40 research outputs found

    History of sentinel node and validation of the technique

    Get PDF
    Sentinel node biopsy is a minimally invasive technique to select patients with occult lymph node metastases who may benefit from further regional or systemic therapy. The sentinel node is the first lymph node reached by metastasising cells from a primary tumour. Attempts to remove this node with a procedure based on standard anatomical patterns did not become popular. The development of the dynamic technique of intraoperative lymphatic mapping in the 1990s resulted in general acceptance of the sentinel node concept. This hypothesis of sequential tumour dissemination seems to be valid according to numerous studies of sentinel node biopsy with confirmatory regional lymph node dissection. This report describes the history and the validation of the technique, with particular reference to breast cancer

    Limited Value of Staging Squamous Cell Carcinoma of the Anal Margin and Canal Using the Sentinel Lymph Node Procedure: A Prospective Study with Long-Term Follow-Up

    Get PDF
    Background. Selection of patients with anal cancer for groin irradiation is based on tumor size, palpation, ultrasound, and fine needle cytology. Current staging of anal cancer may result in undertreatment in small tumors and overtreatment of large tumors. This study reports the feasibility of the sentinel lymph node biopsy (SLNB) in patients with anal cancer and whether this improves the selection for inguinal radiotherapy. Methods. A total of 50 patients with squamous anal cancer were evaluated prospectively. Patients without a SLNB (n = 29) received irradiation of the inguinal lymph nodes based on lymph node status, tumor size, and location of the primary tumor. Inguinal irradiation treatment in patients with a SLNB was based on the presence of metastases in the SLN. Results. SLNs were found in all 21 patients who underwent a SLNB. There were 5 patients (24%) who had complications after SLNB and 7 patients (33%) who had a positive SLN and received inguinal irradiation. However, 2 patients with a tumor-free SLN and no inguinal irradiation developed lymph node metastases after 12 and 24 months, respectively. Conclusions. We conclude that SLNB in anal cancer is technically feasible. SLNB can identify those patients who would benefit from refrain of inguinal irradiation treatment and thereby reducing the incidence of unnecessary inguinal radiotherapy. However, because of the occurrence of inguinal lymph node metastases after a tumor-negative SLNB, introduction of this procedure as standard of care in all patients with anal carcinoma should be done with caution to avoid undertreatment of patient who otherwise would benefit from inguinal radiotherapy

    Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?

    Get PDF
    The field of metal-organic framework based mixed matrix membranes (M(4)s) is critically reviewed, with special emphasis on their application in CO2 capture during energy generation. After introducing the most relevant parameters affecting membrane performance, we define targets in terms of selectivity and productivity based on existing literature on process design for pre- and post-combustion CO2 capture. Subsequently, the state of the art in M(4)s is reviewed against these targets. Because final application of these membranes will only be possible if thin separation layers can be produced, the latest advances in the manufacture of M-4 hollow fibers are discussed. Finally, the recent efforts in understanding the separation performance of these complex composite materials and future research directions are outlined.European Commission FP7 608490 ERC 33574

    Interplay of Linker Functionalization and Hydrogen Adsorption in the Metal–Organic Framework MIL-101

    Get PDF
    Functionalization of metal–organic frameworks results in higher hydrogen uptakes owing to stronger hydrogen–host interactions. However, it has not been studied whether a given functional group acts on existing adsorption sites (linker or metal) or introduces new ones. In this work, the effect of two types of functional groups on MIL-101 (Cr) is analyzed. Thermal-desorption spectroscopy reveals that the −Br ligand increases the secondary building unit’s hydrogen affinity, while the −NH2 functional group introduces new hydrogen adsorption sites. In addition, a subsequent introduction of −Br and −NH2 ligands on the linker results in the highest hydrogen-store interaction energy on the cationic nodes. The latter is attributed to a push-and-pull effect of the linkers

    Metal organic framework nanosheets in polymer composite materials for gas separation

