroscopy of 1RXS J2351+3127 B with IRTF/SpeX and Keck-II/OSIRIS reveals a spectral type of L01+2^{+2}_{-1}. The M2 primary star 1RXS J2351+3127 A exhibits X-ray and UV activity levels comparable to young moving group members with ages of ~10-100 Myr. UVW kinematics based the measured radial velocity of the primary and the system's photometric distance (50 +/- 10 pc) indicate it is likely a member of the ~50-150 Myr AB Dor moving group. The near-infrared spectrum of 1RXS J2351+3127 B does not exhibit obvious signs of youth, but its H-band morphology shows subtle hints of intermediate surface gravity. The spectrum is also an excellent match to the ~200 Myr M9 brown dwarf LP 944-20. Assuming an age of 50-150 Myr, evolutionary models imply a mass of 32 +/- 6 Mjup for the companion, making 1RXS J2351+3127 B the second lowest-mass member of the AB Dor moving group after the L4 companion CD-35 2722 B and one of the few benchmark brown dwarfs known at young ages.Comment: Accepted for publication in ApJ. 24 pages, 12 figures, 4 table
    corecore