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We consider QCD at strong coupling with scalar quarks coupled to a chemical potential. Performing the
link integrals we present a diagrammatic representation of the path integral weight. It is based on mesonic
and baryonic building blocks, in close analogy to fermionic QCD. Likewise, the baryon loops are subject to
a manifest conservation of the baryon number. The sign problem is expected to disappear in this
representation and we do confirm this for three flavors, where a scalar baryon can be built and, thus, a
dependence on the chemical potential occurs. For higher flavor number, we analyze examples for a
potential sign problem in the baryon sector and conjecture that all weights are positive upon exploring the
current conservation of each flavor.
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I. INTRODUCTION

Diagrammatic Monte Carlo methods are one of the most
successful approaches to the sign problem of quantum field
theories at nonzero chemical potential, e.g., see [1–3]. In
lattice QCD at strong coupling this idea is rather old [4,5]:
expanding the quark weight and integrating out the gauge
links1 leads to certain building blocks along the lattice
bonds. They are of mesonic and baryonic nature and
(together with fermion saturation at every site) facilitate
an intuitive diagrammatic representation of the QCD path
integral.
Nonetheless, positivity of the so-obtained weight is not

guaranteed and terms of opposite sign indeed appear, even
at zero chemical potential. This has hampered further use of
this approach in simulations of realistic QCD even though
worm algorithms have proven capable of simulating such
constrained systems (for recent attempts see [6,7]).
One may view the problem of this approach as a

fermionic sign problem. For staggered fermions there are
clearly four sources of negative signs: (i) the relative sign
between the hopping terms in the Dirac operator which is of
first order in derivatives, (ii) antiperiodic boundary con-
ditions in Euclidean time, (iii) the Grassmann nature of the

quark fields in the path integral, (iv) the staggered signs. All
of them are absent if quarks were Lorentz scalars, and one
may expect scalar QCD (sQCD) to be free of the sign
problem. Note, however, that the gauge links are complex
and SU(3) group integrals are not necessarily positive [8].
To analyze the sign problem in sQCD is the main
motivation of this paper.
Gauge theories with scalar matter might be relevant

beyond the Standard Model; here we compare sQCD to
QCD at nonzero chemical potential. One of the main
differences is the flavor-antisymmetric nature of the bary-
ons of sQCD; as a consequence at least three scalar quark
flavors are necessary to generate a dependence on the
chemical potential (see Sec. III below). For the first
interesting case of three flavors, we are able to prove that
the path integral weight is positive; i.e., this representation
solves the sign problem at nonzero chemical potential.
Scalar quarks are not subject to the Pauli exclusion

principle and thus the building blocks of sQCD diagrams
come with less constrained occupation numbers, e.g.,
baryon worldlines may intersect. This shall be of advantage
for numerical simulations as well as for treating higher
flavor numbers, which we conjecture to be free of the sign
problem as well.

II. ORIGINAL ACTION AND DERIVATION
OF BUILDING BLOCKS

We treat sQCD with Nf massive flavors coupled to the
same chemical potential μ in the strong coupling limit, i.e.,
without gauge (plaquette) action. The corresponding
Euclidean lattice action is the (negative) discretized SU(3)
gauge-covariant Laplacian,
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1Integrating out the quarks instead gives the determinant of
the non-Hermitian Dirac operator and, therefore, a complex
weight.

PHYSICAL REVIEW D 97, 014501 (2018)

2470-0010=2018=97(1)=014501(6) 014501-1 Published by the American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/211569328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.014501&domain=pdf&date_stamp=2018-01-08
https://doi.org/10.1103/PhysRevD.97.014501
https://doi.org/10.1103/PhysRevD.97.014501
https://doi.org/10.1103/PhysRevD.97.014501
https://doi.org/10.1103/PhysRevD.97.014501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


