80 research outputs found

    Identification of conserved gene clusters in multiple genomes based on synteny and homology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uncovering the relationship between the conserved chromosomal segments and the functional relatedness of elements within these segments is an important question in computational genomics. We build upon the series of works on <it>gene teams</it> and <it>homology teams.</it></p> <p>Results</p> <p>Our primary contribution is a local sliding-window SYNS (SYNtenic teamS) algorithm that refines an existing family structure into orthologous sub-families by analyzing the neighborhoods around the members of a given family with a locally sliding window. The neighborhood analysis is done by computing conserved gene clusters. We evaluate our algorithm on the existing homologous families from the Genolevures database over five genomes of the Hemyascomycete phylum.</p> <p>Conclusions</p> <p>The result is an efficient algorithm that works on multiple genomes, considers paralogous copies of genes and is able to uncover orthologous clusters even in distant genomes. Resulting orthologous clusters are comparable to those obtained by manual curation.</p

    Fusion and Fission of Genes Define a Metric between Fungal Genomes

    Get PDF
    Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species. We collected an inventory of 1,680 elementary fusion and fission events. In half the cases, both composite and element genes are found in the same species. Per-species counts of events correlate with the species genome size, suggesting a random mechanism of occurrence. Some biological functions of the genes involved in fusion and fission events are slightly over- or under-represented. As already noted in previous studies, the genes involved in an event tend to belong to the same functional category. We inferred the position of each event in the evolution tree of the 12 fungal species. The event localization counts for all the segments of the tree provide a metric that depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as distance in adaptation space is proposed

    Clinical and genomic analysis of a randomised phase II study evaluating anastrozole and fulvestrant in postmenopausal patients treated for large operable or locally-advanced hormone-receptor-positive breast cancer

    Get PDF
    Background: The aim of this study was to assess the efficacy of neoadjuvant anastrozole and fulvestrant treatment of large operable or locally-advanced hormone- receptor-positive breast cancer not eligible for initial breast-conserving surgery, and to identify genomic changes occurring after treatment. Methods: 120 post-menopausal patients were randomised to receive 1 mg anastrozole (61 patients) or 500 mg fulvestrant (59 patients) for 6 months. Genomic DNA copy number profiles were generated for a subgroup of 20 patients before and after treatment. Results: 108 patients were evaluable for efficacy and 118 for toxicity. The objective response rate determined by clinical palpation was 58.9% (95% CI 45.0-71.9) in the anastrozole arm and 53.8% (95% CI 39.5-67.8) in the fulvestrant arm. The breast- conserving surgery rate was 58.9% (95% CI 45.0-71.9) in the anastrozole arm and 50.0% (95% CI 35.8-64.2) in the fulvestrant arm. Pathological responses >50% occurred in 24 patients (42.9%) in the anastrozole arm and 13 (25.0%) in the fulvestrant arm. The Ki-67 score fell after treatment but there was no significant difference between the reduction in the two arms (anastrozole 16.7% [95%CI 13.3-21.0] before, 3.2% [95%CI 1.9-5.5] after, n=43; fulvestrant 17.1% [95%CI 13.1-22.5] before, 3.2% [95%CI 1.8-5.7] after, n=38) or between the reduction in Ki-67 in clinical responders and non- responders. Genomic analysis appeared to show a reduction of clonal diversity following treatment with selection of some clones with simpler copy number profiles. Conclusion: Both anastrozole and fulvestrant were effective and well-tolerated, enabling breast-conserving surgery in over 50% of patients. Clonal changes consistent with clonal selection by the treatment were seen in a subgroup of patients

    COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access

    Get PDF
    Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and funders. After the initial efforts of the metabolomics standards initiative, minimum reporting standards were proposed which included the concepts for metabolomics databases. Built by the community, standards and infrastructure for metabolomics are still needed to allow storage, exchange, comparison and re-utilization of metabolomics data. The Framework Programme 7 EU Initiative ‘coordination of standards in metabolomics’ (COSMOS) is developing a robust data infrastructure and exchange standards for metabolomics data and metadata. This is to support workflows for a broad range of metabolomics applications within the European metabolomics community and the wider metabolomics and biomedical communities’ participation. Here we announce our concepts and efforts asking for re-engagement of the metabolomics community, academics and industry, journal publishers, software and hardware vendors, as well as those interested in standardisation worldwide (addressing missing metabolomics ontologies, complex-metadata capturing and XML based open source data exchange format), to join and work towards updating and implementing metabolomics standards

    Nuclear astrophysics with radioactive ions at FAIR

    Get PDF
    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes

    Investigations on the stability of beryllium chelates with substituted acetoacetamides

    No full text
    corecore