2,599 research outputs found
Neutralising Deviance: The legitimation of harm and the culture of finance in the City of London
This research project is a profile of inverted social deviance that speaks to base issues of morality and justice in the organisation of economic life. Focusing on the City of London, the aim of the research project is to create a sociological snapshot of the organising interests and ideologies functioning within spaces and institutions of global finance. Engaging in the everyday routines, expectations assumptions of economic actors embedded within the financial services industry, this study contributes towards an enhanced understanding of how the cultural sensibilities that underpin a market based reality perpetuate gross social and economic inequalities through the shifting of negative market costs on vulnerable sections of society. Leading to a critical evaluation of the organising ideologies and taken-for-granted assumptions that function within the City of London, the principal findings detail the relational struggles, strategies and vested interests that dominate the field of finance life
Notes and Discussion Piece: Status of the Topeka Shiner in Iowa
The Topeka shiner Notropis topeka is native to Iowa, Kansas, Minnesota, Missouri, Nebraska, and South Dakota and has been federally listed as endangered since 1998. Our goals were to determine the present distribution and qualitative status of Topeka shiners throughout its current range in Iowa and characterize the extent of decline in relation to its historic distribution. We compared the current (2016–2017) distribution to distributions portrayed in three earlier time periods. In 2016–2017 Topeka shiners were found in 12 of 20 HUC10 watersheds where they occurred historically. Their status was classified as stable in 21% of the HUC10 watersheds, possibly stable in 25%, possibly recovering in 8%, at risk in 33%, and possibly extirpated in 13% of the watersheds. The increasing trend in percent decline evident in earlier time periods reversed, going from 68% in 2010–11 to 40% in the most recent surveys. Following decades of decline, the status of Topeka shiners in Iowa appears to be improving. One potential reason for the reversal in the distributional decline of Topeka shiners in Iowa is the increasing number of oxbow restorations. Until a standardized monitoring program is established for Iowa, periodic status assessments such as this will be necessary to chronicle progress toward conserving this endangered fish species
From Start to Finish?
Article published in the Michigan State International Law Review
Sulfate production by reactive bromine: Implications for the global sulfur and reactive bromine budgets
Sulfur and reactive bromine (Bry) play important roles in tropospheric chemistry and the global radiation budget. The oxidation of dissolved SO2 (S(IV)) by HOBr increases sulfate aerosol abundance and may also impact the Bry budget, but is generally not included in global climate and chemistry models. In this study, we implement HOBr + S(IV) reactions into the GEOS-Chem global chemical transport model and evaluate the global impacts on both sulfur and Bry budgets. Modeled HOBr mixing ratios on the order of 0.1-1.0 parts per trillion (ppt) lead to HOBr + S(IV) contributing to 8% of global sulfate production and up to 45% over some tropical ocean regions with high HOBr mixing ratios (0.6-0.9 ppt). Inclusion of HOBr + S(IV) in the model leads to a global Bry decrease of 50%, initiated by the decrease in bromide recycling in cloud droplets. Observations of HOBr are necessary to better understand the role of HOBr + S(IV) in tropospheric sulfur and Bry cycles
Invasion by P. falciparum Merozoites Suggests a Hierarchy of Molecular Interactions
Central to the pathology of malaria disease are the repeated cycles of parasite invasion and destruction of human erythrocytes. In Plasmodium falciparum, the most virulent species causing malaria, erythrocyte invasion involves several specific receptor–ligand interactions that direct the pathway used to invade the host cell, with parasites varying in their dependency on these different pathways. Gene disruption of a key invasion ligand in the 3D7 parasite strain, the P. falciparum reticulocyte binding-like homolog 2b (PfRh2b), resulted in the parasite invading via a novel pathway. Here, we show results that suggest the molecular basis for this novel pathway is not due to a molecular switch but is instead mediated by the redeployment of machinery already present in the parent parasite but masked by the dominant role of PfRh2b. This would suggest that interactions directing invasion are organized hierarchically, where silencing of dominant invasion ligands reveal underlying alternative pathways. This provides wild parasites with the ability to adapt to immune-mediated selection or polymorphism in erythrocyte receptors and has implications for the use of invasion-related molecules in candidate vaccines
A Framework for Incorporating Dyads in Models of HIV-Prevention