S ¼
X

x;f

�
−
X

ν

ðeμδν;0ϕfðxÞ†UνðxÞϕfðxþ ν̂Þ

þ e−μδν;0ϕfðxþ ν̂Þ†U†
νðxÞϕfðxÞÞ

þ ð2dþm2ÞjϕfðxÞj2
�
; ð1Þ

where x denotes the lattice sites, ν ¼ 1;…:; d is the direction
index (ν ¼ 0 is the temporal direction in which μ acts), ν̂
its unit vector and f ¼ 1;…; Nf is the flavor index; the
lattice spacing has been set to unity.
At real μ the action is not real, since the second line is not

the complex conjugate of the first line, which is the case at
μ ¼ 0 (or imaginary μ). In [9] we have presented numerical
evidence that reweighting in the conventional approach
of integrating out the quarks to an inverse determinant
suffers from a sign problem in the sense of an oscillating
phase. In particular, this gives rise to a reweighting factor,
r ∼ e−VΔfðμÞ, that decays with the volume.
The diagrammatic representation of this system emerges

after integrating out all gauge links. To do so for a particular
link, we collect the two terms in which UνðxÞ or U†

νðxÞ
appear and write the matter bilinears to which they couple
as matrices,

X

f

ϕfðxþ ν̂ÞϕfðxÞ† ≕ JνðxÞ;
X

f

ϕfðxÞϕfðxþ ν̂Þ† ¼ J†νðxÞ; ð2Þ

involving an outer product in color space. Now the gauge-
dependent terms in the action read

−S½UνðxÞ� ¼ eμδν;0 trJνðxÞUνðxÞ þ e−μδν;0 trJ†νðxÞU†
νðxÞ:

ð3Þ
Note that under local gauge transformations, underwhich the
link becomesΩðxÞUνðxÞΩ†ðxþ ν̂Þ, the matter matrix trans-
forms complementary, it becomes Ωðxþ ν̂ÞJνðxÞΩ†ðxÞ,
such that the traces in the action are gauge invariant.2

The integration over SU(3) group elements (with Haar
measure) can be turned into a fivefold sum [10]3

Z

SUð3Þ
dUeαtrJUþα−1trJ†U†

¼ 2
X∞

j;k;l;n;n̄¼0

α3ðn−n̄Þ

gð1Þ!gð2Þ!
XjYkZlΔnðΔ�Þn̄

j!k!l!n!n̄!
ð4Þ

over gauge invariants

X ¼ trðJ†JÞ; Y ¼ 1

2
ðX2 − tr½ðJ†JÞ2�Þ; Z ¼ detðJ†JÞ;

Δ ¼ det J; Δ� ¼ det J† ¼ ðdet JÞ�; ð5Þ

where

gð1Þ ¼ kþ 2lþ nþ n̄þ 1;

gð2Þ ¼ jþ 2kþ 3lþ nþ n̄þ 2 ð6Þ
are positive integers. When using these formulas in sQCD,
one has to reinsert indices ν and arguments (x) on both the
fields Jð†Þ and consequently fX;…;Δ�g and on the integers
(‘dual variables’) fj;…; n̄g. The fugacity factor α ¼ eμδν;0
is present when the bond is in the 0-direction, its exponent
is the difference of powers of Δ and Δ�. Thus, the partition
function Z ¼ R

DϕDUe−S can in the diagrammatic for-
mulation be written as

Z ¼
X

fj;k;l;n;n̄g

Z
Dϕe−ðm

2þ2dÞ
P

x;f
jϕfðxÞj2

×
Y

x;ν

�
2

α3ðn−n̄Þ

gð1Þ!gð2Þ!
XjYkZlΔnðΔ�Þn̄

j!k!l!n!n̄!

�

ν

ðxÞ; ð7Þ

where the sum goes over all admissible configurations of
the variables fj;…; n̄g, to be specified more concretely in
Sec. III.
When interpreting J as the hopping of (all flavors of)

quarks along a bond in the direction ν, then J† is the
hopping of (all) antiquarks on the same bond. Thus X
represents the hopping of “mesons” (with any pair of quark/
antiquark flavors). Consistently, X does not contribute a
μ-factor (the exponent of α does not contain j). Y and Z are
of similar nature with two/three quarks and antiquarks
hopping on a bond and no μ contribution. Therefore, we
will call X, Y and Z “mesonic building blocks.”
In Δ and Δ� three quarks or three antiquarks are hopping

