27 research outputs found

    The late quaternary vegetational history of Holderness, Yorkshire

    Get PDF
    This study was undertaken to reconstruct the regional vegetational history of Holderness, in south-east Yorkshire. It is an area with great potential for palaeo-ecological investigations and yet it has been largely ignored during the great increase of research in this field in recent years. Being on the east coast, Holderness is well placed to provide information on the migration of plants into this country, particularly in Late-glacial and early Flandrian times, when the region was joined to the continent by dry land. As a distinct and somewhat isolated region of low-lying land which must have been rather waterlogged for much of Post-glacial time it would have provided a considerable challenge to prehistoric man. Therefore an examination of the extent to which early man was able to emploit this difficult environment seems to be worthwhile.Among the most interesting advances in the study of vegetational history have been the introduction of the evaluation of pollen concentration and absolute pollen frequencies in an attempt to give a more quantitative picture of post vegetational communities, and also the considerable reassessment of climatic conditions during the Late glacial period. Consequently, in the elucidation of the vegetational history of Holderness, the intention has also been to throw some light on these current problems. The Late-glacial of Holderness has therefore been studied in terms of pollen concentrations and absolute pollen frequencies, and the results obtained compared with other recent evidence, much of which has come from north-western England, to try to establish to what extent conditions varied within northern England during this period. Somewhat more approximate estimates of absolute pollen frequencies in Post-glacial times have been made, and the value that this information adds to the understanding of vegetational history of the area, has been considered

    The late quaternary vegetational history of Holderness, Yorkshire

    Get PDF
    This study was undertaken to reconstruct the regional vegetational history of Holderness, in south-east Yorkshire. It is an area with great potential for palaeo-ecological investigations and yet it has been largely ignored during the great increase of research in this field in recent years. Being on the east coast, Holderness is well placed to provide information on the migration of plants into this country, particularly in Late-glacial and early Flandrian times, when the region was joined to the continent by dry land. As a distinct and somewhat isolated region of low-lying land which must have been rather waterlogged for much of Post-glacial time it would have provided a considerable challenge to prehistoric man. Therefore an examination of the extent to which early man was able to emploit this difficult environment seems to be worthwhile.Among the most interesting advances in the study of vegetational history have been the introduction of the evaluation of pollen concentration and absolute pollen frequencies in an attempt to give a more quantitative picture of post vegetational communities, and also the considerable reassessment of climatic conditions during the Late glacial period. Consequently, in the elucidation of the vegetational history of Holderness, the intention has also been to throw some light on these current problems. The Late-glacial of Holderness has therefore been studied in terms of pollen concentrations and absolute pollen frequencies, and the results obtained compared with other recent evidence, much of which has come from north-western England, to try to establish to what extent conditions varied within northern England during this period. Somewhat more approximate estimates of absolute pollen frequencies in Post-glacial times have been made, and the value that this information adds to the understanding of vegetational history of the area, has been considered

    Autosomal dominant and sporadic late onset Alzheimer's disease share a common in vivo pathophysiology

    Get PDF
    The extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-β42, amyloid-β40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-β42, amyloid-β40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Social anthropology with indigenous peoples in Brazil, Canada and Australia: a comparative approach

    Full text link

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease

    The Worldwide Alzheimer's Disease Neuroimaging Initiative: ADNI‐3 updates and global perspectives

    No full text
    The Worldwide Alzheimer's Disease Neuroimaging Initiative (WW-ADNI) is a collaborative effort to investigate imaging and biofluid markers that can inform Alzheimer's disease treatment trials. It is a public-private partnership that spans North America, Argentina, Australia, Canada, China, Japan, Korea, Mexico, and Taiwan. In 2004, ADNI researchers began a naturalistic, longitudinal study that continues today around the globe. Through several successive phases (ADNI-1, ADNI-GO, ADNI-2, and ADNI-3), the study has fueled amyloid and tau phenotyping and refined neuroimaging methodologies. WW-ADNI researchers have successfully standardized analyses and openly share data without embargo, providing a rich data set for other investigators. On August 26, 2020, the Alzheimer's Association convened WW-ADNI researchers who shared updates from ADNI-3 and their vision for ADNI-4
    corecore