    Full text link
    [EN] Composites incorporating two-dimensional nanostructures within polymeric matrices have potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of freestanding nanosheets has proved challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometre lateral dimensions and nanometre thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increase in the separation selectivity with pressure. As revealed by tomographic focused ion beam scanning electron microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared with isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications.The research leading to these results has received funding (J.G., B.S.) from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 335746, CrystEng-MOF-MMM. T.R. is grateful to TUDelft for funding. G.P. acknowledges the A. von Humboldt Foundation for a research grant. A.C., I.L. and F.X.L.i.X. thank Consolider-Ingenio 2010 (project MULTICAT) and the ‘Severo Ochoa’ programme for support. I.L. also thanks CSIC for a JAE doctoral grant.Ródenas Torralba, T.; Luz Mínguez, I.; Prieto González, G.; Seoane, B.; Miro, H.; Corma Canós, A.; Kapteijn, F.... (2015). Metal organic framework nanosheets in polymer composite materials for gas separation. Nature Materials. 14(1):48-55. https://doi.org/10.1038/nmat4113S4855141Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).Choi, S. et al. Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angew. Chem. Int. Ed. 47, 552–555 (2008).Varoon, K. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72–75 (2011).Corma, A., Fornes, V., Pergher, S. B., Maesen, Th. L. M. & Buglass, J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998).Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).Li, P-Z., Maeda, Y. & Xu, Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 47, 8436–8438 (2011).Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009).Hu, G., Wang, N., O’Hare, D. & Davis, J. One-step synthesis and AFM imaging of hydrophobic LDH monolayers. Chem. Commun. 287–289 (2006).Yamamoto, K., Sakata, Y., Nohara, Y., Takahashi, Y. & Tatsumi, T. Organic-inorganic hybrid zeolites containing organic frameworks. Science 300, 470–472 (2003).Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).Gücüyener, C., Bergh, J., Gascon, J. & Kapteijn, F. Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 132, 17704–17706 (2010).Deng, H. et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 12, 846–850 (2010).Khaletskaya, K. et al. Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. J. Am. Chem. Soc. 135, 10998–11005 (2013).Corma, A., Garcia, H. & Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010).Mueller, U. et al. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).Gascon, J. & Kapteijn, F. Metal-organic framework membranes-high potential, bright future? Angew. Chem. Int. Ed. 49, 1530–1532 (2010).Li, Y. S. et al. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Adv. Mater. 22, 3322–3326 (2010).Gascon, J. et al. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives. Chem. Mater. 24, 2829–2844 (2012).Bae, T-H. et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chem. Int. Ed. 49, 9863–9866 (2010).Zornoza, B. et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem. Commun. 47, 9522–9524 (2011).Zornoza, B., Tellez, C., Coronas, J., Gascon, J. & Kapteijn, F. Metal organic frameworks based mixed matrix membranes: An increasingly important field of research with a large application potential. Microp. Mesop. Mater. 166, 67–78 (2013).Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Mem. Sci. 389, 34–42 (2012).Li, T., Pan, Y., Peinemann, K-V. & Lai, Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Mem. Sci. 425–426, 235–242 (2013).Makiura, R. et al. Surface nano-architecture of a metal-organic framework. Nature Mater. 9, 565–571 (2010).Mori, W. et al. Synthesis of new adsorbent copper(II) terephthalate. Chem. Lett. 26, 1219–1220 (1997).Xin, Z., Bai, J., Shen, Y. & Pan, Y. Hierarchically micro- and mesoporous coordination polymer nanostructures with high adsorption performance. Cryst. Growth Des. 10, 2451–2454 (2010).Adams, R., Carson, C., Ward, J., Tannenbaum, R. & Koros, W. Metal organic framework mixed matrix membranes for gas separations. Micropor. Mesopor. Mater. 131, 13–20 (2010).Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metal-organic framework. Eur. J. Inorg. Chem. 2009, 2338–2343 (2009).Ameloot, R. et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nature Chem. 3, 382–387 (2011).Chen, Z. et al. Microporous metal-organic framework with immobilized -OH functional groups within the pore surfaces for selective gas sorption. Eur. J. Inorg. Chem. 2010, 3745–3749 (2010).Karra, J. R. & Walton, K. S. Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal-organic frameworks. J. Phys. Chem. C 114, 15735–15740 (2010).Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R. & Liu, J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 41, 2308–2322 (2012).Seki, K., Takamizawa, S. & Mori, W. Characterization of microporous copper(II) dicarboxylates (fumarate, terephthalate, and trans-1,4-cyclohexanedicarboxylate) by gas adsorption. Chem. Lett. 30, 122–123 (2001).Carson, C. G. et al. Structure solution from powder diffraction of copper 1,4-benzenedicarboxylate. Eur. J. Inorg. Chem. 2014, 2140–2145 (2014).Corma, A., Diaz, U., Domine, M. E. & Fornes, V. AlITQ-6 and TiITQ-6: Synthesis, characterization, and catalytic activity. Angew. Chem. Int. Ed. 39, 1499–1501 (2000).Corma, A., Fornes, V. & Diaz, U. ITQ-18 a new delaminated stable zeolite. Chem. Commun. 2642–2643 (2001).Rouquerol, F., Rouquerol, J. & Sing, K. Adsorption by Powders and Porous Solids (Academic, 1999).Dubinin, M. M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241 (1960).Uchic, M. D., Holzer, L., Inkson, B. J., Principe, E. L. & Munroe, P. Three-dimensional microstructural characterization using focused ion beam tomography. Mater. Res. Soc. Bull. 32, 408–416 (2007).Rodenas, T. et al. Visualizing MOF mixed matrix membranes at the nanoscale: Towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv. Funct. Mater. 24, 249–256 (2013).Wang, X. et al. Unusual rheological behaviour of liquid polybutadiene rubber/clay nanocomposite gels: The role of polymer-clay interaction, clay exfoliation, and clay orientation and disorientation. Macromology 39, 6653–6660 (2006).Yang, Y. et al. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 20, 14–27 (2008).Yeo, Z. Y., Chew, T. L., Zhu, P. W., Mohamed, A. R. & Chai, S-P. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. J. Nature Gas Chem. 21, 282–298 (2012).McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).Vinh-Thang, H. & Kaliaguine, S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 113, 4980–5028 (2013)

    Clinical aspects of sentinel node biopsy

    Get PDF
    Sentinel lymph node (SLN) biopsy requires validation by a backup axillary dissection in a defined series of cases before becoming standard practice, to establish individual and institutional success rates and the frequency of false negative results. At least 90% success in finding the SLN with no more than 5-10% false negative results is a reasonable goal for surgeons and institutions learning the technique. A combination of isotope and dye to map the SLN is probably superior to either method used alone, yet a wide variety of technical variations in the procedure have produced a striking similarity of results. Most breast cancer patients are suitable for SLN biopsy, and the large majority reported to date has had clinical stage T1-2N0 invasive breast cancers. SLN biopsy will play a growing role in patients having prophylactic mastectomy, and in those with 'high-risk' duct carcinoma in situ, microinvasive cancers, T3 disease, and neoadjuvant chemotherapy. SLN biopsy for the first time makes enhanced pathologic analysis of lymph nodes logistically feasible, at once allowing greater staging accuracy and less morbidity than standard methods. Retrospective data suggest that micrometastases identified in this way are prognostically significant, and prospective clinical trials now accruing promise a definitive answer to this issue
    corecore