on a bond, respectively, which is why we will call them
“baryonic building blocks.” As expected, they contribute
positive and negative multiples of the baryon chemical
potential, 3μ, in the exponent.
As is typical for bosonic systems, occupation numbers

are unbounded from above and do not exclude each other.
A configuration in this new representation can easily be
determined by a list of all integers fj;…; n̄gνðxÞ on all
bonds plus the values of the matter fields on all sites (since
we have not integrated out the latter). In a visualization of
these numbers one uses building blocks very similar to
those from the fermionic case, see Fig. 1: unoriented one-,
two- and three-bonds for the occupation numbers of the
mesons and directed bonds for the (anti)baryons (arrows
are connected to current conservation to be derived in the
next section). Since multiple occupation numbers per

2For fermionic quarks JνðxÞ and J†νðxÞ are commuting Grass-
mann bilinears, such that the presented analysis can be used for
them as well, with the main difference being that powers of JνðxÞ
and J†νðxÞ higher than 3Nf vanish due to the Grassmann nature.

3We have further expanded the two terms detmþ detm† in
[10] separately, with powers n and n̄. Note a typo in the definition
of Y in that reference.

FALK BRUCKMANN and JACOB WELLNHOFER PHYS. REV. D 97, 014501 (2018)

014501-2



bond are harder to visualize, the example diagram shown
in that figure mostly contains single occupation numbers.
Note that sites without any occupied bond are admissible,
too.
As numbers, the mesons X, Y and Z are positive

functions of the positive matrix JJ†. The factorials in
Eq. (7) and the remaining Gaussian factors in Eq. (7) for ϕ
are positive as well. Thus, a potential sign problem can only
come from the (anti)baryons Δð�Þ, as in fermionic QCD.
One of the main features of the diagrammatic representa-
tion is that the chemical potential appearing through the
fugacity α does not introduce signs4 i.e., if the system has
no sign problem at vanishing μ, it does not develop a sign
problem at nonzero μ. This is in very close analogy to the
defining energy representation of the grand canonical
partition function.

III. POSITIVITY OF THE WEIGHT DEPENDING
ON THE NUMBER OF FLAVORS

The objects potentially inducing a sign problem in the
diagrammatic representation of sQCD are Δð�Þ ¼ det Jð�Þ
and powers thereof. Importantly, the complex matrices J
are built out of outer products, see Eq. (2), which will be
analyzed now.
For Nf ¼ 1 obviously any row (or column) of J is

linearly dependent on any other row. Consequently, the
determinant of J vanishes and so do all Δð�Þ’s, such that no
dependence on μ can emerge (only n≡ n̄≡ 0 contributes).
Similarly, for Nf ¼ 2 at most two rows of J can be linearly
independent and its determinant vanishes again. We con-
clude that at strong coupling sQCD develops a dependence
on μ only for Nf ≥ 3. The latter is the matrix size of J and
thus generalizes to the number of colors in gauge theories
with higher gauge group.
For arbitrary Nf, the following formula is useful

det3

�XNf

f¼1

ϕfðxþ ν̂ÞϕfðxÞ†
�

¼ 1

3!

XNf

f1;f2;f3¼1

df1f2f3ðxþ ν̂Þd�f1f2f3ðxÞ

¼ 1

3!

X

σ

dσ1σ2σ3ðxþ ν̂Þd�σ1σ2σ3ðxÞ ð8Þ

with determinants

df1f2f3ðxÞ ≔ det
3
ðϕf1ðxÞjϕf2ðxÞjϕf3ðxÞÞ; ð9Þ

where j is used to separate three columns in a three-by-three
matrix. σ denotes choices of three flavors:

σ∶f1; 2; 3g → f1;…; Nfg: ð10Þ

This formula5 (and its obvious generalization to Nc ≠ 3)
can easily be shown through writing the determinant with
Levi-Civita symbols. It makes manifest the antisymmetry
of the flavor indices ff1; f2; f3g (or fσ1; σ2; σ3g) in the
determinant. In the language of sQCD this means anti-
symmetry of quark flavors which hop together in det Jð†Þ ¼
Δð�Þ representing an (anti)baryon. It also confirms the
discussion above, that this determinant vanishes for less
than 3 flavors. For Nf ¼ 3 Eq. (8) has just one summand,

ΔνðxÞ ¼ det JνðxÞ ¼ detðϕ1ðxþ ν̂Þjϕ2ðxþ ν̂Þjϕ3ðxþ ν̂ÞÞ
× detðϕ1ðxÞjϕ2ðxÞjϕ3ðxÞÞ�; ð11Þ

where all the three quark flavors enter together just once.
So far we have not performed the matter field integra-

tions. The ϕ-dependent path integral weight consists of a
Gaussian term, which suppresses large absolute values of
ϕ, multiplied by the product in the second line of Eq. (7).
The latter part is a complicated function of ϕ. One could
leave the ϕ integrations to numerics, provided the admis-
sible configurations have non-negative weights.
However, there is one important feature of the ϕ

integration which can easily be utilized; schematically,
Z

C
dϕe−#jϕj2ðϕÞAðϕ�ÞB ∼ δAB; ð12Þ

which comes from the integration over the phase6 of ϕ.
For sQCD, this formula means that only those terms
contribute, for which the power of ϕf

aðxÞ matches the
power of its complex conjugate ϕf

aðxÞ�. This has to hold for
every flavor f, color a and site x separately, Af

aðxÞ¼! Bf
aðxÞ.

To derive an immediate consequence for the diagrams,
consider the coarser constraints that occur after summing
these constraints over all indices but the site,
P

f;aA
f
aðxÞ ¼!

P
f;a B

f
aðxÞ for all x. Mesonic contributions

are functions of J†J ∼ ϕf
aðxÞϕg

bðxÞ� and thus contribute
equal integers to both sums. The baryons Δð�Þ, on the other
hand, are of third order in ϕf

aðxÞ� and ϕf
aðxþ ν̂Þ, where the

two factors live on neighboring sites. A single (anti)baryon,

4Interestingly, imaginary μ’s, which do not induce a sign
problem in the original formulation, do so in the diagrammatic
representation.

5Note that this formula is of the type “determinant of a sum is
a sum of determinants" (!), which holds for the outer product
structure inwhichwe are interested here. For fermions, this formula
receives an additional sign due to reordering Oðψψ†ψψ†ψψ†Þ to
Oðψ3ψ†3Þ. The Grassmann nature also reveals that a baryon factor
(and thus aμ-dependence) alreadyoccurs for one flavor of fermions
because the determinants are nonzero, even if all columns are
dependent: detðψ jψ jψÞ ¼ 6ψ1ψ2ψ3 ≠ 0.

6Phase integrations typically cause U(1) current conservation
in diagrammatic approaches to bosonic systems, for fermionic
systems this role is played by the saturation of Grassmann
integrals by equal numbers of ψ ’s and ψ̄’s.
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thus, vanishes under the ϕ integration and needs to be
accompanied by other (anti)baryons connecting to x and
xþ ν̂. One easily obtains the constraints

X

ν

½mνðxÞ −mνðx − ν̂Þ� ¼ 0; ð13Þ

where
mνðxÞ ¼ nνðxÞ − n̄νðxÞ: ð14Þ

This is nothing but the discrete version of a manifest current
conservation

P
ν∂νmνðxÞ ¼ 0, namely for the net baryon

current ðn − n̄Þν (as in fermionic QCD) from all flavors.
Diagrammatically, baryon building blocks must come in
closed loops. In Fig. 1, for instance, the baryon content can
be viewed as one long and winding loop plus one plaquette
loop touching each other at one bond.
According to Eq. (4), 3μ couples to all n − n̄’s in the 0

direction, i.e., to
P

xm0ðxÞ, which is just the conserved
charge7 of this current. Equivalently, 3μ=T couples to the
net winding number of baryon loops in the 0 direction.

