243 research outputs found
Fragmentation in Peripheral Heavy-Ion Collisions: from Neck Emission to Spectator Decays
Invariant cross sections of intermediate mass fragments in peripheral
collisions of Au on Au at incident energies between 40 and 150 AMeV have been
measured with the 4-pi multi-detector INDRA. The maximum of the fragment
production is located near mid-rapidity at the lower energies and moves
gradually towards the projectile and target rapidities as the energy is
increased. Schematic calculations within an extended Goldhaber model suggest
that the observed cross-section distributions and their evolution with energy
are predominantly the result of the clustering requirement for the emerging
fragments and of their Coulomb repulsion from the projectile and target
residues. The quantitative comparison with transverse energy spectra and
fragment charge distributions emphasizes the role of hard scattered nucleons in
the fragmentation process.Comment: 5 pages, 5 eps figures, RevTeX4, submitted to Phys. Lett.
Particle and light fragment emission in peripheral heavy ion collisions at Fermi energies
A systematic investigation of the average multiplicities of light charged
particles and intermediate mass fragments emitted in peripheral and
semiperipheral collisions is presented as a function of the beam energy,
violence of the collision and mass of the system.
The data have been collected with the "Fiasco" setup in the reactions
93Nb+93Nb at 17, 23, 30, 38AMeV and 116Sn+116Sn at 30, 38AMeV.
The midvelocity emission has been separated from the emission of the
projectile-like fragment. This last component appears to be compatible with an
evaporation from an equilibrated source at normal density, as described by the
statistical code Gemini at the appropriate excitation energy.
On the contrary, the midvelocity emission presents remarkable differences for
what concerns both the dependence of the multiplicities on the energy deposited
in the midvelocity region and the isotopic composition of the emitted light
charged particles.Comment: 18 pages, 17 figures, Revtex
Space and Time pattern of mid-velocity IMF emission in peripheral heavy-ion collisions at Fermi energies
The emission pattern in the V_perp - V_par plane of Intermediate Mass
Fragments with Z=3-7 (IMF) has been studied in the collision 116Sn + 93Nb at
29.5 AMeV as a function of the Total Kinetic Energy Loss of the reaction. This
pattern shows that for peripheral reactions most of IMF's are emitted at
mid-velocity. Coulomb trajectory calculations demonstrate that these IMF's are
produced in the early stages of the reaction and shed light on geometrical
details of these emissions, suggesting that the IMF's originate both from the
neck and the surface of the interacting nuclei.Comment: 4 pages, 3 figures, RevTex 3.1, submitted to Phys. Rev. Letter
Statistical Multifragmentation of Non-Spherical Expanding Sources in Central Heavy-Ion Collisions
We study the anisotropy effects measured with INDRA at GSI in central
collisions of Xe+Sn at 50 A.MeV and Au+Au at 60, 80, 100 A.MeV incident energy.
The microcanonical multifragmentation model with non-spherical sources is used
to simulate an incomplete shape relaxation of the multifragmenting system. This
model is employed to interpret observed anisotropic distributions in the
fragment size and mean kinetic energy. The data can be well reproduced if an
expanding prolate source aligned along the beam direction is assumed. An either
non-Hubblean or non-isotropic radial expansion is required to describe the
fragment kinetic energies and their anisotropy. The qualitative similarity of
the results for the studied reactions suggests that the concept of a
longitudinally elongated freeze-out configuration is generally applicable for
central collisions of heavy systems. The deformation decreases slightly with
increasing beam energy.Comment: 35 pages, 19 figures, submitted to Nuclear Physics
Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions
Fragment properties of hot fragmenting sources of similar sizes produced in
central and semi-peripheral collisions are compared in the excitation energy
range 5-10 AMeV. For semi-peripheral collisions a method for selecting compact
quasi-projectiles sources in velocity space similar to those of fused systems
(central collisions) is proposed. The two major results are related to
collective energy. The weak radial collective energy observed for
quasi-projectile sources is shown to originate from thermal pressure only. The
larger fragment multiplicity observed for fused systems and their more
symmetric fragmentation are related to the extra radial collective energy due
to expansion following a compression phase during central collisions. A first
attempt to locate where the different sources break in the phase diagram is
proposed.Comment: 23 pages submitted to NP
Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV
Using the quantum molecular dynamics approach, we analyze the results of the
recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and
150 AMeV. It turns out that in this energy region the transition toward a
participant-spectator scenario takes place. The large Au+Au system displays in
the simulations as in the experiment simultaneously dynamical and statistical
behavior which we analyze in detail: The composition of fragments close to
midrapidity follows statistical laws and the system shows bi-modality, i.e. a
sudden transition between different fragmentation pattern as a function of the
centrality as expected for a phase transition. The fragment spectra at small
and large rapidities, on the other hand, are determined by dynamics and the
system as a whole does not come to equilibrium, an observation which is
confirmed by FOPI experiments for the same system.Comment: published versio
Gross Properties and Isotopic Phenomena in Spectator Fragmentation
A systematic study of isotopic effects in the break-up of projectile
spectators at relativistic energies has been performed with the ALADiN
spectrometer at the GSI laboratory. Searching for signals of criticality in the
fragment production we have applied the model independent universal
fluctuations theory already proposed to track criticality signals in
multifragmentation to our data. The fluctuation of the largest fragment charge
and of the asymmetry of the two and three largest fragments and their bimodal
distribution have also been analysed.Comment: 6 pages, 4 figures, IX International Conference on Nucleus-Nucleus
Collisions, Rio de Janeiro, Brazil, August 28 - September 1, 200
Mass and Isospin Effects in Multifragmentation
A systematic study of isospin effects in the breakup of projectile spectators
at relativistic energies has been performed with the ALADiN spectrometer at the
GSI laboratory (Darmstadt). Four different projectiles 197Au, 124La, 124Sn and
107Sn, all with an incident energy of 600 AMeV, have been used, thus allowing a
study of various combinations of masses and N/Z ratios in the entrance channel.
The measurement of the momentum vector and of the charge of all projectile
fragments with Z>1 entering the acceptance of the ALADiN magnet has been
performed with the high efficiency and resolution achieved with the TP-MUSIC IV
detector. The Rise and Fall behavior of the mean multiplicity of IMFs as a
function of Zbound and its dependence on the isotopic composition has been
determined for the studied systems. Other observables investigated so far
include mean N/Z values of the emitted light fragments and neutron
multiplicities. Qualitative agreement has been obtained between the observed
gross properties and the predictions of the Statistical Multifragmentation
Model.Comment: 10 pages,7 figure, 18th Nuclear Physics Division Conference of the
EPS, Prague, submitted to Nucl. Phys.
Neutron recognition in the LAND detector for large neutron multiplicity
The performance of the LAND neutron detector is studied. Using an
event-mixing technique based on one-neutron data obtained in the S107
experiment at the GSI laboratory, we test the efficiency of various analytic
tools used to determine the multiplicity and kinematic properties of detected
neutrons. A new algorithm developed recently for recognizing neutron showers
from spectator decays in the ALADIN experiment S254 is described in detail. Its
performance is assessed in comparison with other methods. The properties of the
observed neutron events are used to estimate the detection efficiency of LAND
in this experiment.Comment: 16 pages, 8 figure
- âŠ