56 research outputs found

    Activity of ceftolozane/tazobactam against surveillance and ā€˜problemā€™ Enterobacteriaceae, Pseudomonas aeruginosa and non-fermenters from the British Isles

    Get PDF
    Background: We assessed the activity of ceftolozane/tazobactam against consecutive isolates collected in the BSAC Bacteraemia Surveillance from 2011 to 2015 and against ā€˜problemā€™ isolates sent to the UK national reference laboratory from July 2015, when routine testing began. Methods: Susceptibility testing was by BSAC agar dilution with resistance mechanisms identified by PCR and interpretive reading. Results: Data were reviewed for 6080 BSAC surveillance isolates and 5473 referred organisms. Ceftolozane/tazobactam had good activity against unselected ESBL producers in the BSAC series, but activity was reduced against ertapenem-resistant ESBL producers, which were numerous among reference submissions. AmpC-derepressed Enterobacter spp. were widely resistant, but Escherichia coli with raised chromosomal AmpC frequently remained susceptible, as did Klebsiella pneumoniae with acquired DHA-1-type AmpC. Carbapenemase-producing Enterobacteriaceae were mostly resistant, except for ceftazidime-susceptible isolates with OXA-48-like enzymes. Ceftolozane/tazobactam was active against 99.8% of the BSAC Pseudomonas aeruginosa isolates; against referred P. aeruginosa it was active against 99.7% with moderately raised efflux, 94.7% with strongly raised efflux and 96.6% with derepressed AmpC. Resistance in P. aeruginosa was largely confined to isolates with metallo-Ī²-lactamases (MBLs) or ESBLs. MICs for referred Burkholderia spp. and Stenotrophomonas maltophilia were 2ā€“4-fold lower than those of ceftazidime. Conclusions: Ceftolozane/tazobactam is active against ESBL-producing Enterobacteriaceae; gains against other problem Enterobacteriaceae groups were limited. Against P. aeruginosa it overcame the two most prevalent mechanisms (up-regulated efflux and derepressed AmpC) and was active against 51.9% of isolates non-susceptible to all other Ī²-lactams, rising to 80.9% if ESBL and MBL producers were excluded

    Molybdenum oxide on Fe2O3 Core-Shell catalysts: Probing the nature of the structural motifs responsible for methanol oxidation catalysis

    Get PDF
    A series of MoOx-modified Fe2O3 catalysts have been prepared in an attempt to make coreā€“shell oxidic materials of the type MoOx/Fe2O3. It is conclusively shown that for three monolayers of Mo dosed, the Mo stays in the surface region, even after annealing to high temperature. It is only when the material is annealed above 400 Ā°C that it reacts with the iron oxide. We show by a combination of methods, and especially by XAFS, that at temperatures above 400 Ā°C, most of the Mo converts to Fe2(MoO4)3, with Mo in a tetrahedral structure, whereas below that temperature, nanocrystalline MoO3 is present in the sample; however, the active catalysts have an octahedral MoOx layer at the surface even after calcination to 600 Ā°C. This surface layer appears to be present at all temperatures between 300 and 600 Ā°C, and it is the nanoparticles of MoO3 that are present at the lower temperature that react to form ferric molybdate, which underlies this surface layer. It is the MoOx layer on the Fe2(MoO4)3 underlayer that makes the surface active and selective for formaldehyde synthesis, whereas the iron oxide surface itself is a combustor. The material is both activated and improved in selectivity due to the dominance of the methoxy species on the Mo-doped material, as opposed to the much more stable formate, which is the main intermediate on Fe2O3

    The effects of high frequency subthalamic stimulation on balance performance and fear of falling in patients with Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Balance impairment is one of the most distressing symptoms in Parkinson's disease (PD) even with pharmacological treatment (levodopa). A complementary treatment is high frequency stimulation in the subthalamic nucleus (STN). Whether STN stimulation improves postural control is under debate. The aim of this study was to explore the effects of STN stimulation alone on balance performance as assessed with clinical performance tests, subjective ratings of fear of falling and posturography.</p> <p>Methods</p> <p>Ten patients (median age 66, range 59ā€“69 years) with bilateral STN stimulation for a minimum of one year, had their anti-PD medications withdrawn overnight. Assessments were done both with the STN stimulation turned OFF and ON (start randomized). In both test conditions, the following were assessed: motor symptoms (descriptive purposes), clinical performance tests, fear of falling ratings, and posturography with and without vibratory proprioceptive disturbance.</p> <p>Results</p> <p>STN stimulation alone significantly (p = 0.002) increased the scores of the Berg balance scale, and the median increase was 6 points. The results of all timed performance tests, except for sharpened Romberg, were significantly (p ā‰¤ 0.016) improved. The patients rated their fear of falling as less severe, and the total score of the Falls-Efficacy Scale(S) increased (p = 0.002) in median with 54 points. All patients completed posturography when the STN stimulation was turned ON, but three patients were unable to do so when it was turned OFF. The seven patients with complete data showed no statistical significant difference (p values ā‰„ 0.109) in torque variance values when comparing the two test situations. This applied both during quiet stance and during the periods with vibratory stimulation, and it was irrespective of visual input and sway direction.</p> <p>Conclusion</p> <p>In this sample, STN stimulation alone significantly improved the results of the clinical performance tests that mimic activities in daily living. This improvement was further supported by the patients' ratings of fear of falling, which were less severe with the STN stimulation turned ON. Posturography could not be performed by three out of the ten patients when the stimulation was turned OFF. The posturography results of the seven patients with complete data showed no significant differences due to STN stimulation.</p