Coming back to the sign problem at Nf ¼ 3, any
baryonic factor detðϕ1ðxÞjϕ2ðxÞjϕ3ðxÞÞ has to be accom-
panied by just its complex conjugate from a neighboring
baryonic hopping, cf. Eq. (11), such that one obtains a
product of positive terms8 j detðϕ1ðxÞjϕ2ðxÞjϕ3ðxÞÞj2 (and
powers thereof) for all sites x on baryon loops. This solves
the sign problem at Nf ¼ 3.
In the diagrammatic representation this system can

therefore be simulated, presumably with a hybrid approach
for the updates: for unconstrained variables such as
jνðxÞ; kνðxÞ; lνðxÞ; nνðxÞ þ n̄νðxÞ and ϕfðxÞ local updates
can be used, while for the constrained variables nνðxÞ −
n̄νðxÞ worm algorithms are promising.
We close by discussing the technicalities faced at more

than three flavors, say at Nf ¼ 4. The baryonic matching
described above for Nf ¼ 3 does not work here: according
to Eq. (8) d123 from one baryon factor multiplies not only
d�123 from another baryon factor, but the sum #d123 þ
#d124 þ #d134 þ #d124 multiplies the sum #d�123 þ #d�124 þ
#d�134 þ #d�124 with the factors # all different (determined by
the fields at two neighboring sites). Obviously, there are
mixed terms, for which no positivity argument applies.
Indeed, the configuration which just contains one closed
baryon loop has a complex weight generically.
It seems necessary to explore finer constraints than

above. For instance, the summand d123ðxÞd�124ðxÞ has a
“mismatch” in that it contains ϕ3ðxÞ and ϕ4ðxÞ� once, but
not their complex conjugates. This summand, thus, van-
ishes under the ϕ3ðxÞ- or ϕ4ðxÞ integration, cf. Eq. (12).
In the absence of other occupied bonds connecting to it,
each baryon loop thus contains only terms jdf1;f2;f3 j2 and,
therefore, is positive.
At first sight,mesonsmay change this positivity argument.

A mesonic building block, say X, connecting to the baryon
loop at site x does contain the ‘missing’ factor ϕ3ðxÞ�ϕ4ðxÞ
(with arbitrary gauge indices) tomake the summandd123d�124

FIG. 1. Example of a diagram on a 6 × 6 lattice (with periodic
boundary conditions). Unoriented single and double lines denote
bonds with unit occupation of the mesonic building blocks X and
Y, i.e., jνðxÞ ¼ 1 and kνðxÞ ¼ 1. Oriented bonds (due to the
current conservation discussed in Sec. III) stand for baryon
building blocks Δ and Δ�: arrows upwards and to the right denote
nνðxÞ ¼ 1 (on one bond nνðxÞ ¼ 2) and arrows downwards and
to the left denote n̄νðxÞ ¼ 1. The baryon loop winds once
(actually in both directions) and thus obtains a fugacity factor
e3μ=T in the weight.

FIG. 2. Two simple examples, where a closed baryon loop is
connected to a single meson line at two sites x and y. As
discussed in the text, the weights of both diagrams are positive
(in a nontrivial way).

7Since mν is conserved, one can replace
P

xm0ðxÞ by
N0

P
x⃗m0ðx0; x⃗Þ (for any x0) which turns 3aμ with a the lattice

spacing into the expected factor 3μaN0 ¼ 3μ=T with T the
temperature.

8One might argue that a negative sign occurs upon permuting
the flavors under one of the determinants, but according to
Eq. (8), this would also permute the flavors at a neighboring site
and thus keep a positive sign of the total weight.
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survive the ϕ integration. However, this summand in X also
carriesϕ3ðyÞϕ4ðyÞ� at a neighboring site y. Theϕ integration
at y thus gives zero. As a consequence, the baryon loop
reduces to terms jdf1;f2;f3 j2 multiplying the positive mesonic
weight.
Building up slightly more complicated configurations,

