6 research outputs found

    Role of Draw Rate and Molecular Weight when Electrospun Nanofibers are Post-Drawn with Residual Solvent

    Get PDF
    The postdrawing process is poorly understood for polymer nanofibers due to the difficulty of manipulating nanofiber structures. Here, an angled track system facilitates postdrawing of individual nanofibers with control of parameters including molecular weight, draw rate, draw ratio, and solvent evaporation time. In this study, the effects of molecular weight, draw rate, and relative residual solvent content on final nanofiber properties are investigated. Molecular weight is first investigated to clarify any influence polymer chain length can have on drawing in facilitating or hindering chain extensibility. Polyacrylonitrile nanofibers with 50 and 150 kDa molecular weights behave similarly with postdrawing resulting in reduced diameters and enhanced mechanics. Since solvent quantity during drawing is a time sensitive component it is meaningful to assess the impact of draw rate on the chemical and structural makeup of postdrawn fibers. Chemical bond vibrations and chain orientation are sensitive to draw rate when polycaprolactone nanofibers are dried for 3 minutes prior to postdrawing, but this dependency to draw rate is not observed when fibers are postdrawn immediately upon collection. These findings demonstrate that the amount of retained solvent at collection is relevant to this postprocessing approach, and highlights the dynamics of solvent evaporation during postdrawing

    Effects of Fiber Density and Strain Rate on the Mechanical Properties of Electrospun Polycaprolactone Nanofiber Mats.

    Get PDF
    This study examines the effects of electrospun polycaprolactone (PCL) fiber density and strain rate on nanofiber mat mechanical properties. An automated track collection system was employed to control fiber number per mat and promote uniform individual fiber properties regardless of the duration of collection. Fiber density is correlated to the mechanical properties of the nanofiber mats. Young\u27s modulus was reduced as fiber density increased, from 14,901 MPa for samples electrospun for 30 s (717 fibers +/- 345) to 3,615 MPa for samples electrospun for 40 min (8,310 fibers +/- 1,904). Ultimate tensile strength (UTS) increased with increasing fiber density, where samples electrospun for 30 s resulted in a UTS of 594 MPa while samples electrospun for 40 min demonstrated a UTS of 1,250 MPa. An average toughness of 0.239 GJ/

    Annealing post-drawn polycaprolactone (PCL) nanofibers optimizes crystallinity and molecular alignment and enhances mechanical properties and drug release profiles

    Get PDF
    Post-drawn PCL nanofibers can be molecularly tuned to have a variety of mechanical properties and drug release profiles depending on the temperature and time of annealing, which has implications for regenerative medicine and drug delivery applications. Post-drawing polycaprolactone (PCL) nanofibers has previously been demonstrated to drastically increase their mechanical properties. Here the effects of annealing on post-drawn PCL nanofibers are characterized. It is shown that room temperature storage and in vivo temperatures increase crystallinity significantly on the order of weeks, and that high temperature annealing near melt significantly increases crystallinity and molecular orientation on the order of minutes. The kinetics of crystallization were assessed using an anneal and quench approach. High temperature annealing also increased the ultimate tensile strength and toughness of the fibers and changed the release profile of a model drug absorbed in PCL nanofibers from first-order to zero-order kinetics

    Protein-Based Fiber Materials in Medicine: A Review

    Get PDF
    Fibrous materials have garnered much interest in the field of biomedical engineering due to their high surface-area-to-volume ratio, porosity, and tunability. Specifically, in the field of tissue engineering, fiber meshes have been used to create biomimetic nanostructures that allow for cell attachment, migration, and proliferation, to promote tissue regeneration and wound healing, as well as controllable drug delivery. In addition to the properties of conventional, synthetic polymer fibers, fibers made from natural polymers, such as proteins, can exhibit enhanced biocompatibility, bioactivity, and biodegradability. Of these proteins, keratin, collagen, silk, elastin, zein, and soy are some the most common used in fiber fabrication. The specific capabilities of these materials have been shown to vary based on their physical properties, as well as their fabrication method. To date, such fabrication methods include electrospinning, wet/dry jet spinning, dry spinning, centrifugal spinning, solution blowing, self-assembly, phase separation, and drawing. This review serves to provide a basic knowledge of these commonly utilized proteins and methods, as well as the fabricated fibers’ applications in biomedical research

    Microarray Embedding/Sectioning for Parallel Analysis of 3D Cell Spheroids.

    Get PDF
    Three-dimensional cell spheroid models can be used to predict the effect of drugs and therapeutics and to model tissue development and regeneration. The utility of these models is enhanced by high throughput 3D spheroid culture technologies allowing researchers to efficiently culture numerous spheroids under varied experimental conditions. Detailed analysis of high throughput spheroid culture is much less efficient and generally limited to narrow outputs, such as metabolic viability. We describe a microarray approach that makes traditional histological embedding/sectioning/staining feasible for large 3D cell spheroid sample sets. Detailed methodology to apply this technology is provided. Analysis of the technique validates the potential for efficient histological analysis of up to 96 spheroids in parallel. By integrating high throughput 3D spheroid culture technologies with advanced immunohistochemical techniques, this approach will allow researchers to efficiently probe expression of multiple biomarkers with spatial localization within 3D structures. Quantitative comparison of staining will have improved inter- and intra-experimental reproducibility as multiple samples are collectively processed, stained, and imaged on a single slide

    Chapter Two - Matricellular Proteins:Functional Insights from Non-Mammalian Animal Models

    No full text
    corecore