58 research outputs found

    SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801

    Get PDF
    All known recently emerged human coronaviruses probably originated in bats1. Here we used a single experimental platform based on human lung-only mice (LoM) to demonstrate efficient in vivo replication of all recently emerged human coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) and two highly relevant endogenous pre-pandemic SARS-like bat coronaviruses. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats harbour endogenous coronaviruses capable of direct transmission into humans. Further detailed analysis of pandemic SARS-CoV-2 in vivo infection of LoM human lung tissue showed predominant infection of human lung epithelial cells, including type II pneumocytes present in alveoli and ciliated airway cells. Acute SARS-CoV-2 infection was highly cytopathic and induced a robust and sustained type I interferon and inflammatory cytokine/chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for coronavirus infection. Our results show that therapeutic and prophylactic administration of EIDD-2801, an oral broad spectrum antiviral currently in phase II–III clinical trials, dramatically inhibited SARS-CoV-2 replication in vivo and thus has significant potential for the prevention and treatment of COVID-19

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    The role of imaging in the pre- and postoperative evaluation of posterior occipito-cervical fusion

    No full text
    Occipitocervical fusion is required when the occipitoatlantal joint is unstable. The purpose of this paper is to discuss the role of imaging in the pre- and postoperative evaluation of posterior occipitocervical fusion (POCF), focusing on contoured loop fixation by Hartshill and Songer instrumentation

    Higgs Boson Studies at the Tevatron

    Get PDF
    We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90--200 GeV/c2/c^2 produced in the gluon-gluon fusion, WHWH, ZHZH, ttˉHt{\bar{t}}H, and vector boson fusion processes, and decaying in the HbbˉH\rightarrow b{\bar{b}}, HW+WH\rightarrow W^+W^-, HZZH\rightarrow ZZ, Hτ+τH\rightarrow\tau^+\tau^-, and HγγH\rightarrow \gamma\gamma modes. The data correspond to integrated luminosities of up to 10 fb1^{-1} and were collected at the Fermilab Tevatron in ppˉp{\bar{p}} collisions at s=1.96\sqrt{s}=1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c2c^2. The local significance corresponds to 3.0 standard deviations at mH=125m_H=125 GeV/c2c^2, consistent with the mass of the Higgs boson observed at the LHC, and we expect a local significance of 1.9 standard deviations. We separately combine searches for HbbˉH \to b\bar{b}, HW+WH \to W^+W^-, Hτ+τH\rightarrow\tau^+\tau^-, and HγγH\rightarrow\gamma\gamma. The observed signal strengths in all channels are consistent with the presence of a standard model Higgs boson with a mass of 125 GeV/c2c^2
    corecore