243 research outputs found

    Fragmentation in Peripheral Heavy-Ion Collisions: from Neck Emission to Spectator Decays

    Get PDF
    Invariant cross sections of intermediate mass fragments in peripheral collisions of Au on Au at incident energies between 40 and 150 AMeV have been measured with the 4-pi multi-detector INDRA. The maximum of the fragment production is located near mid-rapidity at the lower energies and moves gradually towards the projectile and target rapidities as the energy is increased. Schematic calculations within an extended Goldhaber model suggest that the observed cross-section distributions and their evolution with energy are predominantly the result of the clustering requirement for the emerging fragments and of their Coulomb repulsion from the projectile and target residues. The quantitative comparison with transverse energy spectra and fragment charge distributions emphasizes the role of hard scattered nucleons in the fragmentation process.Comment: 5 pages, 5 eps figures, RevTeX4, submitted to Phys. Lett.

    Particle and light fragment emission in peripheral heavy ion collisions at Fermi energies

    Get PDF
    A systematic investigation of the average multiplicities of light charged particles and intermediate mass fragments emitted in peripheral and semiperipheral collisions is presented as a function of the beam energy, violence of the collision and mass of the system. The data have been collected with the "Fiasco" setup in the reactions 93Nb+93Nb at 17, 23, 30, 38AMeV and 116Sn+116Sn at 30, 38AMeV. The midvelocity emission has been separated from the emission of the projectile-like fragment. This last component appears to be compatible with an evaporation from an equilibrated source at normal density, as described by the statistical code Gemini at the appropriate excitation energy. On the contrary, the midvelocity emission presents remarkable differences for what concerns both the dependence of the multiplicities on the energy deposited in the midvelocity region and the isotopic composition of the emitted light charged particles.Comment: 18 pages, 17 figures, Revtex

    Space and Time pattern of mid-velocity IMF emission in peripheral heavy-ion collisions at Fermi energies

    Full text link
    The emission pattern in the V_perp - V_par plane of Intermediate Mass Fragments with Z=3-7 (IMF) has been studied in the collision 116Sn + 93Nb at 29.5 AMeV as a function of the Total Kinetic Energy Loss of the reaction. This pattern shows that for peripheral reactions most of IMF's are emitted at mid-velocity. Coulomb trajectory calculations demonstrate that these IMF's are produced in the early stages of the reaction and shed light on geometrical details of these emissions, suggesting that the IMF's originate both from the neck and the surface of the interacting nuclei.Comment: 4 pages, 3 figures, RevTex 3.1, submitted to Phys. Rev. Letter

    Statistical Multifragmentation of Non-Spherical Expanding Sources in Central Heavy-Ion Collisions

    Full text link
    We study the anisotropy effects measured with INDRA at GSI in central collisions of Xe+Sn at 50 A.MeV and Au+Au at 60, 80, 100 A.MeV incident energy. The microcanonical multifragmentation model with non-spherical sources is used to simulate an incomplete shape relaxation of the multifragmenting system. This model is employed to interpret observed anisotropic distributions in the fragment size and mean kinetic energy. The data can be well reproduced if an expanding prolate source aligned along the beam direction is assumed. An either non-Hubblean or non-isotropic radial expansion is required to describe the fragment kinetic energies and their anisotropy. The qualitative similarity of the results for the studied reactions suggests that the concept of a longitudinally elongated freeze-out configuration is generally applicable for central collisions of heavy systems. The deformation decreases slightly with increasing beam energy.Comment: 35 pages, 19 figures, submitted to Nuclear Physics

    Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions

    Get PDF
    Fragment properties of hot fragmenting sources of similar sizes produced in central and semi-peripheral collisions are compared in the excitation energy range 5-10 AMeV. For semi-peripheral collisions a method for selecting compact quasi-projectiles sources in velocity space similar to those of fused systems (central collisions) is proposed. The two major results are related to collective energy. The weak radial collective energy observed for quasi-projectile sources is shown to originate from thermal pressure only. The larger fragment multiplicity observed for fused systems and their more symmetric fragmentation are related to the extra radial collective energy due to expansion following a compression phase during central collisions. A first attempt to locate where the different sources break in the phase diagram is proposed.Comment: 23 pages submitted to NP

    Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV

    Full text link
    Using the quantum molecular dynamics approach, we analyze the results of the recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and 150 AMeV. It turns out that in this energy region the transition toward a participant-spectator scenario takes place. The large Au+Au system displays in the simulations as in the experiment simultaneously dynamical and statistical behavior which we analyze in detail: The composition of fragments close to midrapidity follows statistical laws and the system shows bi-modality, i.e. a sudden transition between different fragmentation pattern as a function of the centrality as expected for a phase transition. The fragment spectra at small and large rapidities, on the other hand, are determined by dynamics and the system as a whole does not come to equilibrium, an observation which is confirmed by FOPI experiments for the same system.Comment: published versio

    Gross Properties and Isotopic Phenomena in Spectator Fragmentation

    Get PDF
    A systematic study of isotopic effects in the break-up of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory. Searching for signals of criticality in the fragment production we have applied the model independent universal fluctuations theory already proposed to track criticality signals in multifragmentation to our data. The fluctuation of the largest fragment charge and of the asymmetry of the two and three largest fragments and their bimodal distribution have also been analysed.Comment: 6 pages, 4 figures, IX International Conference on Nucleus-Nucleus Collisions, Rio de Janeiro, Brazil, August 28 - September 1, 200

    Mass and Isospin Effects in Multifragmentation

    Get PDF
    A systematic study of isospin effects in the breakup of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory (Darmstadt). Four different projectiles 197Au, 124La, 124Sn and 107Sn, all with an incident energy of 600 AMeV, have been used, thus allowing a study of various combinations of masses and N/Z ratios in the entrance channel. The measurement of the momentum vector and of the charge of all projectile fragments with Z>1 entering the acceptance of the ALADiN magnet has been performed with the high efficiency and resolution achieved with the TP-MUSIC IV detector. The Rise and Fall behavior of the mean multiplicity of IMFs as a function of Zbound and its dependence on the isotopic composition has been determined for the studied systems. Other observables investigated so far include mean N/Z values of the emitted light fragments and neutron multiplicities. Qualitative agreement has been obtained between the observed gross properties and the predictions of the Statistical Multifragmentation Model.Comment: 10 pages,7 figure, 18th Nuclear Physics Division Conference of the EPS, Prague, submitted to Nucl. Phys.

    Neutron recognition in the LAND detector for large neutron multiplicity

    Full text link
    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.Comment: 16 pages, 8 figure
    • 

    corecore