195 research outputs found

    I love you ... and heroin: care and collusion among drug-using couples

    Get PDF
    BACKGROUND: Romantic partnerships between drug-using couples, when they are recognized at all, tend to be viewed as dysfunctional, unstable, utilitarian, and often violent. This study presents a more nuanced portrayal by describing the interpersonal dynamics of 10 heroin and cocaine-using couples from Hartford, Connecticut. RESULTS: These couples cared for each other similarly to the ways that non-drug-using couples care for their intimate partners. However, most also cared by helping each other avoid the symptoms of drug withdrawal. They did this by colluding with each other to procure and use drugs. Care and collusion in procuring and using drugs involved meanings and social practices that were constituted and reproduced by both partners in an interpersonal dynamic that was often overtly gendered. These gendered dynamics could be fluid and changed over time in response to altered circumstances and/or individual agency. They also were shaped by and interacted with long-standing historical, economic and socio-cultural forces including the persistent economic inequality, racism and other forms of structural violence endemic in the inner-city Hartford neighborhoods where these couples resided. As a result, these relationships offered both risk and protection from HIV, HCV and other health threats (e.g. arrest and violence). CONCLUSION: A more complex and nuanced understanding of drug-using couples can be tapped for its potential in shaping prevention and intervention efforts. For example, drug treatment providers need to establish policies which recognize the existence and importance of interpersonal dynamics between drug users, and work with them to coordinate detoxification and treatment for both partners, whenever possible, as well as provide additional couples-oriented services in an integrated and comprehensive drug treatment system

    Diffuse glioma growth: a guerilla war

    Get PDF
    In contrast to almost all other brain tumors, diffuse gliomas infiltrate extensively in the neuropil. This growth pattern is a major factor in therapeutic failure. Diffuse infiltrative glioma cells show some similarities with guerilla warriors. Histopathologically, the tumor cells tend to invade individually or in small groups in between the dense network of neuronal and glial cell processes. Meanwhile, in large areas of diffuse gliomas the tumor cells abuse pre-existent “supply lines” for oxygen and nutrients rather than constructing their own. Radiological visualization of the invasive front of diffuse gliomas is difficult. Although the knowledge about migration of (tumor)cells is rapidly increasing, the exact molecular mechanisms underlying infiltration of glioma cells in the neuropil have not yet been elucidated. As the efficacy of conventional methods to fight diffuse infiltrative glioma cells is limited, a more targeted (“search & destroy”) tactic may be needed for these tumors. Hopefully, the study of original human glioma tissue and of genotypically and phenotypically relevant glioma models will soon provide information about the Achilles heel of diffuse infiltrative glioma cells that can be used for more effective therapeutic strategies

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers.

    Get PDF
    Organismal appearances are shaped by selection from both biotic and abiotic drivers. For example, Gloger's rule describes the pervasive pattern that more pigmented populations are found in more humid areas. However, species may also converge on nearly identical colours and patterns in sympatry, often to avoid predation by mimicking noxious species. Here we leverage a massive global citizen-science database to determine how biotic and abiotic factors act in concert to shape plumage in the world's 230 species of woodpeckers. We find that habitat and climate profoundly influence woodpecker plumage, and we recover support for the generality of Gloger's rule. However, many species exhibit remarkable convergence explained neither by these factors nor by shared ancestry. Instead, this convergence is associated with geographic overlap between species, suggesting occasional strong selection for interspecific mimicry

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    In situ mechanical testing of nuclear graphite at elevated temperatures: Synchrotron x-ray tomography, neutron diffraction and Raman scattering

    No full text
    High temperature in situ tests of Gilsocarbon polygranular nuclear graphite have investigated the microstructure's deformation at two length scales. At the µm-scale, in situ bending tests observed by synchrotron radiation x-ray computed micro-tomography evaluated the bulk mechanical properties of flexural strength and fracture toughness and observed crack propagation at temperatures up to 1000°C; at the atomic-scale, neutron diffraction data correlated the lattice strain with bulk stress at temperatures up to 850°C. Raman scattering observations at temperatures up to 800°C showed the change of micro-scale residual strains. Gilsocarbon graphite was found to have a higher strength and fracture toughness with increased temperature. The mechanism leading to this behaviour has been attributed to the relaxation of residual strains
    corecore