    Assessment of fall-related self-efficacy and activity avoidance in people with Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fear of falling (FOF) is common in Parkinson's disease (PD), and it is considered a vital aspect of comprehensive balance assessment in PD. FOF can be conceptualized differently. The Falls-Efficacy Scale (FES) assesses fall-related self-efficacy, whereas the Survey of Activities and Fear of Falling in the Elderly (SAFFE) assesses activity avoidance due to the risk of falling. This study aimed at investigating the validity and reliability of FES and SAFFE in people with PD.</p> <p>Methods</p> <p>Seventy-nine people with PD (mean age; 64 years, SD 7.2) completed the Swedish version of FES(S), SAFFE and the physical functioning (PF) scale of the 36-Item Short-Form Health Survey (SF-36). FES(S) and SAFFE were administered twice, with an 8.8 (SD 2.3) days interval. Assumptions for summing item scores into total scores were examined and score reliability (Cronbach's alpha and test-retest reliability) were calculated. Construct validity was assessed by examining the pattern of Spearman correlations (r<sub>s</sub>) between the FES(S)/SAFFE and other variables, and by examining differences in FES(S)/SAFFE scores between fallers and non-fallers, genders, and between those reporting FOF and unsteadiness while turning.</p> <p>Results</p> <p>For both scales, item mean scores (and standard deviations) were roughly similar and corrected item-total correlations exceeded 0.4. Reliabilities were ā‰„0.87. FES(S)-scores correlated strongest (r<sub>s</sub>, -0.74, p < 0.001) with SAFFE-scores, whereas SAFFE-scores correlated strongest with PF-scores (r<sub>s</sub>, -0.76, p < 0.001). Both scales correlated weakest with age (r<sub>s </sub>ā‰¤ 0.08). Experiencing falls, unsteadiness while turning, and FOF was associated with lower fall-related self-efficacy and higher activity avoidance.</p> <p>Conclusions</p> <p>This study provides initial support for the score reliability and validity of the FES(S) and SAFFE in people with PD.</p

    Freezing of gait and fall detection in Parkinsonā€™s disease using wearable sensors:a systematic review

    Get PDF
    Despite the large number of studies that have investigated the use of wearable sensors to detect gait disturbances such as Freezing of gait (FOG) and falls, there is little consensus regarding appropriate methodologies for how to optimally apply such devices. Here, an overview of the use of wearable systems to assess FOG and falls in Parkinsonā€™s disease (PD) and validation performance is presented. A systematic search in the PubMed and Web of Science databases was performed using a group of concept key words. The final search was performed in January 2017, and articles were selected based upon a set of eligibility criteria. In total, 27 articles were selected. Of those, 23 related to FOG and 4 to falls. FOG studies were performed in either laboratory or home settings, with sample sizes ranging from 1 PD up to 48 PD presenting Hoehn and Yahr stage from 2 to 4. The shin was the most common sensor location and accelerometer was the most frequently used sensor type. Validity measures ranged from 73ā€“100% for sensitivity and 67ā€“100% for specificity. Falls and fall risk studies were all home-based, including samples sizes of 1 PD up to 107 PD, mostly using one sensor containing accelerometers, worn at various body locations. Despite the promising validation initiatives reported in these studies, they were all performed in relatively small sample sizes, and there was a significant variability in outcomes measured and results reported. Given these limitations, the validation of sensor-derived assessments of PD features would benefit from more focused research efforts, increased collaboration among researchers, aligning data collection protocols, and sharing data sets

    Do Gravity-Related Sensory Information Enable the Enhancement of Cortical Proprioceptive Inputs When Planning a Step in Microgravity?

    No full text
    International audienceWe recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90ā€“160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity

    Biomarker candidates of neurodegeneration in Parkinsonā€™s disease for the evaluation of disease-modifying therapeutics

    Get PDF
    Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinsonā€™s disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of Ī±-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies
    • ā€¦
    corecore