104 research outputs found

    A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    Full text link
    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few μ\mus with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 σ\sigma significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 σ\sigma if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.Comment: 28 page

    Mass measurements beyond the major r-process waiting point 80Zn

    Get PDF
    High-precision mass measurements on neutron-rich zinc isotopes 71m,72-81Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the few major waiting points along the path of the astrophysical rapid neutron capture process where neutron separation energy and neutron capture Q-value are determined experimentally. As a consequence, the astrophysical conditions required for this waiting point and its associated abundance signatures to occur in r-process models can now be mapped precisely. The measurements also confirm the robustness of the N = 50 shell closure for Z = 30 farther from stability.Comment: 4 pages, 3 figure

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive

    The ESSnuSB design study: overview and future prospects

    Full text link
    ESSnuSB is a design study for an experiment to measure the CP violation in the leptonic sector at the second neutrino oscillation maximum using a neutrino beam driven by the uniquely powerful ESS linear accelerator. The reduced impact of systematic errors on sensitivity at the second maximum allows for a very precise measurement of the CP violating parameter. This review describes the fundamental advantages of measurement at the 2nd maximum, the necessary upgrades to the ESS linac in order to produce a neutrino beam, the near and far detector complexes, the expected physics reach of the proposed ESSnuSB experiment, concluding with the near future developments aimed at the project realization.Comment: 19 pages, 11 figures; Corrected minor error in alphabetical ordering of the authors: the author list is now fully alphabetical w.r.t. author surnames as was intended. Corrected an incorrect affiliation for two authors per their reques

    Updated physics performance of the ESSnuSB experiment

    Get PDF
    In this paper, we present the physics performance of the ESSnuSB experiment in the standard three flavor scenario using the updated neutrino flux calculated specifically for the ESSnuSB configuration and updated migration matrices for the far detector. Taking conservative systematic uncertainties corresponding to a normalization error of for signal and for background, we find that there is CP violation discovery sensitivity for the baseline option of 540 km (360 km) at . The corresponding fraction of for which CP violation can be discovered at more than is . Regarding CP precision measurements, the error associated with is around and with is around for the baseline option of 540 km (360 km). For hierarchy sensitivity, one can have sensitivity for 540 km baseline except and sensitivity for 360 km baseline for all values of . The octant of can be determined at for the values of: ( and ) for baseline of 540 km (360 km). Regarding measurement precision of the atmospheric mixing parameters, the allowed values at are: () and eV eV ( eV eV) for the baseline of 540 km (360 km)

    Effects of annealing treatment prior to cold rolling on delayed fracture properties in ferrite-austenite duplex lightweight steels

    Get PDF
    Tensile properties of recently developed automotive high-strength steels containing about 10 wt pct of Mn and Al are superior to other conventional steels, but the active commercialization has been postponed because they are often subjected to cracking during formation or to the delayed fracture after formation. Here, the delayed fracture behavior of a ferrite-austenite duplex lightweight steel whose microstructure was modified by a batch annealing treatment at 1023 K (750 A degrees C) prior to cold rolling was examined by HCl immersion tests of cup specimens, and was compared with that of an unmodified steel. After the batch annealing, band structures were almost decomposed as strong textures of {100}aOE (c) 011 > alpha-fibers and {111}aOE (c) 112 > gamma-fibers were considerably dissolved, while ferrite grains were refined. The steel cup specimen having this modified microstructure was not cracked when immersed in an HCl solution for 18 days, whereas the specimen having unmodified microstructure underwent the delayed fracture within 1 day. This time delayed fracture was more critically affected by difference in deformation characteristics such as martensitic transformation and deformation inhomogeneity induced from concentration of residual stress or plastic strain, rather than the difference in initial microstructures. The present work gives a promise for automotive applications requiring excellent mechanical and delayed fracture properties as well as reduced specific weight.ope

    ESSnuSB Project to Produce Intense Beams of Neutrinos and Muons

    No full text
    International audienceA new project for the production of a very intense neutrino beam has arisen to enable the discovery of a leptonic CP violation. This facility will use the world’s most intense pulsed spallation neutron source, the European Spallation Source (ESS) under construction in Lund. Its linac is expected to be fully operational at 5 MW power by 2023, using 2 GeV protons. In addition to the neutrinos, the ESSnuSB proposed facility will produce a copious number of muons at the same time. These muons also could be used by a future Neutrino Factory to study a possible CP violation in the leptonic sector and neutrino cross-sections. They could be used as well by a muon collider or a low energy nuSTORM. The layout of such a facility, consisting in the upgrade of the linac, the use of an accumulator ring, a target/horn system and a megaton Water Cherenkov neutrino detector, is presented. The physics potential is also described
    corecore