Although HIV is contracted by individuals, it is typically transmitted in dyads. Most efforts to promote safer sex practices, however, focus exclusively on individuals. The goal of this paper is to provide a theoretical framework that specifies how models of dyadic processes and relationships can inform models of HIV-prevention. At the center of the framework is the proposition that safer sex between two people requires a dyadic capacity for successful coordination. According to this framework, relational, individual, and structural variables that affect the enactment of safer sex do so through their direct and indirect effects on that dyadic capacity. This dyadic perspective does not require an ongoing relationship between two individuals; rather, it offers a way of distinguishing between dyads along a continuum from anonymous strangers (with minimal coordination of behavior) to long-term partners (with much greater coordination). Acknowledging the dyadic context of HIV-prevention offers new targets for interventions and suggests new approaches to tailoring interventions to specific populations
The Ontoverse:Democratising access to knowledge graph-based data through a cartographic interface
As the number of scientific publications and preprints is growing exponentially, several attempts have been made to navigate the sheer volume of this complex and increasingly detailed landscape. These have almost exclusively taken unsupervised approaches that fail to incorporate domain knowledge. As a consequence, these emerging landscapes lack the structural organisation required for intuitive interactive human exploration and discovery. Especially in highly interdisciplinary fields, a deep understanding of the connectedness of research works across topics is essential for generating insights. We have developed a unique approach to data navigation that leans on geographical visualisation and uses hierarchically structured domain knowledge to enable end-users to explore knowledge spaces grounded in their desired domains of interest. This can take advantage of existing ontologies, proprietary intelligence schemata, or be directly derived from the underlying data through hierarchical topic modelling. Our approach uses natural language processing techniques to extract named entities from the underlying data and normalise them against relevant domain references and navigational structures. The knowledge is integrated by first calculating similarities between entities based on their shared extracted feature space and then by alignment to the navigational structures. The result is a knowledge graph that allows for full text and semantic graph query and structured topic driven navigation. This allows end-users to identify entities relevant to their needs and access extensive graph analytics. The user interface facilitates graphical interaction with the underlying knowledge graph and mimics a cartographic map to maximise ease of use and widen adoption. We demonstrate an exemplar project using our generalisable and scalable infrastructure for an academic biomedical literature corpus that is grounded against hundreds of different named domain entities
Longitudinal flow evolution and turbulence structure of dynamically similar, sustained, saline density and turbidity currents
Experimental results are presented concerning flow evolution and turbulence structure of sustained saline and turbidity flows generated on 0°, 3°, 6°, and 9° sloping ramps that terminate abruptly onto a horizontal floor. Two-component velocity and current density were measured with an ultrasonic Doppler velocity profiler and siphon sampler on the slope, just beyond the slope break and downstream on the horizontal floor. Three main factors influence longitudinal flow evolution and turbulence structure: sediment transport and sedimentation, slope angle, and the presence of a slope break. These controls interact differently depending on flow type. Sediment transport is accompanied by an inertial fluid reaction that enhances Reynolds stresses in turbidity flows. Thus turbidity flows mix more vigorously than equivalent saline density flows. For saline flows, turbulent kinetic energy is dependent on slope, and rapid deceleration occurs on the horizontal floor. For turbidity flows, normalized turbulent kinetic energy increases downstream, and mean streamwise deceleration is reduced compared with saline flows. The slope break causes mean bed-normal velocity of turbidity flows to become negative and have a gentler gradient compared with other locations. A reduction of peak Reynolds normal stress in the bed-normal direction is accompanied by an increase in turbulent accelerations across the rest of the flow thickness. Thus the presence of particles acts to increase Reynolds normal stresses independently of gradients of mean velocity, and sediment transport increases across the break in slope. The experiments illustrate that saline density currents may not be good dynamic analogues for natural turbidity currents
- …