consider a baryon loop connected to a line of unit mesonic
X at two sites x and y. Figure 2 shows two simple examples
of this kind. On all sites of the baryon loop except x
and y, the ϕ integrations discussed above force the flavor
combinations (1, 2, 3), (1, 2, 4), (1, 3, 4) and (2, 3, 4) to
traverse these parts of the loop separately. At x and y,
besides the positive jdf1;f2;f3 j2, the mixed terms already
discussed come into play. The typical nonvanishing con-
tribution reads

detðϕ1jϕ2jϕ3ÞðxÞ detðϕ1jϕ2jϕ3Þ�ðyÞ
× detðϕ1jϕ2jϕ4ÞðyÞ detðϕ1jϕ2jϕ4Þ�ðxÞ
× trðϕ4ðxÞϕ4ðyÞ†ϕ3ðyÞϕ3ðxÞ†Þ

¼ ϵabcϕ
1
aϕ

2
bϕ

3
cϕ

4
dðxÞϵABCϕ1�

A ϕ2�
B ϕ4�

C ϕ3�
d ðxÞ

× ðx → yÞ�: ð15Þ
Now the ϕ1;2;3;4ðxÞ integrations are nonvanishing provided
A ¼ a; B ¼ b; c ¼ d; d ¼ C, such that the field factor from
site x becomes positive, jϕ1j2jϕ2j2jϕ3j2jϕ4j2 (times
Gaussian), with a positive prefactor ϵabdϵabd ¼ 6. Such a
factor appears from site y, too, and the total weight of these
configurations are again positive.
In our opinion, these examples point at the positivity of

all diagrammatic weights even for Nf > 3, when flavor-
dependent constraints, i.e., the conservation of each flavor
current, are used at all sites. The full ϕ integration could
then still be performed with Monte Carlo sampling. Using
these finer constraints means to break down the flavor-
summed exponents fj;…; n̄g into flavor-dependent expo-
nents through multinomials. The book-keeping of the
nonvanishing terms becomes rather intricate, especially if
higher occupations appear (which is determined by the
dynamics of the system, its phases etc.). We leave this to
future work. An alternative approach to project onto the
relevant contributions are subsets [11–13].

IV. SUMMARY AND OUTLOOK

We have shown that, in the strong coupling limit, the sign
problem in sQCD can, indeed, be solved for Nf ¼ 1, 2, 3
flavors. It is of further note that these lattice flavors

correspond to the same number of flavors in the continuum
theory. In the staggered fermion case this is a serious
problem, as one staggered flavor generally corresponds to
more than one flavor in the continuum. Furthermore the
remaining doublers cannot be removed by the rooting trick
in the diagrammatic formulation. Also using more than one
staggered flavor seems to give rise to a serious sign problem
even in the mesonic case inUð3Þ, cf. [6]. In this respect, the
scalar theory is much more feasible.
For more than three flavors, Nf > 3, further research is

needed to decide whether the approach outlined at the
end of Sec. III is viable and removes the sign problem.
The discussed examples point to this conjecture.
The case of Nf > 3 is particularly interesting when one

wants to go beyond strong coupling. Recent approaches
which lend themselves easily to the formulation outlined in
this paper are detailed in [14–16]. The main goal in these
references is to rewrite the gauge plaquette action in such a
way as to make only single links appear in the new action,
at the expense of introducing auxiliary bosonic field
variables. The auxiliary fields are either scalar fields [15]
or matrix valued fields [16]. In particular, the additional
scalar fields naturally increase the number of flavors to
Nf > 3. Thus, if the sign problem is, indeed, absent in that
case, a diagrammatic simulation of full sQCD seems to be
in reach.
Then it would be interesting to analyze its phase

diagram. We expect a phase transition at zero temperature,
if μ reaches the baryon mass threshold, and a crossover
related to center symmetry breaking for zero μ and T near
the strong scale of the theory. For sQCD one could study
the entire μ-T plane, which for realistic QCD is not known
from first principles.
On the technical side, the ability to overcome the sign

problem and to simulate sQCD could give benchmarks in a
“QCD-like” theory for current approaches like reweighting,
analytic continuation in μ, complex Langevin dynamics,
and the Lefschetz thimble method, already at strong
coupling.
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