83 research outputs found
Prospective quantitative des dynamiques urbaines: Enjeux, obstacles et leviers de la ville " post-carbone "
This study presents the technological, organizational and macroeconomic contexts of the six transition scenarios to post carbon cities as defined in the program "Repenser des villes dans une société post-carbone" (CGDD-ADEME) . The results illustrate the need to act quickly to deal with the inertia of urban systems to allow a greater emissions reduction by 2050, and higher average growth over the next 50 years. For example, the introduction of a faster carbon tax allows a higher emission reduction of nearly 20 points and higher growth rate around 0.05 points. However, the pace of government action is not the only important variable. Acting on price signals only cannot achieve the goal of reducing emissions by a factor four by 2050. Actions on the price of carbon should be accompanied by measures of infrastructure (housing, transportation, energy production) , but also norms that affect urban form (urban tolls, densification). Finally, rethinking development patterns seems necessary to establish a post-carbon society. Economic tools as used in this report can highlight the objectives, but can hardly trace the path to achieve them. The transition to a post-carbon society must be guided by the entire scientific community, whether in the field of innovation technology or social sciences
Les actions locales dans la transition postcarbone: Une simulation des effets macroéconomiques
National audienceCe papier analyse le rôle de politiques menées à l'échelle locale pour accompagner la transition post-carbone en complément des mesures globales conventionnellement envisagées. De telles mesures sont particulièrement justifiées pour contrôler les émissions liées au transport en permettant un contrôle des besoins de mobilité et du report modal. L'analyse de ces effets est menée via un cadre de modélisation innovant permettant de représenter de façon cohérente les trajectoires économiques de long terme et les dynamiques urbaines sous-jacentes. Cet outil est utilisé sur la France pour quantifier les scénarios prospectifs définis dans le cadre du programme " Repenser les villes dans une société post-carbone ", copiloté par la mission prospective du CGDD - MEEDDM et le Service Économie et Prospective de l'ADEME. Ils permettent de démontrer l'importance de la distribution des investissements à l'échelle locale sur la nature de la transition post-carbone, que ce soit en termes de dynamiques locales (forme des villes, coûts urbains) ou des tendances nationales (PIB, émissions de carbone). Cette étude permet de mettre en avant trois dimensions cruciales à l'échelle locale pour la transition post-carbone : les effets d'agglomération et les liens entre productivité et densité ; l'articulation entre différents niveaux de gouvernance pour combiner mesures locales et globales ; l'hétérogénéité du tempo de l'action qui force à penser le tuilage temporel des mesures à court-terme et long-terme
Calibration of the KIT test setup for the cooling tests of a gyrotron cavity full-size mock-up equipped with mini-channels
In high-power fusion gyrotrons, the maximum heat-load on the wall of the interaction section is in the order of 2 kW/cm2, which is the major limiting technological factor for output power and pulse-length of the tube. The ongoing gyrotron development demands a very effective cavity cooling system for optimum gyrotron operation. In this work, the experimental investigation of a mini-channel cavity cooling using a mock-up test set-up is described. The mock-up test set-up will be used to experimentally validate the predictive simulation results and verify the mini-channel cooling performance. It is crucial for validation of the mini-channel cooling properties to determine the amount of the heat load introduced in the cavity wall by an induction heater. In order to estimate that heat load, full 3D electromagnetic simulations have been performed using the CST Studio Suite® software. A suitable calibration factor for the load deposited in the mock-up inner wall is identified after numerical investigation by a 3D thermal model. Calorimetry measurements are performed and the experimental results are compared with the simulation results obtained with a 3D thermal-hydraulic model, using the commercial software STAR-CCM+. When the calibration factor is applied, the experimental calorimetry is well reproduced by the simulations
Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells
KEY POINTS: Mouse chromaffin cells (MCCs) of the adrenal medulla possess fast-inactivating Nav channels whose availability alters spontaneous action potential firing patterns and the Ca2+ -dependent secretion of catecholamines. Here, we report MCCs expressing large densities of neuronal fast-inactivating Nav1.3 and Nav1.7 channels that carry little or no subthreshold pacemaker currents and can be slowly inactivated by 50% upon slight membrane depolarization. Reducing Nav1.3/Nav1.7 availability by tetrodotoxin or by sustained depolarization near rest leads to a switch from tonic to burst-firing patterns that give rise to elevated Ca2+ -influx and increased catecholamine release. Spontaneous burst firing is also evident in a small percentage of control MCCs. Our results establish that burst firing comprises an intrinsic firing mode of MCCs that boosts their output. This occurs particularly when Nav channel availability is reduced by sustained splanchnic nerve stimulation or prolonged cell depolarizations induced by acidosis, hyperkalaemia and increased muscarine levels. ABSTRACT: Action potential (AP) firing in mouse chromaffin cells (MCCs) is mainly sustained by Cav1.3 L-type channels that drive BK and SK currents and regulate the pacemaking cycle. As secretory units, CCs optimally recruit Ca2+ channels when stimulated, a process potentially dependent on the modulation of the AP waveform. Our previous work has shown that a critical determinant of AP shape is voltage-gated sodium channel (Nav) channel availability. Here, we studied the contribution of Nav channels to firing patterns and AP shapes at rest (-50 mV) and upon stimulation (-40 mV). Using quantitative RT-PCR and immunoblotting, we show that MCCs mainly express tetrodotoxin (TTX)-sensitive, fast-inactivating Nav1.3 and Nav1.7 channels that carry little or no Na+ current during slow ramp depolarizations. Time constants and the percentage of recovery from fast inactivation and slow entry into closed-state inactivation are similar to that of brain Nav1.3 and Nav1.7 channels. The fraction of available Nav channels is reduced by half after 10 mV depolarization from -50 to -40 mV. This leads to low amplitude spikes and a reduction in repolarizing K+ currents inverting the net current from outward to inward during the after-hyperpolarization. When Nav channel availability is reduced by up to 20% of total, either by TTX block or steady depolarization, a switch from tonic to burst firing is observed. The spontaneous occurrence of high frequency bursts is rare under control conditions (14% of cells) but leads to major Ca2+ -entry and increased catecholamine release. Thus, Nav1.3/Nav1.7 channel availability sets the AP shape, burst-firing initiation and regulates catecholamine secretion in MCCs. Nav channel inactivation becomes important during periods of high activity, mimicking stress responses
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
An exploratory study of the determinants of the quality of strategic decision implementation in Turkish industrial firms
This paper investigates the determinants of quality of decision implementation. By drawing on a sample of 116 firms located in Turkey, the authors test whether the features of important team processes (i.e. trust and participation), of the organisation (i.e. past performance) and of implementation (i.e. its speed and uncertainty) exert an influence on the quality with which decisions are implemented. Exploratory and confirmatory factor analyses were used to test the validity of the measures, while path analysis was used in hypotheses testing. The results suggest that quality of decision implementation is positively related to trust, participation and past performance, and negatively to implementation speed and uncertainty. The implications of these findings for theory, practice and general management are discussed
“Working the System”—British American Tobacco's Influence on the European Union Treaty and Its Implications for Policy: An Analysis of Internal Tobacco Industry Documents
Katherine Smith and colleagues investigate the ways in which British American Tobacco influenced the European Union Treaty so that new EU policies advance the interests of major corporations, including those that produce products damaging to health
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
Plasma and cellular fibronectin: distinct and independent functions during tissue repair
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes
Conceptualizing and measuring strategy implementation – a multi-dimensional view
Through quantitative methodological approaches for studying the strategic management and planning process, analysis of data from 208 senior managers involved in strategy processes within ten UK industrial sectors provides evidence on the measurement properties of a multi-dimensional instrument that assesses ten dimensions of strategy implementation. Using exploratory factor analysis, results indicate the sub-constructs (the ten dimensions) are uni-dimensional factors with acceptable reliability and validity; whilst using three additional measures, and correlation and hierarchical regression analysis, the nomological validity for the multi-dimensional strategy implementation construct was established. Relative importance of ten strategy implementation dimensions (activities) for practicing managers is highlighted, with the mutually and combinative effects drawing conclusion that senior management involvement leads the way among the ten key identified activities vital for successful strategy implementation
- …