Proxima Centauri, our closest stellar neighbour, is a low-mass M5 dwarf
orbiting in a triple system. An Earth-mass planet with an 11 day period has
been discovered around this star. The star's mass has been estimated only
indirectly using a mass-luminosity relation, meaning that large uncertainties
affect our knowledge of its properties. To refine the mass estimate, an
independent method has been proposed: gravitational microlensing. By taking
advantage of the close passage of Proxima Cen in front of two background stars,
it is possible to measure the astrometric shift caused by the microlensing
effect due to these close encounters and estimate the gravitational mass of the
lens (Proxima Cen). Microlensing events occurred in 2014 and 2016 with impact
parameters, the closest approach of Proxima Cen to the background star, of
1\farcs6 ± 0\farcs1 and 0\farcs5 ± 0\farcs1, respectively. Accurate
measurements of the positions of the background stars during the last two years
have been obtained with HST/WFC3, and with VLT/SPHERE from the ground. The
SPHERE campaign started on March 2015, and continued for more than two years,
covering 9 epochs. The parameters of Proxima Centauri's motion on the sky,
along with the pixel scale, true North, and centering of the instrument
detector were readjusted for each epoch using the background stars visible in
the IRDIS field of view. The experiment has been successful and the astrometric
shift caused by the microlensing effect has been measured for the second event
in 2016. We used this measurement to derive a mass of
0.150−0.051+0.062 (an error of ∼ 40\%) \MSun for Proxima
Centauri acting as a lens. This is the first and the only currently possible
measurement of the gravitational mass of Proxima Centauri.Comment: 10 pages, 6 figures, accepted by MNRA