6 research outputs found

    Adsorption Performance of Arsenic(Ⅲ) in Water on Hyperaccumulating Plant-Pteris vittata

    No full text
    采用流动注射-氢化物发生-电热石英管原子吸收光谱法研究了超富集植物蜈蚣草对水中As(Ⅲ)的吸附行为。探讨了蜈蚣草的前处理方法、溶液pH值、吸附时间、吸附剂用量、As(Ⅲ)浓度和溶液体积等因素对蜈蚣草吸附As(Ⅲ)的吸附率的影响。结果表明,以50 mg经2 mol.L-1HCl洗脱处理后的蜈蚣草粉末为吸附剂,在pH为2.0、As(Ⅲ)浓度为20 ng.mL-1、溶液体积50 mL、吸附时间15 min条件下,蜈蚣草对As(Ⅲ)的吸附率可达86.1%,水中残余As(Ⅲ)仅为2.8 ng.mL-1。本法成本低廉、操作简便,可望直接用于地下水中As(Ⅲ)的去除。The adsorption performance on As(Ⅲ) in water with Pteris vittata(hyperaccumulating plant) was studied.The concentration of As(Ⅲ) in water was determined by flow injection-hydride generation-atomic adsorption spectrometry(FI-HG-AAS).The influence factors,including the pre-treatment of Pteris vittata,pH value,concentration of adsorbate,sample volume,adsorption time and amount of adsorbent were studied.The adsorption ratio of 20 ng/mL As(Ⅲ) with Pteris vittata(L) which was pre-treated by 2 mol/L HCl was 86.1% and the residual concentration of As(Ⅲ) was reduced to 2.8 ng/mL under the optimum conditions.The method was economical,manipulated simple and convenient,which could be used to remove As(Ⅲ) of groundwater directly,and met the standards of drinking water made by EU,EPA and WHO.国家自然科学基金(No.40506020

    新疆公路自然区划及环境参数的研究

    No full text
    本项目系统地建立了公路三级自然区划的分区体系,发展和完善了公路自然区划的理论体系;提出了综合因素区域主导标志法,丰富了公路自然区划方法论;首次建立了与公路建设相关的综合自然因素图集,使公路自然区划更具科学性;揭示了干旱区山盆体系下的公路工程区域分异规律,增强了区划的实用性;提出了新疆常见地产材料的设计参数;编制了指导公路建设的《新疆公路自然区划指南》。公路自然区划作为指导公路建设的基本资料,对推动公路建设、减少资金浪费、合理设计有着重要的意义;能为公路建设前期工作提供必要的依据和参数;为修订国家标准、规范体系提供技术性参考与借鉴

    Aripiprazole versus other atypical antipsychotics for schizophrenia

    No full text
    BACKGROUND: In most western industrialised countries, second generation (atypical) antipsychotics are recommended as first line drug treatments for people with schizophrenia. In this review we specifically examine how the efficacy and tolerability of one such agent - aripiprazole - differs from that of other comparable second generation antipsychotics. OBJECTIVES: To evaluate the effects of aripiprazole compared with other atypical antipsychotics for people with schizophrenia and schizophrenia-like psychoses. SEARCH METHODS: We searched the Cochrane Schizophrenia Group Trials Register (November 2011), inspected references of all identified studies for further trials, and contacted relevant pharmaceutical companies, drug approval agencies and authors of trials for additional information. SELECTION CRITERIA: We included all randomised clinical trials (RCTs) comparing aripiprazole (oral) with oral and parenteral forms of amisulpride, clozapine, olanzapine, quetiapine, risperidone, sertindole, ziprasidone or zotepine for people with schizophrenia or schizophrenia-like psychoses. DATA COLLECTION AND ANALYSIS: We extracted data independently. For dichotomous data we calculated risk ratios (RR) and their 95% confidence intervals (CI) on an intention-to-treat basis based on a random-effects model. Where possible, we calculated illustrative comparative risks for primary outcomes. For continuous data, we calculated mean differences (MD), again based on a random-effects model. We assessed risk of bias for each included study. MAIN RESULTS: We included 12 trials involving 6389 patients. Aripiprazole was compared to olanzapine, risperidone and ziprasidone. All trials were sponsored by an interested drug manufacturer. The overall number of participants leaving studies early was 30% to 40%, limiting validity (no differences between groups).When compared with olanzapine no differences were apparent for global state (no clinically important change: n = 703, 1 RCT, RR short-term 1.00 95% CI 0.81 to 1.22; n = 317, 1 RCT, RR medium-term 1.08 95% CI 0.95 to 1.22) but mental state tended to favour olanzapine (n = 1360, 3 RCTs, MD total Positive and Negative Syndrome Scale (PANSS) 4.68 95% CI 2.21 to 7.16). There was no significant difference in extrapyramidal symptoms (n = 529, 2 RCTs, RR 0.99 95% CI 0.62 to 1.59) but fewer in the aripiprazole group had increased cholesterol levels (n = 223, 1 RCT, RR 0.32 95% CI 0.19 to 0.54) or weight gain of 7% or more of total body weight (n = 1095, 3 RCTs, RR 0.39 95% CI 0.28 to 0.54).When compared with risperidone, aripiprazole showed no advantage in terms of global state (n = 384, 2 RCTs, RR no important improvement 1.14 95% CI 0.81 to 1.60) or mental state (n = 372, 2 RCTs, MD total PANSS 1.50 95% CI -2.96 to 5.96).One study compared aripiprazole with ziprasidone (n = 247) and both the groups reported similar change in the global state (n = 247, 1 RCT, MD average change in Clinical Global Impression-Severity (CGI-S) score -0.03 95% CI -0.28 to 0.22) and mental state (n = 247, 1 RCT, MD change PANSS -3.00 95% CI -7.29 to 1.29).When compared with any one of several new generation antipsychotic drugs the aripiprazole group showed improvement in global state in energy (n = 523, 1 RCT, RR 0.69 95% CI 0.56 to 0.84), mood (n = 523, 1 RCT, RR 0.77 95% CI 0.65 to 0.92), negative symptoms (n = 523, 1 RCT, RR 0.82 95% CI 0.68 to 0.99), somnolence (n = 523, 1 RCT, RR 0.80 95% CI 0.69 to 0.93) and weight gain (n = 523, 1 RCT, RR 0.84 95% CI 0.76 to 0.94). Significantly more people given aripiprazole reported symptoms of nausea (n = 2881, 3 RCTs, RR 3.13 95% CI 2.12 to 4.61) but weight gain (7% or more of total body weight) was less common in people allocated aripiprazole (n = 330, 1 RCT, RR 0.35 95% CI 0.19 to 0.64). Aripiprazole may have value in aggression but data are limited. This will be the focus of another review. AUTHORS' CONCLUSIONS: Information on all comparisons are of limited quality, are incomplete and problematic to apply clinically. Aripiprazole is an antipsychotic drug with a variant but not absent adverse effect profile. Long-term data are sparse and there is considerable scope for another update of this review as new data emerges from the many Chinese studies as well as from ongoing larger, independent pragmatic trials

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore