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Abstract

This thesis is comprised of three parts. In part one Anderson localization
is studied in the context of QCD, an Anderson-Ising model, and 𝐶𝑃(𝑁 −
1). For the first two the effect of a background magnetic field on the
localization properties is studied. In 𝐶𝑃(𝑁 − 1) localization of fermion
eigenmodes in the background of the (auxiliary) 𝑈(1) gauge field is
investigated. In all three cases a transition from localized modes near
the origin and delocalized modes in the bulk of the spectrum can be
observed. The second part is concerned with Landau levels in QCD. The
Landau levels are identified and their contributions to several observables
are calculated using lattice methods. The third part deals with the sign
problem in QCD at nonzero density. It is shown that the sign problem
is exclusively fermionic in nature by considering scalar QCD, i.e., QCD
with scalar quarks. In this scalar theory the sign problem is found to
be absent for up to three flavors, when using a formulation with dual
variables.
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1 Introduction

Since the advent of modern physics with the discovery of first special
relativity and then general relativity on the one hand, and Quantum
theory on the other, tremendous progress has been made in many areas
of physics. The former has lead to the new field of cosmology, studying
the evolution of the universe as a whole. The latter has branched into
many different fields, ranging from condensed matter physics to high
energy particle physics.
The most successful theoretical development for particle physics was
the so called Standard model. It is comprised of three distinct parts:
Quantum electro dynamics (QED), weak interactions, and quantum
chromo dynamics (QCD). The first two have been combined into the
so called electro weak theory, which is a unification at high energy
scales[1–3]. It encompasses electromagnetic effects as well as radioactive
decays. QCD on the other hand deals with strong interactions of sub
nuclear particles, i.e., quarks and gluons. A unification of QCD with
the electro weak theory has not been accomplished so far; this is still a
topic of current research.
The color interaction of QCD is responsible for the hadronic bound states
of matter; primarily protons and neutrons. In fact, the constituent
particles of QCD, quarks and gluons, have never been observed in
isolation, which is known as confinement. The other remarkable feature
of QCD is asymptotic freedom. Namely, due to the running of the
coupling, the coupling constant decreases with the energy scale. Thus
at exceedingly high energies or temperatures quarks and gluons are
expected to be no longer bound to each other. The transition from
the confined phase to the deconfined phase takes place around[4] 𝑇 =
160MeV; this transition is found to be a crossover rather than a proper
phase transition.
Direct experimental measurement of this transition is virtually impossi-
ble. (It has been possible to observe signatures of a quark gluon plasma
at RHIC[5].) Thus one has to rely on theoretical predictions instead.
Such predictions have been facilitated by the use of computers over
the last 40 years. Also many computational techniques for simulating
QCD with a computer have been developed over the years. Nevertheless,
there are some caveats for the simulations. Among the more severe ones
are on the one hand real time simulations, and on the other simulations
at nonzero density, that is, simulations where the matter content does
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not match that of antimatter. In both cases one faces a sign problem,
making the simulations prohibitively expensive. Real time simulations
are of interest because they could capture the dynamical behavior of
QCD interactions, as they occur, for instance, in collider experiments.
Nevertheless, the feasibility of real time simulations is still an open
question.
In recent years there has been some progress in simulating theories with a
sign problem at nonzero density by using dual variables; for example, the
Schwinger model on the lattice[6], and 𝑂(𝑁) and 𝐶𝑃(𝑁 − 1) models[7],
to name but two. Using the same principles also a dual formulation of
scalar QCD has been found[8], which is part of this thesis. This may
have some applications in Gauge-Higgs models.
Simulations at nonzero density in QCD could yield important input
for other fields of physics, mainly astrophysics and cosmology, but also
nuclear physics. In astrophysics this concerns the internal structure
of neutron stars and other very dense objects. In cosmology the de-
velopment of the very early universe depends on the phase diagram of
QCD. Namely, during its evolution the universe went from a very hot
and dense state to a rather cool and dilute phase. The details of this
transition depend on the route through the phase diagram that was
taken.
Another current topic of interest is QCD under the influence of strong
magnetic fields. Such magnetic fields can either be generated in heavy
ion collisions or by energetic processes in the early universe. In recent
years there have been a number of studies[9–11] of strong magnetic fields
using first principles lattice simulations. Nevertheless, the subject of
Landau levels had never been analyzed in this approach, even though
for model calculations[12–14] Landau levels are widely used. This gap
has now, at least in part, been filled in this thesis.
Also on the topic of magnetic fields in QCD, the effect on Anderson
localization can be studied. The fact that an Anderson transition
takes place in the quark spectra of high temperature QCD has been
established in Refs. [15–18]. The effect of a background magnetic field
in this context is studied in this thesis. Furthermore, it is an interesting
question whether also other QCD-like theories, which share a number of
properties with QCD, show an Anderson transition. Thus in this thesis
the special case of nonlinear sigma models, in particular 𝐶𝑃(𝑁 −1), are
analyzed for their localization properties. This also may give insights
into nonperturbative physics of strongly coupled quantum systems.
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The following sections and chapters are organized as follows: First a
brief introduction to quantum field theory in the continuum and on the
lattice is given in Sec. 1.1. Furthermore, some simulation strategies as
well as the connection of Euclidean field theory to thermodynamics are
briefly reviewed.
Next, Chapter 2 deals with localization; first in QCD (Sec. 2.2),
then in an Anderson-Ising model (Sec. 2.3) and nonlinear sigma mod-
els (Sec. 2.4). In QCD the effect of a background magnetic field on
the localization properties are considered. The same is done for the
Anderson-Ising model. In both cases the effect of the magnetic field on
the spectrum appears to be similar. Namely, the effect of the magnetic
field is to push the spectrum to lower eigenvalues. For nonlinear sigma
models, 𝐶𝑃(𝑁 − 1) in particular, localization depends on the dimen-
sionality of the model. For 𝐶𝑃(𝑁 − 1) two dimensions, which has the
closest analogy to QCD, all modes appear to be localized. Nevertheless,
in three dimensions an Anderson transition takes place in the spectrum,
much like in QCD.
In Chapter 3 Landau levels in QCD are considered. First the problem
is studied in two dimensions. In the absence of QCD interactions this
has a close connection to Hofstadter’s butterfly[19]. Taking also QCD
interactions into account the lowest Landau level is clearly separated
from the rest. In four spacetime dimensions such a separation cannot
be observed. Nevertheless, it is still possible to extract the contribution
of the lowest Landau level alone. In this way the lowest Landau level
contribution of several observables are studied.
Finally, Chapter 4 addresses the sign problem in QCD with both
fermionic and scalar quarks, using dual variables. First the situation
in (strong coupling) QCD is reviewed. There even after going to a
dual formulation, a sign problem is still present. Nevertheless, this
sign problem appears to be purely fermionic in nature. Therefore a
scalar version of QCD is considered, to test whether the sign problem
is, indeed, absent in this case.
Chapter 5 gives a summary of the results, reviewing the main findings
of the preceding chapters.

1.1 Elements of quantum field theory
The following sections only give a very brief introduction to quantum
field theory and methods encountered therein. For more elaborate



8 Introduction

discussions of these topics, the reader is referred to standard textbooks
on the subject, e.g., [20–23].
Quantum field theories can quite generally be defined via their path
integral. Given an action 𝑆[Φ] depending on various fields, denoted here
simply as Φ, the partition function can be calculated:

𝒵 = ∫ 𝒟Φ 𝑒𝑖𝑆[Φ]. (1.1)

The 𝒟 is understood to mean that an integration over the fields Φ is
performed at every spacetime point. In this respect, the path integral
is not a well defined object, but rather a convenient way of writing.
Hence there are only very few cases where the partition function can be
computed analytically. All this makes it necessary to introduce some
form of regularization, in order to render the results finite. The lattice
regularization will be discussed in the next section.
The expectation value of an operator 𝑋[Φ] can be evaluated,

⟨𝑋⟩ = 1
𝒵 ∫ 𝒟Φ 𝑋[Φ]𝑒𝑖𝑆[Φ], (1.2)

using the partition function to normalize the result.
As an example we will be considering the special case of quantum
chromo dynamics (QCD) in the following because this will be the most
complicated theory encountered in this thesis. In QCD there are two
kinds of fields; namely, the bosonic gauge field 𝐴𝜈 and the fermionic
quark fields 𝜓. The fermionic field is Grassmann-valued and the gauge
field lives in the Lie-algebra 𝑠𝑢(3). The gauge fields convey the color
interaction between the different color components of the quarks.
The QCD action can be written as a sum of the fermionic action and
the gauge action:

𝑆[𝐴, 𝜓] = 𝑆𝑔[𝐴] + 𝑆𝑓[𝜓, 𝐴], (1.3)

𝑆𝑔[𝐴] = − 1
4𝑔2 ∫ 𝑑4𝑥 𝐹 𝑎

𝜈𝜌(𝑥)𝐹 𝑎𝜈𝜌(𝑥), (1.4)

𝑆𝑓[𝜓, 𝐴] =
𝑁𝑓

∑
𝑓=1

∫ 𝑑4𝑥 𝜓𝑓(𝑥)(D/ (𝑥) − 𝑚)𝜓𝑓(𝑥). (1.5)

Here D/ = 𝛾𝜈(∂ − 𝑖𝐴(𝑥))𝜈 denotes the covariant derivative. The 𝛾-
matrices satisfy {𝛾𝜈, 𝛾𝜌} = 2𝑔𝜈𝜌, with the Minkowski metric 𝑔𝜈𝜌. The
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field strength tensor can be defined via the covariant derivative, 𝐹𝜈𝜌 =
[𝐷𝜈, 𝐷𝜌]. Since 𝐴 lives in the 𝑠𝑢(3)-algebra, so does 𝐹. Therefore 𝐹 𝑎

denotes the color component 𝑎 of 𝐹.
The QCD action is gauge invariant under the gauge group 𝑆𝑈(3) by
construction. Namely, given a gauge transformation Ω(𝑥) ∈ 𝑆𝑈(3), the
quark fields are transformed as 𝜓(𝑥) → Ω(𝑥)𝜓(𝑥), while the covariant
derivative transforms as 𝐷𝜈(𝑥) → Ω(𝑥)𝐷𝜈(𝑥)Ω†(𝑥). In this way, the
fermionic action clearly is gauge invariant. The field strength tensor
transforms just like the covariant derivative, 𝐹𝜈𝜌(𝑥) → Ω(𝑥)𝐹𝜈𝜌Ω†(𝑥).
As the integrand in the gauge action essentially contains a trace in color
space via Tr(𝐹𝜈𝜌𝐹 𝜈𝜌) = 1

2𝐹 𝑎
𝜈𝜌𝐹 𝑎𝜈𝜌, the cyclic property of the trace

ensures that also this action is invariant under gauge transformations.
Among the many fascinating properties of QCD are confinement and as-
ymptotic freedom. Confinement means that quarks cannot be observed
individually, but only within bound states, i.e., hadrons. Asymptotic
freedom is closely linked to the running of the coupling 𝛼𝑆 = 𝑔2/4𝜋.
Namely, the value of the coupling depends on the energy scale. In
particular, for QCD it was found that the coupling decreases to zero
when the energy scale goes to infinity[24,25]; hence the term asymptotic
freedom. The way in which the coupling changes with the energy scale
is dictated by the so called beta function. It can be calculated order
by order by perturbative means. To lowest nontrivial order the beta
function of a Yang-Mills theory including fermions is[24–26]

𝛽(𝜇) = 𝜇2 𝑑𝛼𝑆(𝜇)
𝑑𝜇2 = 𝛼𝑆(𝜇)

4𝜋 (−11𝑁
3 +

2𝑁𝑓
3 ) + 𝒪(𝛼3

𝑆). (1.6)

Here 𝜇 is the energy scale, 𝑁 the order of the gauge group 𝑆𝑈(𝑁),
and 𝑁𝑓 the number of fermion flavors. As long as 𝑁𝑓 < 11𝑁/2, the
coefficient of 𝛼𝑆 remains negative and thus the theory is asymptotically
free.
From this it can be seen that perturbation theory in QCD works best
at high energies. For the same reason perturbative results become
unreliable at low energies. In that case the coupling 𝛼𝑆 becomes large,
𝒪(1), and is thus no longer a suitable expansion parameter. Also it
has been known at least since the conception of instantons in the 1970s
that quantum field theories can have nonperturbative aspects, which by
their very nature are excluded in a perturbative treatment. The next
section is devoted to lattice regularization, which is a nonperturbative
treatment of quantum field theories.
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1.1.1 Lattice regularization

As was already mentioned, the path integral is not a well defined ob-
ject. Hence the need for some form of regularization arises. Also for
a numerical treatment the oscillating phase in the integrand, 𝑒𝑖𝑆, is
untractable. Therefore what is commonly done is to work in Euclidean
or imaginary time, that is, 𝑡 → 𝑖𝑡. As a result, the phase factor turns
into an exponential factor, 𝑒−𝑆Eucl , with the Euclidean action 𝑆Eucl. In
the Euclidean formulation the path integral can be viewed as a sum/in-
tegral over different configurations, each of which has a probability
assigned according to the exponential factor. In the following 𝑆 will
refer to the Euclidean action, as we are no longer concerned with the
real time action. Further it has to be noted that working in Euclidean
time only gives access to equilibrium physics, i.e., dynamic processes
are not covered by this approach.
There are two types of divergencies occurring in the path integral. On
the one hand there are ultra-violet (UV) divergencies, and on the other
there are infrared (IR) divergencies. The former come from the fact
that arbitrary large momenta can occur in a continuous space. The
latter are due to the circumstance that in an infinite space arbitrary
large wavelengths can appear.
The IR divergencies can be eliminated by putting the system into a
finite box with volume 𝑉, which naturally gives a lower bound for the
maximum wavelengths allowed. The UV divergencies can be cured
by discretizing the space with a lattice constant 𝑎, as this leads to a
momentum cutoff of 𝑝max ∼ 1/𝑎. In order to recover the continuum
theory, the continuum limit, 𝑎 → 0, as well as, the thermodynamic limit
𝑉 → ∞ have to be performed. (It has to be noted that in general these
limits do not commute.) In the following we again consider QCD as an
example of a lattice regularization.
To define the theory on a space time lattice, also the action has to be
discretized. In QCD the action consists of two separate parts, the gauge
action 𝑆𝑔 and the fermion action 𝑆𝑓; these can be treated separately.
We follow the presentation in [23].

1.1.1.1 Plaquette action

First we consider the gauge action 𝑆𝑔. In the continuum the gauge field
𝐴𝜈(𝑥) lives in the 𝑠𝑢(3)-algebra, which is defined locally around the
point 𝑥. On the lattice it is natural to use gauge transporters,
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𝑈𝜈(𝑥) = 𝑃 exp ⎛⎜
⎝

𝑖
𝑥+𝑎𝜈

∫
𝑥

𝑑𝑥′
𝜈𝐴𝜈(𝑥′)⎞⎟

⎠
∈ 𝑆𝑈(3), (1.7)

instead, as they ‘accumulate’ the gauge field from one site to the next.
(𝑃 exp denotes the path ordered exponential.) Practically one can also
use 𝑈𝜈(𝑥) = exp(𝑖𝑎𝐴𝜈(𝑥)) because the difference is only of 𝒪(𝑎) and is
therefore not important in the continuum limit. In the literature 𝑈𝜈 is
called a gauge link for obvious reasons. Under a gauge transformation
Ω(𝑥) ∈ 𝑆𝑈(3) they transform as 𝑈𝜈(𝑥) → Ω(𝑥)𝑈𝜈(𝑥)Ω†(𝑥 + 𝑎𝜈).
With the help of the gauge links we can define a plaquette

𝑃𝜈𝜌(𝑥) = 𝑈𝜈(𝑥)𝑈𝜌(𝑥 + 𝑎𝜈)𝑈†
𝜈 (𝑥 + 𝑎𝜌)𝑈†

𝜌(𝑥), (1.8)

which describes a closed loop of link variables. The plaquette or Wilson
action is then defined as the sum over all traced plaquettes on the lattice,

𝑆𝑔[𝑈] = 𝛽
3 ∑

𝑥
∑
𝜈<𝜌

ℜTr(1 − 𝑃𝜈𝜌(𝑥)). (1.9)

The cyclic property of the trace renders the action gauge invariant, since
the plaquette transforms like 𝑃𝜈𝜌(𝑥) → Ω(𝑥)𝑃𝜈𝜌(𝑥)Ω†(𝑥) under a gauge
transformation Ω ∈ 𝑆𝑈(3). It can be shown that in the limit 𝑎 → 0 the
plaquette reduces to

𝑃𝜈𝜌 = exp(𝑖𝑎2(∂𝜈𝐴𝜌 − ∂𝜌𝐴𝜈 + 𝑖[𝐴𝜈, 𝐴𝜌]) + 𝒪(𝑎3))

= exp(𝑖𝑎2𝐹𝜈𝜌 + 𝒪(𝑎3)). (1.10)

Thus we can write that for 𝑎 → 0 the plaquette action becomes

𝑆𝑔[𝑈] = 𝛽
3 ∑

𝑥
∑
𝜈<𝜌

ℜTr(−𝑖𝑎2𝐹𝜈𝜌(𝑥) + 𝑖𝒪(𝑎3) + 𝑎4

2 𝐹 2
𝜈𝜌 + 𝒪(𝑎6))

= 𝛽
3

𝑎4

4 ∑
𝑥

∑
𝜈,𝜌

(Tr(𝐹 2
𝜈𝜌) + 𝒪(𝑎2)) , (1.11)

where the 𝑎2 and 𝑎3 terms have been eliminated by only taking the
real part. For 𝑎 → 0 the sum turns into an integral, 𝑎4 ∑𝑥 → ∫ 𝑑4𝑥,
such that the continuum action is recovered, provided we set the lattice
coupling to 𝛽 = 6/𝑔2.
The Wilson action is the most simple lattice action that converges to
the right continuum action for QCD. There are also various improved
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forms for this action. Namely, one can add other terms to the lattice
action that vanish in the continuum limit. This can be used to achieve
a faster convergence to the continuum, e.g., by canceling the 𝒪(𝑎2) term
in eq. (1.11), such that the action approaches the continuum as 𝒪(𝑎3).
An example for this is the Lüscher-Weisz action[27].

1.1.1.2 Fermion action

Next we consider the discretization of the fermion action. The simplest
discretization of the Dirac operator reads

D/
discr
→→→→ 𝐷𝑥,𝑦 = ∑

𝜈
𝛾𝜈 (

𝑈𝜈(𝑥)𝛿𝑥+𝑎𝜈,𝑦 − 𝑈†
𝜈 (𝑦)𝛿𝑥−𝑎𝜈,𝑦

2𝑎 ) . (1.12)

Here the 𝛾-matrices satisfy {𝛾𝜈, 𝛾𝜌} = 2𝛿𝜈𝜌, since we work in Eu-
clidean spacetime. The gauge links serve to make the expression,
∑𝑥,𝑦 𝜓(𝑥)𝐷𝑥,𝑦𝜓(𝑦), invariant under gauge transformations Ω(𝑥)∈𝑆𝑈(3).
Nevertheless, there is the problem of so called fermion doubling, that is,
the naive discretization actually corresponds to more than one flavor of
fermions.
This can be seen most easily in the free case, where all 𝑈𝜈(𝑥) ≡ 1.
Performing a Fourier transform yields the massless Dirac operator in
momentum space

𝐷̃𝑝,𝑞 = 𝛿(𝑝 − 𝑞) 𝑖
𝑎 ∑

𝜈
𝛾𝜈 sin(𝑝𝜈𝑎). (1.13)

Its inverse is the fermion propagator in the massless case:

𝐷̃−1
𝑝,𝑞 = 𝛿(𝑝 − 𝑞)

− 𝑖
𝑎 ∑𝜈 𝛾𝜈 sin(𝑝𝜈𝑎)
1

𝑎2 ∑𝜈 sin2(𝑝𝜈𝑎)
. (1.14)

The pole of the propagator is associated with the mass of the fermion,
i.e., zero in this case. Nevertheless, eq. (1.14) shows that in addition
to the continuum pole, 𝑝 = 0, there are also other (unphysical) poles
for all the different combination of 𝑝𝜈 = 𝜋/𝑎 and 𝑝𝜈 = 0. Thus the dis-
cretized version represents 2𝑑 different fermions, where 𝑑 is the spacetime
dimension. This is a consequence of the Nielsen-Ninomiya theorem[28].
There have been a number of proposals for eliminating these doublers
over the years. Among the first of these was Wilson’s construction,
which works by adding a second derivative term. In order to match the
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dimensionality of the first derivative term, the second derivative term
has to be multiplied by the lattice spacing 𝑎, thus ensuring that this term
does not affect the continuum limit. The net effect of this additional
term is to make the unphysical poles with one or more 𝑝𝜈 = 𝜋/𝑎 infinitely
heavy (𝑚𝑝𝑜𝑙 ∼ 1/𝑎) in the continuum limit.
Another way of reducing the number of doublers is due to Kogut and
Susskind. Namely, the number of doublers can be reduced by choosing
a spin-diagonal basis for the fermions 𝜓. Let 𝑛 = 𝑥/𝑎 ∈ ℕ4 be a lattice
vector. The fermions can be transformed to a new basis 𝜓′ via

𝜓(𝑥) = 𝛾𝑛0
0 𝛾𝑛1

1 𝛾𝑛2
2 𝛾𝑛3

3 𝜓′(𝑥),
𝜓(𝑥) = 𝜓′(𝑥)𝛾𝑛3

3 𝛾𝑛2
2 𝛾𝑛1

1 𝛾𝑛0
0 . (1.15)

For the 𝛾-matrices the relation 𝛾2
𝜈 = 1 holds. When the Dirac operator in

eq. (1.12) is sandwiched between the fermion fields, ∑𝑥,𝑦 𝜓(𝑥)𝐷𝑥,𝑦𝜓(𝑦),
the two fields are shifted by one unit in the 𝜈-direction. Thus there is
a mismatch in the powers of 𝛾-matrices, but this mismatch is cured by
the prefactor 𝛾𝜈. Commuting this one past the others to the correct
place introduces a minus sign,

𝜂𝜈(𝑥) = (−1)∑𝜌<𝜈 𝑛𝜌 , (1.16)

the so called staggered phase. Now all the 𝛾s square to 1 and the fermion
action reads

∑
𝑥,𝑦

𝜓(𝑥)𝐷𝑥,𝑦𝜓(𝑦) = ∑
𝑥,𝑦

𝜓′(𝑥)𝐷′
𝑥,𝑦𝜓′(𝑦)

𝐷′
𝑥,𝑦 = ∑

𝜈
𝜂𝜈(𝑥)

𝑈𝜈(𝑥)𝛿𝑥+𝑎𝜈,𝑦 − 𝑈†
𝜈 (𝑦)𝛿𝑥−𝑎𝜈,𝑦

2𝑎 𝟙, (1.17)

where the 𝟙 indicates that 𝐷′ is diagonal in Dirac space. It is therefore
sufficient to only use one of the spinor-components. This means that the
doubling problem is reduced by the dimension of the representation for
the 𝛾-matrices. For QCD in 𝑑 = 4 dimensions the 𝛾s are 4 × 4 matrices;
thus the doubling problem is reduced to 4 doublers.
Denoting with 𝜒 just one spinor component, the staggered fermion
action can be written

𝑆𝑠𝑡
𝑓 = 𝑎4 ∑

𝑥,𝑦
𝜒̄(𝑥)(𝐷𝑠𝑡

𝑥,𝑦 + 𝑚𝛿𝑥,𝑦)𝜒(𝑦), (1.18)

𝐷𝑠𝑡
𝑥,𝑦 = ∑

𝜈
𝜂𝜈(𝑥)

𝑈𝜈(𝑥)𝛿𝑥+𝑎𝜈,𝑦 − 𝑈†
𝜈 (𝑦)𝛿𝑥−𝑎𝜈,𝑦

2𝑎 . (1.19)
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1.1.1.3 QCD partition function

Combining the gauge part and the fermion part of the action, we can
write the partition function using staggered fermions1. The fermions are
Grassmann numbers, that is, they anticommute. This makes them hard
to treat numerically. Nevertheless, they can be integrated analytically,
with the familiar integration prescription

∫ 𝑑𝜉 = 0, ∫ 𝑑𝜉 𝜉 = 1, (1.20)

for a Grassmann number 𝜉. Now the fermion fields in the partition
function can be integrated out giving a determinant[29]:

𝒵 = ∫ 𝒟𝑈𝒟𝜒𝒟𝜒̄ 𝑒−𝑆𝑔[𝑈]−𝑆𝑠𝑡
𝑓 [𝑈,𝜒]

= ∫ 𝒟𝑈 det(𝐷𝑠𝑡[𝑈] + 𝑚)𝑒−𝑆𝑔[𝑈]. (1.21)

In the discretized setting, the integration measure has a well defined
meaning; namely, an integration is performed at every point of the
finite spacetime lattice, e.g., 𝒟𝑈 ≡ ∏𝑥,𝜈 𝑑𝑈𝜈(𝑥), where 𝑑𝑈𝜈 denotes
the Haar measure of 𝑆𝑈(3). The determinant still corresponds to more
than one fermion. To circumvent this, the so called rooting trick can be
applied[30]; namely, instead of using the determinant, the fourth root of
the determinant can be used, which is supposed to correspond to only
one flavor in QCD in four dimensions.

1.1.1.4 Connection to thermodynamics

Field theory in Euclidean spacetime has a strong resemblance to statis-
tical mechanics and hence also thermodynamics. The partition function
of a thermodynamical system with temperature 𝑇 can be written as

𝒵(𝑇 ) = Tr (𝑒−𝐻̂/𝑇) , (1.22)

where the trace goes over all eigenstates of the Hamiltonian of the
system. However, the trace can also be computed by going to the basis

1 At least in studying nonzero temperature QCD on the lattice, staggered fermions
have proven to be sufficient.
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of the field variables, Φ, instead. This transformation naturally leads to
the path integral representation of the partition function[23,31]

𝒵(𝑇 ) = ∫ 𝒟Φ 𝑒−𝑆(𝑇 ), (1.23)

where 𝑆 is the Euclidean action corresponding to the Hamiltonian, which
can be expressed as an integral over a Lagrange density ℒ(Φ):

𝑆(𝑇 ) =

1/𝑇

∫
0

𝑑𝑡 ∫ 𝑑3𝑥 ℒ(Φ). (1.24)

In this way the inverse temperature 1/𝑇 is associated with the temporal
extent of spacetime. On the lattice the temporal extent is 𝑎𝑁𝑡, while
the spatial extent is 𝑎𝑁𝑠, so the temperature is given by 𝑇 = 1/(𝑎𝑁𝑡).
Thus, on the lattice, the temperature can be changed either by varying
the lattice spacing 𝑎 or by varying the spatial extent 𝑁𝑡. It is also
possible to obtain a continuum limit at a given temperature, by varying
𝑎 and 𝑁𝑡 in such a way that 𝑇 remains fixed.

1.1.1.5 Simulation strategies

Simulating a field theory on the lattice means performing the path
integral numerically. In case of QCD we have to perform an 𝑆𝑈(3)
integration for every link on the lattice. Thus the dimensionality of the
integral grows with the volume, which quickly exceeds the capabilities of
conventional numerical integration routines; this is known as the curse
of dimensionality. One of the few exceptions is Monte Carlo integration,
where the integral is approximated by evaluating the integrand at a
set of random points. More concretely, in lattice simulations we are
interested in expectation values of observables. An expectation value of
an observable 𝑋 can be approximated as

⟨𝑋⟩ = 1
𝒵 ∫ 𝒟Φ 𝑋[Φ]𝑒−𝑆[Φ] ≈ 1

𝑁

𝑁
∑
𝑖=1

𝑋[Φ𝑖], (1.25)

where the Φ𝑖 are random points in field space distributed according to
the measure

𝑒−𝑆[Φ]𝒟Φ
𝒵 . (1.26)



16 Introduction

Due to the stochastic nature of this approach, the error on ⟨𝑋⟩ scales
like2 1/

√
𝑁. In this way the problem of integration has been shifted to

the problem of how to generate field configurations distributed according
to the measure in eq. (1.26).
This can be achieved by generating the field configurations as a Markov
chain. A Markov chain is a sequence of configurations Φ1 → Φ2 → ...,
i.e., each successive configuration is generated from the previous one by
an updating procedure. This sequence has to obey the balance equation

∑
Φ

𝑇 (Φ → Φ′)𝑃 (Φ) = ∑
Φ

𝑇 (Φ′ → Φ)𝑃(Φ′), (1.27)

where 𝑃(Φ) is the probability of being in the configuration Φ and 𝑇 (Φ →
Φ′) denotes the transition probability of going from the configuration Φ
to the configuration Φ′. The transition probabilities have to fulfill the
reality conditions

0 ≤ 𝑇 (Φ → Φ′) ≤ 1 and ∑
Φ

𝑇 (Φ′ → Φ) = 1. (1.28)

Put into words, eq. (1.27) simply states that the rate of starting anywhere
in configuration space and ending up at some particular state Φ′ must
match the rate going anywhere in configuration space, starting from Φ′.
This ensures that the system remains in equilibrium.
One of the most widely used forms of the balance equation is detailed
balance,

𝑇 (Φ → Φ′)𝑃 (Φ) = 𝑇 (Φ′ → Φ)𝑃(Φ′), (1.29)

where the balance equation is fulfilled term wise. Among the most simple
algorithms for updating configurations is the Metropolis-algorithm[32].
In its simplest form, a new field configuration Φ′, generated with some
symmetric probability distribution 𝑇0(Φ → Φ′) = 𝑇0(Φ′ → Φ), is
proposed. The acceptance probability is given by

𝑇𝐴(Φ → Φ′) = min (1, 𝑒−𝑆[Φ′]

𝑒−𝑆[Φ] ) . (1.30)

If the new configuration Φ′ is accepted, it is added to the Markov chain.
If it is rejected, the old configuration Φ is added to the chain once more.

2 Strictly speaking, the autocorrelations, inherent in this approach, have to be taken
into account for this to be true.
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In this way a Markov chain with the equilibrium distribution in eq. (1.26)
can be constructed. In practice, starting from a given configuration, one
has to perform a certain number of update steps before the equilibrium
distribution is reached. Only after that the configurations can be used
in the measurement of observables in eq. (1.25).
There are also a number of other algorithms commonly used in lattice
simulations. Among these are the Hybrid Monte Carlo algorithm[33]

and the worm algorithm[34], to name just two. For more details on the
theoretical basis of Markov chain Monte Carlo as well as the updating
algorithms involved the reader is referred to standard textbooks and
review articles, e.g., [23,35–37].

1.1.2 𝑪𝑷 (𝑵 − 𝟏) models

One class of nonlinear sigma models is that of the 𝐶𝑃(𝑁 − 1) models.
In two dimensions they display a number of features, such as asymptotic
freedom and dynamic mass generation, which we usually associate with
non-Abelian gauge theories, in particular QCD. In higher dimensions3
𝐶𝑃(𝑁 − 1) can be treated as an effective field theory defined with a
suitable cutoff scale Λ.

1.1.2.1 Continuum formulation

The continuum action for 𝐶𝑃(𝑁 − 1) reads

𝑆cont,A = 1
𝑔2 ∫𝑑𝑑𝑥 (𝐷𝜈𝑛)†(𝐷𝜈𝑛), (1.31)

where 𝑛 is a complex 𝑁-component field, constrained to 𝑛†𝑛 = 1. This
constraint is responsible for all the interesting dynamics of 𝐶𝑃(𝑁 − 1)
models. Without it, it would be a trivial theory of free complex scalar
fields. The constraint, however, establishes the nonlinear nature of the
model. The covariant derivative 𝐷𝜈 = ∂𝜈 + i𝐴𝜈 makes eq. (1.31) 𝑈(1)
gauge invariant. Note that only in two dimensions the coupling 𝑔 is
dimensionless and thus the theory is renormalizable perturbatively in
two dimensions.
There is no field strength for the gauge field 𝐴 present, therefore 𝐴 can
be substituted by its equation of motion

3 It is still a current topic of research whether 𝐶𝑃(𝑁 − 1) in higher dimensions may be
renormalizable nonperturbatively, as suggested in [38].
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𝐴𝜈 = i 𝑛†∂𝜈𝑛. (1.32)

Thus there is an equivalent action, containing only the 𝑛-field:

𝑆cont = 1
𝑔2 ∫𝑑𝑑𝑥 [(𝑛†∂𝜈𝑛)2 + (∂𝜈𝑛†)(∂𝜈𝑛)] . (1.33)

Fermions 𝜓 can be coupled to the system via minimal coupling, i.e., by
adding a term,

𝜓(𝛾𝜈(∂𝜈 + i𝐴𝜈) + 𝑚)𝜓, (1.34)

to the action.

1.1.2.2 Lattice formulation

There are two main courses of action for a non-perturbative treatment
of 𝐶𝑃(𝑁 − 1): One is the large 𝑁 expansion[39] and the other is the
lattice formulation. For the purpose of studying Anderson localization
in 𝐶𝑃(𝑁 − 1) numerically, the lattice formulation is preferable.
We can replace the covariant derivative with a finite difference, 𝐷𝜈𝑛 →
𝑈𝑥,𝜈𝑛𝑥+𝜈 − 𝑛𝑥; the resulting lattice action reads

𝑆latt,U = −𝑁𝛽 ∑
𝑥,𝜈

(𝑛†
𝑥𝑈𝑥,𝜈𝑛𝑥+𝜈 + 𝑛†

𝑥+𝜈𝑈†
𝑥,𝜈𝑛𝑥). (1.35)

Provided we identify 𝑁𝛽 ≡ 1/𝑔2 and 𝑈𝑥,𝜈 ≡ ei𝑎𝐴𝜈(𝑥), where 𝑎 denotes
the lattice spacing, this action reduces to the continuum action in
eq. (1.31), when 𝑎 → 0. (Apart from an additive constant.)
There is also the so called quartic action, corresponding to the continuum
action containing only the 𝑛-field in eq. (1.33):

𝑆latt,quartic = −𝑁𝛽 ∑
𝑥,𝜈

|𝑛†
𝑥+𝜈𝑛𝑥|2. (1.36)

Expanding this action to order 𝑎2 gives (1.33), again with an additive
constant.

1.2 Random matrix theory
Random matrix theory (RMT) customarily studies the statistic proper-
ties of random Hermitian matrices 𝐻 = 𝐻†, whose matrix elements are
Gaussian distributed according to the weight



Introduction 19

𝑤(𝐻) = 𝑒−Tr𝐻2 . (1.37)

This gives rise to the joint eigenvalue distribution

𝜌(𝜆1, …, 𝜆𝑛) ∼ ∏
𝑖<𝑗

|𝜆𝑖 − 𝜆𝑗|𝛽 𝑒− 𝛽
2 ∑𝑖 𝜆2

𝑖 , (1.38)

where 𝛽 = 1, 2, 4. The value of 𝛽 depends on the symmetry of the
random matrix ensemble. More details on random matrix theory can
be found in [40,41]. Under time reversal symmetry 𝒯 there are three
distinct symmetry classes possible:

• 𝐻 can be symmetric under 𝒯, in which case it is said to be in the
Gaussian orthogonal ensemble (GOE, 𝛽 = 1). 𝐻 can be represented
by real, symmetric matrices.

• 𝐻 can have no symmetry properties under 𝒯, in which case it is said
to be in the Gaussian unitary ensemble (GUE, 𝛽 = 2). 𝐻 can be
represented by complex, Hermitian matrices.

• 𝐻 can be antisymmetric under 𝒯, in which case it is said to be in the
Gaussian symplectic ensemble (GSE, 𝛽 = 4). 𝐻 can be represented
by quaternion, symplectic matrices.

Here we will mainly focus on the GUE, since both QCD and 𝐶𝑃(𝑁 −1)
belong to this class.
A common observable is the level spacing statistics 𝑃(𝑠). It measures
the probability that two adjacent eigenvalues are a distance 𝑠 apart.
Strictly speaking, 𝑃(𝑠) is only defined for a spectrum with a constant
spectral density. In order to calculate 𝑃(𝑠) also for other spectra, these
have to be unfolded first. This means that the original eigenvalues
𝜆 have to be rescaled by dividing out the local spectral density 𝜌(𝜆),
resulting in eigenvalues 𝜆̄ for which 𝜌(𝜆̄) = 𝑐𝑜𝑛𝑠𝑡, getting rid of scales
specific for the models in question. One way to do this is to put all the
eigenvalues into a single list and sort that list in ascending order, keeping
track of the eigenvalues while doing so[42]. The unfolded spectrum is
then obtained by replacing the eigenvalues with their indices in the list.
It has to be noted that this method only works if there are many sets
of eigenvalues from different random matrices available, for a single set
of eigenvalues this procedure does not work.
For 2 × 2-matrices in the GUE the level spacing can be obtained by mul-
tiplying eq. (1.38) with the delta function 𝛿(𝜆1 − 𝜆2 − 𝑠) and integrating
over the eigenvalues 𝜆1, 𝜆2. The result is
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𝑃(𝑠) = 32
𝜋2 𝑠2𝑒− 4

𝜋 𝑠2
. (1.39)

This formula is called the Wigner surmise for the GUE. In fact the
constant in front, 32/𝜋2, as well as the constant in the exponent, 4/𝜋,
are uniquely determined by the conditions

∞

∫
0

𝑑𝑠 𝑃(𝑠) = 1 and
∞

∫
0

𝑑𝑠 𝑠𝑃(𝑠) = 1. (1.40)

This is the level spacing distribution for 2 × 2-matrices; for larger
matrices a closed form expression becomes increasingly difficult to obtain.
Nevertheless, it is known that for larger matrices the Wigner surmise is a
good approximation[43,44]. The most notable feature of the level spacing
distribution is the so called level repulsion. Namely, the probability
of finding two adjacent eigenvalues a distance 𝑠 = 0 apart vanishes.
This finding is highly nontrivial: for example using the eigenvalues
themselves instead of the matrix elements as random variables leads
to a Poissonian level spacing distribution, 𝑃(𝑠) = 𝑒−𝑠, which has its
maximum at 𝑠 = 0. For comparison Figure 1.1 shows the level spacing
distribution for Poissonian distributed eigenvalues as well as the Wigner
surmise for the three Gaussian ensembles.

0 0.5 1 1.5 2 2.5 3 3.5 4
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GSE

Figure 1.1 The level spacing distribution for the three
Gaussian ensembles as well as for the Poissonian case. For
the GUE see eq. (1.39).

Another, more recent, observable is the distribution of the ratio of
consecutive level spacings[45]. Namely, the distributions 𝑃(𝑟) and 𝑃(𝑟̃)
are considered, where
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Figure 1.2 The distribution of the 𝑟 and 𝑟̃ of consecutive level spac-
ings. For the GUE see eq. (1.41).

𝑟 = 𝑠𝑛
𝑠𝑛−1

, 𝑟̃ = min(𝑠𝑛, 𝑠𝑛−1)
max(𝑠𝑛, 𝑠𝑛−1), 𝑠𝑛 = 𝜆𝑛+1 − 𝜆𝑛.

Since consecutive spacings share the same local spectral density, no
unfolding is needed when taking the ratio. The distributions 𝑃(𝑟) and
𝑃(𝑟̃) are not independent, as for 𝑃(𝑟̃) all values with 𝑟 > 1 are added to
the distribution at 1/𝑟, giving the relation 𝑃(𝑟̃) = 2𝑃(𝑟)Θ(1 − 𝑟). For
the equivalent of the Wigner surmise, 3 × 3−matrices have to be used.
The result for the GUE is given by[45]

𝑃(𝑟) = 81
√

3
4𝜋

(𝑟 + 𝑟2)2

(1 + 𝑟 + 𝑟2)4 . (1.41)

For comparison Figure 1.2 shows 𝑃(𝑟) and 𝑃(𝑟̃) for the three Gaussian
ensembles as well as for the Poissonian case, which has 𝑃(𝑟) = 1/(1+𝑟)2.
Most notable is the fact that for small arguments the behavior is the
same as in the Wigner surmise, i.e., there is level repulsion at small
distances. However, even though the graphs for 𝑃(𝑟) and 𝑃(𝑠) look
quite similar, the latter has an exponential decay, while the former
decays only algebraically. On the basis of this last fact, it can be said
that for numerical studies 𝑃(𝑟̃) may be more advantageous than 𝑃(𝑟).
Namely, increased statistics might not result in smaller errors with 𝑃(𝑟)
because the increased statistics might largely be spent on sampling the
tail of the distribution.

1.3 Notation and conventions
• [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴: the commutator of two operators 𝐴 and 𝐵.

• {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴: the anticommutator of two operators 𝐴 and 𝐵.
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• 𝐴𝜈𝐵𝜈 = ∑𝜈 𝐴𝜈𝐵𝜈: the Einstein sum convention is used, if not
otherwise indicated.

• 𝛾𝜈: the Dirac 𝛾-matrices. Depending on the context, they obey
{𝛾𝜈, 𝛾𝜌} = 2𝑔𝜈𝜌 in Minkowski spacetime or {𝛾𝜈, 𝛾𝜌} = 2𝛿𝜈𝜌 in Eu-
clidean spacetime.

• A/ = 𝐴𝜈𝛾𝜈: the so called Feynman-slash notation.

• 𝑑: will mostly refer to the dimensionality of spacetime.

• 𝜇: will, if not otherwise indicated, refer to the chemical potential in
lattice units.



2 Anderson localization

Anderson localization is among the most widely studied effects in con-
densed matter theory. Its inception was in 1958 when Anderson proposed
a simple model in order to describe the metal insulator transition[46].
Since then a wide range of similar models have been analyzed. Let
us first review a number of basic properties of Anderson localization,
including a motivation for the Anderson model as well as some of the
techniques used to differentiate between localized and delocalized modes.

2.1 Introduction
A regular lattice with a periodic potential gives rise to Bloch-waves as
eigenstates, which are by their very nature delocalized objects. These
are then naturally involved in transport phenomena. Intuitively, it
is obvious that impurities and lattice defects may hamper transport
properties. From the perspective of a tight binding model impurities
can be modeled by adding a random onsite potential. A basic tight
binding model involves just nearest neighbor interactions, suggesting a
Hamiltonian of the form

𝐻 = ∑
<𝑥,𝑦>

𝑡𝑥𝑦|𝑥⟩⟨𝑦| + ∑
𝑥

𝑉𝑥|𝑥⟩⟨𝑥|, (2.1)

where the first sum is over nearest neighbors only. Here 𝑉𝑥 ∈ [−𝑤, 𝑤]
is the random onsite potential where 𝑤 determines the strength of the
disorder. The states |𝑥⟩ are position eigenstates, with ⟨𝑥|𝑦⟩ = 𝛿𝑥𝑦. The
value of the matrix elements 𝑡𝑥𝑦 depends on the details of the model,
e.g., 𝑡𝑥𝑦 = 1 would be a viable choice for an isotropic lattice.

2.1.1 Properties of Eigenmodes

Let 𝜓𝜆 be an eigenmode of 𝐻 with eigenvalue 𝜆. A common observable
which distinguishes between localized and delocalized modes is the so
called participation ratio:

𝑃𝑅(𝜆) = 1
𝑉 ∑𝑥 |𝜓𝜆(𝑥)|4 . (2.2)
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It is straight forward to see how 𝑃𝑅 behaves for localized and delocalized
modes:

𝑃𝑅(𝜆) = {
1
𝑉 localized, e.g., 𝜓𝜆(𝑥) = 𝛿𝑥,𝑥0

𝒪(1) delocalized, e.g., 𝜓𝜆(𝑥) = 1√
𝑉

(2.3)

Namely, localized modes scale like 1/𝑉, while delocalized modes do not
scale with the volume. There is also the possibility that an eigenmode
behaves like neither of these two, in which case the mode is said to be
critical[47]. Namely, a fractal dimension 𝑑𝑓 can be defined,

𝑝𝜆(𝐿) = ∑
𝑥

|𝜓𝜆(𝑥)|4 ∼ 𝐿−𝑑𝑓 ,

where 𝐿 is the linear extent of the system. For a localized mode we get
the intuitive result 𝑑𝑓 = 0, i.e., the mode is pointlike. Delocalized modes
fill the whole space, hence we have 𝑑𝑓 = 𝑑, where 𝑑 is the dimension of
the space. Critical modes on the other hand have a fractal dimension
between the two, 0 < 𝑑𝑓 < 𝑑.
Extended eigenmodes are strongly correlated because they are necessar-
ily sensitive to the potential at all lattice sites. As a consequence also
the eigenvalues are strongly correlated, giving rise to random matrix
statistics.

2.1.2 Connection to random matrix theory

The basics of random matrix theory were already introduced in Sec. 1.2.
Delocalized modes are found to be in either one of the three Gaussian
ensembles. Localized modes, being confined to a small region of space,
are largely uncorrelated. This has the consequence that also their
eigenvalues are uncorrelated, giving rise to a Poissonian level spacing
distribution.
There is also the possibility of mixed ensembles, which lie in two or
more different symmetry classes. Physically these arise naturally when
for instance a perturbation is added, which does not have the same
symmetries as the original system. There is a plethora of different tran-
sition ensembles between the various symmetry classes. For Anderson
localization, the most important transitions are from the Poissonian
case to the orthogonal and unitary ensembles. For finite sized systems
many different interpolating forms for 𝑃(𝑠) are possible, depending on
the details of the system under consideration. However, the Anderson
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transition is of second order, which means that the spectrum can be
divided into three distinct categories: A localized part with Poissonian
statistics and a delocalized part with random matrix statistics, the third
part is the boundary between the other two, which are said to be critical.
In the simplest case, the spectrum can simply be divided in one localized
part and one delocalized part. The point in the spectrum between these
is referred to as the mobility edge 𝜆𝑐.
The mobility edge can be determined in various ways. One of these is
by noting that for the level spacing, the most drastic difference between,
say, the Poissonian and the unitary distribution is the small distance
behavior. In this sense

𝐼0.5(𝜆) =
0.5

∫
0

𝑑𝑠 𝑃𝜆(𝑠) ≈ { 0.39 Poisson
0.11 GUE (2.4)

is an observable which has distinctly different values for localized and
delocalized modes. For QCD at critical statistics, a value 𝐼0.5(𝜆𝑐) ≈
0.186 was found[48]. In practice, 𝐼0.5(𝜆) will change smoothly between
these two values while 𝜆 is swept by the mobility edge 𝜆𝑐. Nevertheless,
for larger system volumes, this transition will become steeper and steeper,
and we can determine 𝜆𝑐 by the inflection point of these curves.

2.2 Anderson localization in QCD with a mag-
netic field
The following section is based on unpublished work in collaboration
with Falk Bruckmann, Gergely Endrődi, Matteo Giordano, Sandor Katz,
Tamás Kovács, and Ferenc Pittler.
In recent years the effect of a background magnetic field on QCD has
been studied extensively[9,10,13,49,50]. The thermodynamic properties
were of particular interest. Namely, what is the influence of a magnetic
field on the transition from the confining low temperature phase to
the deconfined high temperature phase. The most striking finding was
inverse magnetic catalysis around the transition temperature, that is,
there the chiral condensate is decreased. At all other temperatures
magnetic catalysis is observed. The net effect is that the transition
temperature is decreased under the influence of a magnetic field, as has
been shown in various works[9,11,51] concerning the QCD phase diagram
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in the 𝐵 − 𝑇 plane; see also Chapter 3 for other references concerning
QCD in a magnetic field.
It has been speculated for a long time that the localization properties
of quark eigenmodes may play a role in spontaneous chiral symmetry
breaking[52–54]. Subsequent studies[15–18,48,55–57] have shown that there
is, indeed, an Anderson transition taking place in the spectrum of
the high temperature QCD Dirac operator. Above the deconfinement
temperature a non-zero mobility edge could be defined, which was found
to increase with the temperature (almost) linearly. The temperature
where the mobility edge becomes zero agrees with the deconfinement
temperature of 𝑇 ≈ 160MeV[4].

2.2.1 The effect of a magnetic field on the spectrum

A remaining question is the influence of a magnetic field on the localiza-
tion properties of Dirac eigenmodes. The numerical results presented
here are from 6 × 243 lattices with physical quark masses. More details
on the lattice setup can be found in [9,58].
The effect of the magnetic field in QCD is twofold: On the one hand,
the observable may depend on the magnetic field explicitly, which is
called the valence effect. On the other hand, the magnetic field changes
the distribution of the gauge configurations through the fermion deter-
minant; this is called the sea effect. Here we will only be concerned
with the valence effect on the spectrum.
The flux Φ of a constant magnetic field ⃗⃗⃗ ⃗⃗𝐵 = 𝐵 ⃗𝑒𝑧 in a periodic space of
physical size 𝐿𝑥𝐿𝑦 is quantized[59,60] according to

Φ = 𝑞𝐵𝐿𝑥𝐿𝑦 = 2𝜋𝑁𝑏, (2.5)

where 𝑞 is the electric charge and 𝑁𝑏 is called the magnetic flux quantum.
Thus on a given lattice it is only possible to simulate discrete values of
the magnetic field. For intermediate values of the magnetic field one
has to interpolate between the discrete values. Also the lattice spacing
naturally places an upper bound on the maximum value of the magnetic
field: 𝑞𝐵max = 2𝜋/𝑎2.
The chiral condensate is defined as the expectation value

⟨𝜓𝜓⟩ = 1
𝑉

𝑑 log(𝒵)
𝑑𝑚 = 1

𝑉 𝒵 ∫ 𝒟𝑈𝒟𝜓𝒟𝜓 𝜓𝜓 𝑒−𝑆𝑔−𝜓(D/+𝑚)𝜓. (2.6)
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For our purposes, the spectral representation is more useful, which can
be obtained as follows:

⟨𝜓𝜓⟩ = 1
𝑉

𝑑 log(𝒵)
𝑑𝑚

= 1
𝑉 𝒵 ∫ 𝒟𝑈𝒟𝜓𝒟𝜓 Tr 1

D/ + 𝑚 𝑒−𝑆𝑔−𝜓(D/+𝑚)𝜓

= 1
𝑉 𝒵 ∫ 𝒟𝑈𝒟𝜓𝒟𝜓 Tr D/ − 𝑚

D/ 2 − 𝑚2
𝑒−𝑆𝑔−𝜓(D/+𝑚)𝜓

= 1
𝑉 𝒵 ∫ 𝒟𝑈𝒟𝜓𝒟𝜓 ∫ 𝑑𝜆 𝑚𝜌(𝜆)

𝜆2 + 𝑚2 𝑒−𝑆𝑔−𝜓(D/+𝑚)𝜓

= 1
𝑉 ⟨∫ 𝑑𝜆 𝑚𝜌(𝜆)

𝜆2 + 𝑚2 ⟩ . (2.7)

Here the fact that D/ is traceless and 𝛾5-hermiticity have been used,
where 𝑖𝜆 is the eigenvalue corresponding to D/ and 𝜌(𝜆) is the spectral
density. In the chiral limit (𝑚 → 0) this immediately gives the Banks-
Casher relation

⟨𝜓𝜓⟩ ∼ 𝜌(0), (2.8)

which relates the condensate directly to the spectral density at zero
eigenvalue. At non-zero mass it can still be argued that the eigenvalues
𝜆 < 𝑚 give the dominant contribution to the condensate.
Figure 2.1(a) shows the spectral density at the low end of the spectrum4.
As can be seen, the spectral density round the origin changes drastically
with the temperature, in accordance with the change in the condensate.
At low temperature the condensate is non-zero, as is the spectral density
around the origin. As the temperature is increased gradually, a gap
in the spectrum emerges, which is reflected in a (almost) vanishing
condensate.
The effect of the magnetic field on the spectral density is depicted in
figures 2.1(b,c,d). At all temperatures the spectral density is increased
by the magnetic field. At low temperature this clearly induces magnetic
catalysis. Around the transition temperature the spectral density just
vanishes at 𝐵 = 0. As the magnetic field increases the spectral gap
closes, resulting in magnetic catalysis. This is only the valence effect,

4 Only a small portion of the spectrum around the origin was computed, hence 𝜌(𝜆) is
cut off at some point in the spectrum.
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Figure 2.1 The spectral density at the low end of the Dirac spectrum.
(a) The spectral density at different temperatures. (b) The spectral
density at 𝑇 = 113MeV for different magnetic fluxes 𝑁𝑏. (c) The
spectral density at 𝑇 = 155MeV for different magnetic fluxes 𝑁𝑏. (d)
The spectral density at 𝑇 = 264MeV for different magnetic fluxes 𝑁𝑏.

which is usually the dominating one. Near 𝑇𝑐, however, the situation
is different: namely, the closing of the gap with the magnetic field
changes the fermion determinant drastically, which in turn results in
a strong suppression of these particular gauge configurations. In this
way the sea effect can win over the valence effect in the vicinity of the
transition temperature. At high temperature the magnetic field still
induces magnetic catalysis, but the magnetic field does not change the
spectral density right at the origin, so the sea effect is small.
Finally, the effect of the magnetic field on the localization properties,
in particular the mobility edge, can be studied. For this the integral
𝐼0.5(𝜆), eq. (2.4), of the level spacing distribution had to be computed at
a given temperature for different values of the magnetic flux quantum
𝑁𝑏. From the inflection point of 𝐼0.5(𝜆) in the spectrum, the mobility
edge 𝜆𝑐 was obtained at different 𝑁𝑏. By interpolating between the
different 𝑁𝑏s the mobility edge at arbitrary intermediate magnetic fields
could be obtained. The result is shown in Figure 2.2. The mobility
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edge rises almost linearly with temperature[61]. The magnetic field shifts
the mobility edge to lower values; also this relation seems to be linear.
Notice that this is in accord with the earlier findings that, when only
considering the valence effect, 𝑇𝑐 is raised by a magnetic field. (It is the
sea effect that decreases the transition temperature[10].)
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Figure 2.2 The mobility edge as a function of the tem-
perature for different values of the magnetic field. At a
given temperature the mobility edge decreases with rising
magnetic field. (In order for the mobility edge to have a
meaningful continuum limit, it has to be rescaled with the
light quark mass 𝑚𝑢𝑑, as both renormalize in the same
way, see [62].)

2.3 An Ising-Anderson model
The toy model presented here was first proposed in [63], in order to
better understand the localization mechanism in QCD. In the confined
phase of QCD the eigenmodes are delocalized and the eigenvalues obey
random matrix statistics, as has been known for a long time[64].
The model is based on the observation that in the high temperature
phase of QCD the system is dimensionally reduced, i.e., four dimen-
sional high temperature QCD can be described by an effective three
dimensional theory. This circumstance has given rise to a wide field of
effective Polyakov loop models[65].
For high temperatures the temporal extent of the lattice becomes small.
Consequently, different time-slices are strongly correlated with one an-
other. In this sense there is no additional information in having more
than one time-slice. Going to the temporal gauge, all gauge links except
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one can be chosen to be unity, 𝑈4( ⃗𝑥, 𝑡 = 1, ..., 𝑁𝑡 − 1) = 1, while the
remaining gauge link becomes the Polyakov loop, 𝑈4( ⃗𝑥, 𝑁𝑡) = 𝑃( ⃗𝑥).
One can go even further and also set 𝑈4( ⃗𝑥, 𝑁𝑡) = 1 at the expense of
changing the temporal boundary condition for the fermions to a local
boundary condition:

𝜓( ⃗𝑥, 1) = −𝑃( ⃗𝑥)𝜓( ⃗𝑥, 𝑁𝑡).

When reducing the temporal extent to a single time-slice, this effectively
introduces onsite disorder in the form of the Polyakov loop 𝑃( ⃗𝑥).
At high temperatures the Polyakov loop becomes ordered around 𝑃( ⃗𝑥) =
𝟙 with small islands[51] in space where the Polyakov loop differs from
𝟙. The idea is that the Dirac eigenmodes may get trapped/localized
around these islands[66].

2.3.1 Presenting the model

The most important features inducing localization in QCD are thought
to be the onsite disorder, involving continuous variables, in the form
of the Polyakov loop, the fact that the disorder is strongly correlated
in space, and that, as the system becomes more ordered, a gap in the
spectrum develops.
Hence a model Hamiltonian is constructed as follows

𝐻𝑥⃗ ⃗𝑦 = 𝛾4𝒩𝑥⃗𝛿𝑥⃗ ⃗𝑦 + 𝑖 ⃗𝛾 ⋅ ∂⃗𝑥⃗ ⃗𝑦, (∂𝑗)𝑥⃗ ⃗𝑦 = 1
2(𝛿𝑥⃗+𝚥, ⃗𝑦 − 𝛿𝑥⃗−𝚥, ⃗𝑦), (2.9)

where the onsite noise 𝒩𝑥⃗ has the required features from above. A
spin model with continuous spins obviously has these features. The
simplest one of these is the Ising model with nearest neighbor interac-
tions. Namely, the spin configurations are generated, using an auxiliary
system, according to

𝒵𝐼 = ∑
{𝑠 ⃗⃗⃗ ⃗⃗𝑥}

𝑒−𝛽𝐻𝐼 , 𝐻𝐼 = ∑
<𝑥⃗, ⃗𝑦>

𝑠𝑥⃗𝑠 ⃗𝑦, 𝑠𝑥⃗ ∈ [−1, 1]. (2.10)

The onsite noise is chosen to be

𝒩𝑥⃗ = Λ1 + 𝑠𝑥⃗
2 . (2.11)

When the spins are ordered, i.e., 𝑠𝑥⃗ = 1, we have 𝒩𝑥⃗ = Λ. This gives
rise to a gap in the spectrum of 𝐻, as it essentially acts like a mass
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term. (It is understood that the spin configurations {𝑠𝑥⃗} are generated
with an infinitesimal magnetic field, thus excluding an alignment of the
spins in the opposite direction, 𝑠𝑥⃗ = −1.) By varying the temperature
(𝑘𝐵𝑇 = 1/𝛽) of the Ising model, the ordering of the spins can be tuned,
that is, at low temperatures the spins become more ordered. In this
case there is a sea of spins 𝑠𝑥⃗ = 1 with small islands of misaligned
spins 𝑠𝑥⃗ ≠ 1. This is similar to the high temperature phase of QCD,
where the Polyakov loop becomes ordered with small islands of dif-
fering Polyakov loops. In QCD there is only one parameter, namely the
temperature, governing both the ordering of the Polyakov loops and the
gap in the Dirac spectrum. In this model there are two parameters: The
temperature governs the ordering of the spins, while the other coupling
parameter, Λ, determines the size of the gap in the spectrum.
As it is the model has various degeneracies. Since these play no role
for the purposes of localization, we can simplify the model further.
From {𝛾5, 𝐻} = 0 it follows that 𝜓 and 𝛾5𝜓 are both eigenmodes with
opposite eigenvalue, i.e., the spectrum is symmetric (per configuration)
with respect to the origin. Performing a spin diagonalization yields a
staggered version of the Hamiltonian,

ℋ𝑥⃗ ⃗𝑦 = 𝜂4( ⃗𝑥)𝒩𝑥⃗𝛿𝑥⃗ ⃗𝑦𝛾4 + 𝑖 ⃗𝜂( ⃗𝑥) ⋅ ∂⃗𝑥⃗ ⃗𝑦𝟙. (2.12)

Since ℋ and 𝛾4 commute, we can let 𝜓± be a common eigenmode of
the two:

ℋ𝜓± = 𝜆±𝜓±, 𝛾4𝜓± = ±𝜓±.

Decomposing the four-spinor 𝜓± into two-spinors

𝜓± = ( 𝜉±
±𝜉±

), 𝜉± = (𝜉(1)
±

𝜉(2)
±

),

gives the four eigenvalue equations

ℋ±𝜉(𝑠)
± = 𝜆±𝜉(𝑠)

± , 𝑠 = 1, 2, (2.13)

ℋ±
𝑥⃗ ⃗𝑦 = ±𝜂4( ⃗𝑥)𝒩𝑥⃗𝛿𝑥⃗ ⃗𝑦 + 𝑖 ⃗𝜂( ⃗𝑥) ⋅ ∂⃗𝑥⃗ ⃗𝑦. (2.14)

Consequently, there is a twofold degeneracy of the eigenvalues in addition
to the symmetry of the spectrum around the origin. For the purpose
of Anderson localization it is sufficient to study only one of these four
equations, e.g., the one with the reduced Hamiltonian ℋ+, as the other
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three equations carry no addition information. Even though in this case
the spectrum is no longer exactly symmetric around the origin on a per
configuration basis, this symmetry still holds in the ensemble average.
This is the state of the model so far. In order to study the effects of a
background magnetic field on the spectrum, the derivative in eq. (2.14)
has to be modified. For a magnetic field in a periodic space, its total
flux Φ must be quantized. For a constant magnetic field pointing in the
𝑧-direction, ⃗⃗⃗ ⃗⃗𝐵 = 𝐵 ⃗𝑒𝑧, this condition reads

Φ = 𝐵𝑁𝑥𝑁𝑦 = 2𝜋𝑁𝑏, (2.15)

as in eq. (2.5), where the charge has been set to 𝑞 = 1 and the magnetic
field is measured in dimensionless units. On the lattice such a back-
ground magnetic field can be implemented by introducing nontrivial
𝑈(1) gauge links 𝑢𝑗( ⃗𝑥) in the 𝑥𝑦 plane[9]. Then the derivative operator,
which replaces ∂⃗ in eq. (2.14), can be written as

𝐷𝑗
𝑥⃗ ⃗𝑦 = 1

2 (𝑢𝑗( ⃗𝑥)𝑈𝑗( ⃗𝑥)𝛿𝑥⃗+𝚥, ⃗𝑦 − 𝑢†
𝑗( ⃗𝑦)𝑈†

𝑗 ( ⃗𝑦)𝛿𝑥⃗−𝚥, ⃗𝑦) , (2.16)

𝑢1( ⃗𝑥) = exp (2𝜋𝑖𝑁𝑏
𝑛𝑥

𝑁𝑥𝑁𝑦
) , (2.17)

𝑢2( ⃗𝑥) = exp (−2𝜋𝑖𝑁𝑏
𝑛𝑦
𝑁𝑦

𝛿𝑛𝑥,𝑁𝑥−1) . (2.18)

Here the 𝑢1 and 𝑢2 implement the effect of the magnetic field, while
the third component 𝑢3 = 1. The other phases 𝑈𝑗 can be used to tune
the overall symmetry class. With 𝑈𝑗 = 1, the symmetry class of the
model changes when going from 𝐵 = 0 to 𝐵 > 0. At vanishing magnetic
field the model is in the orthogonal symmetry class, see appendix in
[63]. At nonvanishing magnetic field the symmetry class becomes the
unitary one. In order to make the model unitary already at 𝐵 = 0, the
phases 𝑈𝑗( ⃗𝑥) = 𝑒𝑖𝜃(𝑥⃗) can be used. However, care must be taken for
the distribution of 𝜃( ⃗𝑥): for instance, choosing 𝜃 uniformly distributed
in [−𝜋, 𝜋] removes the effect of the magnetic field completely because
this amounts to an integration over 𝑈(1) and the 𝑢𝑗 are just constant
offsets in this respect. Hence it is important to choose a nonuniform
distribution for 𝜃, in order for the magnetic field not to be ‘washed out’.
One possible way is to choose a Gaussian distribution 𝑒−𝜃2/(2𝜎2) with
a width 𝜎. For 𝜎 too small, the phases 𝑈𝑗 are very close to 1; thus
the model essentially remains orthogonal at 𝐵 = 0. For 𝜎 too large,
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the 𝑈𝑗 cover 𝑈(1) more or less uniformly, thus essentially removing the
magnetic field. Nevertheless, there is a window 𝜎 ∈ [0.1, 0.7] between
these two extremes, where the model is unitary and the effect of the
magnetic field still plays a role.

2.3.2 Numerical results
For the numerical simulations presented in this section, isotropic three
dimensional lattices with 𝑁𝑠 = 12, 14, 16 were used. The full spectrum
was obtained by exact diagonalization using LAPACK. The width for the
distribution of the (random) unitary phases 𝑈𝑗 was set to 𝜎 = 0.4. The
coupling constant of the Ising model was set to 𝛽 = 0.7. The coupling
of the fermions to the background spin configuration was Λ = 2.0.
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Figure 2.3 The spectral density of the Anderson-Ising
model as a function of the eigenvalue for various values
of the magnetic field, 𝑁𝑏 = 0, 36, 72, for a lattice size of
𝑁𝑠 = 12. The magnetic field shifts the spectral density to
lower eigenvalues. The overall shape remains unchanged.
Only at the high end of the spectrum (not shown) the spec-
tral density is deformed, but in this region lattice artifacts
dominate anyway.

First, Figure 2.3 shows the spectral density for various values of the
magnetic field. (Only the positive branch of the spectrum is shown.)
The overall effect of the magnetic field is to shift the spectral density
to lower eigenvalues. The overall shift of the spectral density entails
an enhancement of chiral symmetry breaking, i.e., magnetic catalysis.
In this respect the effect of the magnetic field in the model here is
very similar to the valence effect in QCD, which also shows magnetic
catalysis.
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Figure 2.4 The participation ratio 𝑃𝑅(𝜆) as a func-
tion of the eigenvalue for several different volumes, 𝑁𝑠 =
12, 14, 16. In the low part of the spectrum, the scaling is
𝑃𝑅 ∼ 1/𝑉, i.e., that part of the spectrum appears to be
localized. The high part of the spectrum remains virtually
unchanged, signaling delocalized modes.

In Figure 2.4 the participation ratio 𝑃𝑅(𝜆) is depicted for the three
lattice sizes 𝑁𝑠 = 12, 14, 16 at 𝐵 = 0. For the low modes 𝑃𝑅(𝜆) clearly
shows scaling like 1/𝑉, while the high end of the spectrum remains
virtually unchanged. Thus the low modes show clear signs of localization,
as opposed to the high modes which appear to be delocalized. Figures
2.5(a,b) show the 𝑃𝑅(𝜆) for different values of the magnetic field at a
fixed lattice size, respectively. Also here the effect of the magnetic field
is to shift the curves to lower eigenvalues; with exception of the high
end of the spectrum. For comparison, Figures 2.5(c,d) show that if the
𝐵 ≠ 0 curves are shifted suitably in the horizontal direction, significant
portions of the 𝐵 = 0 and 𝐵 ≠ 0 curves overlap. Only the lowest modes
show a slight increase in the 𝑃𝑅 at nonvanishing magnetic field. This
suggests that the magnetic field mainly shifts the spectrum, but that
the overall structure with respect to localization remains unchanged.
As a consequence, the mobility edge will be shifted to lower eigenvalues
by that same amount.
Figure 2.6 shows the level spacing distribution in four different spectral
windows. The distribution progresses smoothly from a Poissonian one
at the low end of the spectrum to the one for the GUE at the high end
of the spectrum. In order to make more apparent where the transition
in the spectrum takes place, Figure 2.7 shows the integral 𝐼0.5(𝜆) for
various lattice sizes. One can see that the transition becomes steeper
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Figure 2.5 The effect of the magnetic field on the participation ratio.
Also here the main effect of the magnetic field is to shift the 𝑃𝑅 to lower
eigenvalues. For comparison, the 𝐵 ≠ 0 curves have been shifted by
Δ𝜆 = 0.08 in the lower two panels; in this case significant portions of
the 𝐵 = 0 and 𝐵 ≠ 0 curves overlap.

as the volume is increased, signaling a phase transition. At around
𝜆𝑐 ≈ 1.5 the curves for the different volumes cross each other, namely,
there lies the mobility edge in the spectrum. Now also here it is the
case, that the magnetic field lowers the eigenvalues in the spectrum, as
can be seen from Figure 2.8. The 𝐵 ≠ 0 curve is consistently shifted
down to lower eigenvalues. The shift is also by a similar amount as was
the case for the participation ratio in Figure 2.5.

2.3.3 Remarks

The preceding sections have shown that even a very simple toy model can
have similar spectral properties with respect to Anderson localization
as QCD. When the underlying spin configurations are in the ordered
phase, a gap develops in the spectrum. At the same time the eigenmodes
at the low end of the spectrum become localized. The main effect of
the magnetic field is to lower the eigenvalues. Thus also the mobility
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Figure 2.6 The level spacing distribution 𝑃(𝑠) of the
Anderson-Ising model in different spectral windows. In
the low end of the spectrum 𝑃(𝑠) is Poissonian; in the
high end of the spectrum the distribution is the one for
the GUE. For comparison, the curves for the Poissonian
and the GUE distribution (in Wigner’s approximation) are
shown as solid lines.
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Figure 2.7 The integral 𝐼0.5(𝜆) for different lattice sizes.
For larger volumes the transition becomes slightly steeper.
The mobility edge can be inferred to be close to 𝜆𝑐 ≈ 1.5.

edge, the point in the spectrum where the transition from localized to
delocalized eigenmodes takes place, is lowered by the magnetic field. All
in all this is the same as the valence effect of the magnetic field in QCD,
which is responsible for magnetic catalysis by enhancing dynamical
symmetry breaking.
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Figure 2.8 The integral 𝐼0.5(𝜆) with and without a magnetic field.
The magnetic field lowers the mobility edge. The right panel (b) shows
that if the 𝐵 ≠ 0 curve is shifted to higher eigenvalues, the two curves
overlap.

2.4 𝑪𝑷 (𝑵 − 𝟏) models
The following section is based on the publication [67] together with Falk
Bruckmann.
In this section we will be considering Anderson localization in 𝐶𝑃(𝑁 −1)
models. 𝐶𝑃(𝑁 − 1) were already introduced in Sec. 1.1.2. Here we
will only use the lattice action in eq. (1.35), with the gauge field written
explicitly, since we are interested in the spectrum of the Dirac operator
in the background of the gauge field. For convenience, we will denote
the action in eq. (1.35) simply with 𝑆. The spectra in the following
sections were either computed with LAPACK for smaller system sizes,
or with SLEPc for larger system sizes.

2.4.1 Cross check
In order to verify that the setup for lattice simulations is correct, one
can consider the weak and strong coupling limits of bulk observables
and check whether these agree with the corresponding analytical results.
One such observable is the energy density

𝐸(𝛽) = 1
𝑉

∂
∂𝛽 log 𝑍(𝛽) = 1

𝑉
∂

∂𝛽𝐹(𝛽) = 1
𝑉 𝛽⟨𝑆(𝛽)⟩, (2.19)

which can be obtained from the partition function

𝑍(𝛽) = ∫ 𝒟𝑈 ∫
𝑛†𝑛=1

𝒟𝑛𝒟𝑛† 𝑒−𝑆(𝛽). (2.20)
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In the strong coupling (𝛽 → 0) limit, the energy density in two dimen-
sions is found[68] to be

𝐸𝑠𝑐(𝛽) = 4𝑁𝛽 − 4𝑁2

𝑁 + 1𝛽3 + 8𝑁3

(𝑁 + 1)(𝑁 + 2)𝛽5 + ..., (2.21)

for the lattice action in eq. (1.35). In the weak coupling expansion the
energy density reads[68,69]

𝐸𝑤𝑐(𝛽) = 4𝑁 − 𝑁
𝛽 − 2𝑁 − 1

8𝑁𝛽2 + .... (2.22)
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Figure 2.9 The energy density for various values of 𝑁.
The corresponding strong and weak coupling expansions
are also shown as dashed and dotted lines, respectively.
Above 𝛽 ≈ 0.5 discretization effects seem to become neg-
ligible. (The numerical data is from a simulation with
𝑁𝑀𝐶 = 103 configurations and 𝑁𝑠𝑤𝑒𝑒𝑝 = 103 sweeps be-
tween configurations on a 10 × 10 lattice.)

Figure 2.9 shows the energy density for different values of 𝑁. Below
𝛽 ≈ 0.5 the strong coupling expansion is in good agreement with the
numerical data. Above 𝛽 ≈ 0.8 the weak coupling expansion agrees
with the numerical data. In between these two values of 𝛽 the numerical
data interpolates smoothly between the strong and the weak coupling
expansions.
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2.4.2 Scale setting

In lattice simulations dimensionful quantities can only measured in units
of the lattice spacing 𝑎. Therefore it is vital to know how the lattice
spacing changes with lattice coupling 𝛽. This can be done by measuring
the (connected) correlation function

𝐺(𝑥, 𝑦) = ⟨Tr𝑃(𝑥)𝑃(𝑦) − 1
𝑁⟩ , (2.23)

where 𝑃(𝑥) = 𝑛(𝑥)𝑛†(𝑥) is a projector along 𝑛. The exponential decay
(in time direction) of the correlation function is dictated by the masses
of bound states of the 𝑛-field. One thing to keep in mind is that for a
given temporal extent 𝑁𝑡, at some point nonzero temperature effects
appear via 𝑇 = 1/(𝑎𝑁𝑡) as the lattice spacing is decreased. Namely, for
higher temperatures more and more excited states will contribute to the
decay. Consequently, for a given lattice spacing, the temporal extent has
to be adjusted such that the temperature remains well below the lowest
mass, i.e., 𝑇 ≪ 𝑚. Secondly, the correlator above is a superposition of
different momentum correlators; namely, a Fourier transform in position
space gives

𝐺(𝑡𝑥 − 𝑡𝑦, ⃗𝑝) = ∑
𝑥⃗, ⃗𝑦

𝑒𝑖𝑝⃗(𝑥⃗− ⃗𝑦)𝐺((𝑡𝑥, ⃗𝑥), (𝑡𝑦, ⃗𝑦)). (2.24)

In order to extract the rest mass of the lightest particle, we have to
consider the zero momentum projected correlation function

𝐺(𝑡𝑥 − 𝑡𝑦) = 𝐺(𝑡𝑥 − 𝑡𝑦, ⃗0) = ∑
𝑥⃗, ⃗𝑦

𝐺((𝑡𝑥, ⃗𝑥), (𝑡𝑦, ⃗𝑦)). (2.25)

This has an exponential decay 𝑒−𝑚𝐿𝑡 , where 𝐿𝑡 = 𝑎𝑁𝑡 is the temporal
extent in time direction. On a lattice with periodic boundary conditions,
also this decay has to be periodic, which can be achieved by using the
cosh. Thus in order to determine the mass 𝑚, we can fit the function

𝑓(𝑡) = 𝐴 cosh(𝑎𝑚𝑓𝑖𝑡(𝑡 − 𝑁𝑡/2)) (2.26)

to the zero-momentum projected correlation function in eq. (2.25).
Another way to determine the mass is by considering the fully Fourier
transformed correlation function (still at zero spatial momentum):

𝐺(𝑝) = ∑
𝑡

𝑒𝑖𝑝𝑡𝐺(𝑡). (2.27)
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For small momenta it is expected that 𝐺 becomes close to the free
(lattice) propagator, that is,

𝐺(𝑝) ∼ 1
4 sin2(𝑎𝑝) + (𝑎𝑚)2 . (2.28)

Hence the mass can also be calculated using 𝐺 with the two lowest
momenta, 𝑝 = 0 and 𝑝 = 𝜋/(𝑎𝑁𝑡):

(𝑎𝑚𝐹𝑇)2 = 4 sin2(𝜋/𝑁𝑡) ⎛⎜
⎝

𝐺( 𝜋
𝑎𝑁𝑡

)

𝐺(0) − 𝐺( 𝜋
𝑎𝑁𝑡

)
⎞⎟
⎠

. (2.29)

This one has the advantage that no fitting is needed. For small 𝑁 the
ratio of the masses 𝑚𝑓𝑖𝑡/𝑚𝐹𝑇 was found to be[70] close to 1. From
the large 𝑁 expansion it is expected[71] that 𝑚𝑓𝑖𝑡/𝑚𝐹𝑇 → √2/3 for
𝑁 → ∞.
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Figure 2.10 The correlation function 𝐺(𝑡) for several
different couplings 𝛽 at 𝑁 = 2. The fitted curves (accord-
ing to eq. (2.26)) are indicated as dotted lines. As 𝛽 is
increased, the decay becomes weaker, indicating that the
lattice spacing becomes smaller.

Figure 2.10 shows the correlation function 𝐺(𝑡) from eq. (2.25) for
several different 𝛽 = 0.6, 0.8, 1.0 at 𝑁 = 2. As 𝛽 is increased, the decay
becomes weaker. Figure 2.11 shows the lattice spacing as a function
of the coupling 𝛽. The ratio of temperature over mass was chosen to
be 𝑇 /𝑚 < 10%. (Up until 𝛽 = 1.1 a temporal extent of 𝑁𝑡 = 50 is
sufficient for this.)
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Figure 2.11 The lattice spacing 𝑎 in units of a refer-
ence mass 𝑚 as a function of the coupling 𝛽 at 𝑁 = 2, 4,
obtained from both the fits as well as from the Fourier
transform.

2.4.3 Localization in 2D

In the following we will study the spectra of the staggered Dirac operator,
similar to eq. (1.19),

𝐷𝑥𝑦 = 1
2 ∑

𝜈
(𝜂𝜈(𝑥)𝑈𝜈(𝑥)𝛿𝑥+𝜈,𝑦 − 𝜂𝜈(𝑦)𝑈†

𝜈 (𝑦)𝛿𝑥,𝑦+𝜈), (2.30)

in the background of the 𝑈(1) gauge configurations of the 𝐶𝑃(𝑁 − 1)
model. First we consider the spectral density. Figure 2.12(a) shows that
as the coupling 𝛽 is increased, also here a gap appears in the spectrum.
At the same time the Polyakov loop becomes polarized near 1, as the
coupling is increased. (Even though there is no center symmetry here,
the Polyakov loop still shows a transition toward an ordered phase.)
Thus there is a chance that the statistics of the spectrum may be different
near the gap.
In Figure 2.13 the participation ratio 𝑃𝑅(𝜆) is shown as a function
of 𝜆. All across the spectrum 𝑃𝑅(𝜆) ∼ 1/𝑉, which indicates that the
eigenmodes are localized. Similarly, Figure 2.14 shows the level spacing
distribution 𝑃(𝑠) and the distribution of the ratio of consecutive level
spacings 𝑃(𝑟̃) in different spectral windows. Also here the distributions
are nearly Poissonian, in accord with the finding from the participation
ratio that the eigenmodes are localized throughout the spectrum.
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Figure 2.12 (a): The spectral density of the 2𝐷 𝐶𝑃(3) model for
different 𝛽. As 𝛽 is increased, a gap develops at the low end of the
spectrum. (b): The Polyakov loop of the 2𝐷 𝐶𝑃(3) model as a function
of 𝛽. As the coupling is increased, the Polyakov loop becomes polarized
towards 1.
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Figure 2.13 The participation ratio of the 2𝐷 𝐶𝑃(3) model for dif-
ferent volumes and 𝛽. The 𝑃𝑅 scales as 1/𝑉 across the spectrum and
in a wide range of 𝛽, indicating localization throughout the spectrum.
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Figure 2.14 (a,b): The level spacing distribution 𝑃(𝑠) of the 2𝐷
𝐶𝑃(3) model in different spectral windows and for different 𝛽. Also the
curves for the GUE and the Poissonian distribution are shown. (c,d):
The distribution of the ratio of level spacings 𝑃(𝑟̃) = 2𝑃(𝑟)Θ(1 − 𝑟) of
the 2𝐷 𝐶𝑃(3) model in different spectral windows and for different 𝛽.
Also the curves for the GUE and the Poissonian distribution are shown.
All the distributions are nearly Poissonian, again indicating localized
modes.

2.4.4 Localization in 3D

In this section we consider 𝐶𝑃(𝑁 − 1) in three dimensions, in order to
see whether the dimensionality of the model plays a role in this case.
The participation ratio is shown in Figure 2.15. At the low end of the
spectrum the participation ratio scales with the volume, 𝑃𝑅(𝜆) ∼ 1/𝑉,
while higher up in the spectrum, no scaling takes place. This shows
that only the low eigenmodes are localized, while the higher modes are
delocalized. Also the level spacing distributions in Figures 2.16(a,b)
and the distributions of consecutive level spacings in Figures 2.16(c,d)
show a similar picture: At the low end of the spectrum the distributions
are close to Poissonian, while for higher eigenvalues the distributions
behave like the Gaussian unitary ensemble.
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In order to characterize the transition from Poissonian to Gaussian level
spacing distributions one can study in principle an arbitrary number of
moments. Here we focus on the integral 𝐼0.5 and the variance ⟨𝑠2⟩ of
the level spacing distribution. Figure 2.17(a) shows 𝐼0.5(𝜆) for different
𝛽. The mobility edge can be determined from the inflection point of the
curves. As the coupling 𝛽 is increased the mobility edge moves to higher
eigenvalues. Figure 2.17(b) shows how 𝐼0.5 and ⟨𝑠2⟩ change in different
eigenvalue windows. The data points for different 𝛽 seem to follow
a universal curve from a Poissonian to a Gaussian distribution. This
transition can be modeled using deformed unitary random matrices[48].
From the current data it looks as if the transition follows the same curve
as the QCD data, cf. Figure 7 in [48]. (The statistical errors are of the
order of 10%. However, the spread of the mean values suggests a smaller
error.) Toward the Poissonian point in this figure there are hardly any
data points. This is mainly due to the fact that the spectrum is sparse
at the gap; hence more statistics and/or a larger volume is needed in
order to sample the Poissonian region better.
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Figure 2.15 The participation ratio for different volumes and 𝛽.
Here the 𝑃𝑅 scales as 1/𝑉 only at the low end of the spectrum, the
higher modes show no scaling at all. This shows that only the low
modes are localized.
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Figure 2.16 (a,b): The level spacing distribution 𝑃(𝑠) in different
spectral windows and for different 𝛽. (c,d): The distribution of the
ratio of level spacings 𝑃(𝑟̃) in different spectral windows and for dif-
ferent 𝛽. In spectral windows that lie at the low end of the spectrum
the distributions are Poissonian, while higher up in the spectrum the
distributions behave like the GUE.
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Figure 2.17 (a) The integral 𝐼0.5 characterizing the transition from
Poissonian to GUE statistics for the 3𝐷 𝐶𝑃(3) model. (b) Characteriz-
ing the transition from Poissonian to GUE statistics for the 3𝐷 𝐶𝑃(3)
model using the integral 𝐼0.5 vs. the variance of the level spacing dis-
tribution. For reference also the point of critical statistics in QCD is
indicated, as obtained in [48]. The spread of the data points in this
scatter plot can be taken as reference for the error estimation.
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2.4.5 Discussion

The preceding sections have shown that in two dimensions the whole
Dirac spectrum of 𝐶𝑃(𝑁 − 1) models appears to be localized. The
influence of the dimensionality of the system on the localization prop-
erties has been known for a long time. The original Anderson model
had on-site/diagonal disorder; there it has been shown that in 𝑑 ≤ 2 for
arbitrary small disorder localization occurs[72]. For off-site/off-diagonal
disorder it depends on the details of the model, that is, the eigenmodes
can fall into the three categories of localized, delocalized, and critical
eigenmodes.
In three dimensions an Anderson transition in the spectrum takes place.
Namely, the low end of the spectrum is localized, while the higher
modes are delocalized. In between, a mobility edge can be defined. As
the (lattice) coupling is increased, also the mobility edge moves up in
the spectrum. Also in 𝐶𝑃(𝑁 − 1) as the coupling is increased, the
Polyakov loop becomes polarized to 1. Thus also here a similar trapping
mechanism as in QCD may be at play, even though one cannot view
the Polyakov loop as an order parameter in 𝐶𝑃(𝑁 − 1), since there is
no center symmetry.

2.5 Summary
In this chapter we have studied Anderson localization in different mod-
els/theories. QCD shows an Anderson transition in the deconfined
phase. The main effect of a background magnetic field is to lower the
mobility edge. A simple three dimensional toy model captures general
features of the Anderson transition observed in QCD. The magnetic
field in the toy model has a similar effect on the spectrum as in QCD.
Nevertheless, due to the simplicity of the model not all features can be
captured. So for instance, in the toy model the magnetic field essentially
induces a simple shift in the spectrum, as opposed to QCD, where the
effect of the magnetic field on the spectrum is more intricate.
In 𝐶𝑃(𝑁 − 1) the localization properties depend on the dimensionality
of the model: In two space-time dimensions all the modes are localized,
while in three space-time dimensions an Anderson transition can be
observed. In the three dimensional case the transition appears to be
quite similar to QCD: Also here, as the lattice coupling is increased, a
gap in the spectrum emerges and the lowest modes become localized.
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All in all, Anderson-type transitions seem to be a rather common feature
in lattice QFTs. Nevertheless, it is still not clear what physical role
these Anderson transitions play. In QCD the following picture can be
constructed: At low temperature all the Dirac eigenmodes are delocal-
ized. In particular, this is true for the modes near the origin, which
are essential for long ranging forces in bound states. The delocalized
nature also works in favor of this; namely, delocalized modes necessarily
have large spatial overlap with one another, which also entails more
interaction between them. At high temperature on the other hand, there
are no longer any modes near the origin, i.e., forces decay more quickly.
Furthermore, the lowest modes become localized. This means that they
have no spatial overlap, i.e., there is no interaction between them. As a
result, the quarks no longer form bound states.
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3 Landau Levels in QCD

The following chapter is based on the publication [73], which was done in
collaboration with Falk Bruckmann, Gergely Endrődi, Matteo Giordano,
Sandor Katz, Tamás Kovács, and Ferenc Pittler.
Studying QCD on the lattice with a background magnetic field has
been a topic for many years now. In order for a magnetic field to
have a significant impact on the phase structure of QCD, rather strong
magnetic fields are required. For example a magnetic field that is
comparable to a temperature of 𝑇 = 100MeV, which is still below the
pseudo critical QCD transition temperature of 𝑇𝑐 ≈ 160MeV, would be
around 𝑒𝐵 ≈ 0.1GeV2. Such a field strength is already several orders of
magnitude above that of magnetars[74] (𝑒𝐵 ∼ 10−5 GeV2). Nevertheless,
even higher magnetic fields may play an important role in understanding
the evolution of the early universe as well as heavy ion collisions.
In the absence of strong interactions, the quarks only interact with the
background magnetic field. This is a well-known problem, commonly
denoted as the Landau problem. From a classical point of view, a
constant magnetic field induces a helical motion of a charged particle
around the direction of the magnetic field. The motion in the direction
of the magnetic field is not hindered in any way. In a plane perpendicular
to the magnetic field, the motion (projected to the plane) is restricted to
circular orbits, whose radii shrink with rising magnetic field. This results
in a dimensional reduction of the system, as the plane perpendicular
to the magnetic field becomes essentially impervious. From a quantum
mechanical point of view this picture remains essentially valid, only
the radii become quantized. The orbits of different radii are called
Landau levels. In particular, the lowest Landau level has zero radius.
All the Landau levels are highly degenerate; the degeneracy of each
Landau level is proportional to the total magnetic flux through the plane
perpendicular to the magnetic field. Thus for a large enough magnetic
field all occupied states are in the lowest Landau level eventually. This
circumstance serves as the basis for the so called lowest Landau level
approximation.
For interacting quantum field theories the situation becomes more com-
plicated. If the interaction is weak, the Landau levels will simply be
perturbed slightly, relieving some of the degeneracies, but leaving the
overall Landau level structure intact. Especially at strong magnetic
fields the lowest Landau level approximation is still expected to work
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well. For strong interactions, in particular QCD, the situation is less
clear and it has to be seen to what extent the Landau level structure
can be carried over. In QCD the constituent fermionic particles, the
quarks, carry electric charge and are thus susceptible to the magnetic
field. The gluons on the other hand, which cause the strong interaction
between the quarks, are electrically neutral and are thus only indirectly
influenced by the magnetic field. Also here it may be expected that
for exceedingly strong magnetic fields, the quarks will display Landau
levels. However, for magnetic fields that are comparable with the QCD
transition temperature this is far from obvious. Nevertheless, around
the QCD transition this question becomes especially interesting, since
there the system is highly susceptible to the behavior of the quarks.
In QCD the crossover from the confined low temperature phase to
the high temperature phase of the quark gluon plasma goes hand in
hand with the restoration of chiral symmetry. Below and above the
crossover, the main effect of the magnetic field is to enhance chiral
symmetry breaking, which goes under the name of magnetic catalysis.
Only around the crossover inverse magnetic catalysis plays a dominant
role[10]. The effect of magnetic catalysis can largely be attributed to
the Landau level structure of quark spectra, as has been shown in
various models of strong interactions[12–14]. For convenience, the lowest
Landau level approximation is employed for a wide range of calculations
involving strong interactions and large magnetic fields, e.g., see [75–82].
For asymptotically large fields this approximation is certainly applicable.
Nevertheless, for moderately large fields it is quite hard to estimate
the systematic errors that are introduced by the approximation. Also
this may strongly depend on the observable in question, as there are
observables which only take contributions from the lowest Landau level.
Among these are anomalous currents[83,84] and spin polarizations[50,85].
Therefore the main motivation of this work was to quantify how good
the lowest Landau level approximation actually is for a given setup.
Lattice simulations give a first principles approach to this problem. The
main advantage lies in the fact that other systematic effects due to, e.g.,
low energy approximations and effective models can be excluded. The
following sections are organized as follows: First the Landau levels are
introduced in two dimensions in Section 3.1. Then Landau levels in four
spacetime dimensions are discussed in Section 3.2. Section 3.3 deals
with observables in the lowest Landau level and shows numerical results
thereof. Finally, Section 3.4 gives a general overview summarizing the
findings.



Landau Levels in QCD 51

3.1 Landau Levels in two dimensions
For simplicity let us start with the discussion of Landau levels in two
dimensions. First we consider the free case, where the only interaction
is between the quark and the magnetic field. We put the quark in the
𝑥𝑦 plane of size 𝐿2 with periodic boundary conditions and the magnetic
field along the 𝑧-axis. Setting

𝐴𝑥 = 0 and 𝐴𝑦 = 𝑥𝐵 (3.1)

results in ⃗⃗⃗ ⃗⃗𝐵 = 𝐵 ⃗𝑒𝑧 = 𝑐𝑜𝑛𝑠𝑡.. In a periodic space the total flux of the
magnetic field is quantized, see [60],

𝑞𝐵𝐿2 = 2𝜋𝑁𝑏. (3.2)

Here 𝑁𝑏 is the flux quantum number. The Dirac operator reads

D/ = 𝛾𝑥∂𝑥 + 𝛾𝑦(∂𝑦 + 𝑖𝑞𝑥𝐵), (3.3)

where the charge, 𝑞 > 0, of the quark is assumed to be positive5. The
magnetic field couples to both the spin, 𝑠𝑧 = ±1/2, as well as the
angular momentum, 𝐿𝑧 = 2𝑙 + 1, 𝑙 ∈ ℤ+

0 , of the quark. The resulting
eigenvalues of −D/ 2 have the form

𝜆2
𝑛 = 𝑞𝐵(2𝑙 + 1 − 2𝑠𝑧) = 2𝑛𝑞𝐵, (3.4)

with degeneracy 𝜈𝑛 = 𝑁𝑏𝑁𝑐(2 − 𝛿𝑛,0), (3.5)

where the Landau index 𝑛 ∈ ℤ+
0 is composed both of the spin and the

angular momentum quantum number. The lowest Landau level has
𝑙 = 0 and 𝑠𝑧 = 1/2, resulting in a zero eigenvalue, 𝜆0 = 0, independent
of the magnetic field. The lowest Landau level is polarized, that is, it
has a definite spin projection; this is also reflected in the degeneracy in
eq. (3.5), as it is only half of that of the higher Landau levels. The higher
Landau Levels, 𝑛 > 0, are comprised of both 𝑠𝑧 = ±1/2 components,
with the appropriate angular momentum quantum number 𝑙. In both
cases the degeneracy of the Landau levels is proportional to the total
flux of the magnetic field.
Next we consider a discretized version of the Dirac operator in eq. (3.3),
namely the staggered Dirac operator

5 A negative charge would result in the lowest Landau level having the opposite spin,
𝑠𝑧 = −1/2.
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𝐷𝑥,𝑦 = 1
2 ∑

𝜈
(𝜂𝜈(𝑥)𝑢𝜈(𝑥)𝛿𝑥+𝜈,𝑦 − 𝜂𝜈(𝑦)𝑢†

𝜈(𝑦)𝛿𝑥,𝑦+𝜈), (3.6)

𝑢1(𝑥) = exp(𝑖𝑎2𝑞𝐵𝑛𝑥), 𝑢2(𝑥) = exp(−𝑖𝑎2𝑞𝐵𝑁𝑥𝑛𝑦𝛿𝑛𝑥,𝑁𝑥−1), (3.7)

where the 𝑈(1) phases 𝑢𝜈(𝑥) implement the magnetic field on the lattice,
as discussed in [9], and 𝜂𝜈(𝑥) are the staggered phases from eq. (1.16).
The lattice sites are labeled by 𝑛𝑥 and 𝑛𝑦, the lattice size is given by
𝑁𝑥𝑁𝑦 = 𝑁2

𝑠 , with 𝐿 = 𝑎𝑁𝑠 and 𝑎 the lattice spacing. The dependence of
𝑢𝜈(𝑥) on the magnetic field can be written in terms of the flux quantum
𝑁𝑏: 𝑎2𝑞𝐵 = 2𝜋𝑁𝑏/𝑁2

𝑠 . This sets an upper limit on the magnetic field
through 𝑁𝑏 < 𝑁2

𝑠 due to the periodicity of 𝑢𝜈(𝑥). Physically this bound
can be understood as the highest mode that can be resolved on the
lattice, which means 𝐵 < 2𝜋/𝑎2.

Figure 3.1 The eigenvalues of the staggered 2𝐷 Dirac
operator (without QCD interactions) in eq. (3.6) vs. the
magnetic field. The discretization breaks up the Landau
levels into a fractal structure known as Hofstadter’s but-
terfly. The color coding is according to the continuum
degeneracy of the Landau levels as in eq. (3.5). Note the
gap separating the lowest from the higher Landau levels.
The continuum Landau levels are also indicated as dashed
lines.

The eigenvalues of the staggered Dirac operator no longer have the simple
form of eq. (3.4). Rather they break up and form a structure called



Landau Levels in QCD 53

Hofstadter’s butterfly[19]. Figure 3.1 displays the eigenvalues (𝑎𝜆)2 of
the (negative) square of the staggered Dirac operator −𝐷2 as a function
of the magnetic field. Even though the eigenvalues no longer obey
eq. (3.4), the Landau level degeneracy in eq. (3.5) still groups together
the eigenvalues in a sensible manner, as indicated by the color coding.
The continuum limit takes place in the lower left corner of the plot,
where 𝑎𝜆 → 0 and 𝑁𝑏/𝑁2

𝑠 → 0 (with 𝐵 fixed). There the eigenvalues
of the discretized operator lie virtually on top of the continuum curves
for the Landau levels.

Figure 3.2 The eigenvalues of the interacting staggered
2𝐷 Dirac operator in eq. (3.8) vs. the magnetic field. The
fractal structure of the butterfly is smeared out by the
interaction. The lowest Landau level is still clearly sepa-
rated by a gap in the spectrum from the rest. The higher
Landau levels, however, start to mix and are no longer
separated from one another. (For comparison, the free
eigenvalues are still displayed. Also the color coding of
the higher Landau levels is still according to the contin-
uum degeneracy.)

Introducing QCD interactions is done in the usual way,

𝐷𝑥,𝑦 = 1
2 ∑

𝜈
(𝜂𝜈(𝑥)𝑢𝜈(𝑥)𝑈𝜈(𝑥)𝛿𝑥+𝜈,𝑦 − 𝜂𝜈(𝑦)𝑈†

𝜈 (𝑦)𝑢†
𝜈(𝑦)𝛿𝑥,𝑦+𝜈), (3.8)
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using the 𝑆𝑈(3) gauge links 𝑈𝜈(𝑥) ∈ 𝑆𝑈(3). Figure 3.2 shows that
the interaction smears out the fractal structure of the butterfly6. This
has the effect that the higher Landau levels mix and are thus no longer
separated. However, the gap between the lowest and the higher Landau
levels remains.

Figure 3.3 The dotted lines indicate the level spacing
of the 2𝐷 Dirac operator right above the gap. The solid
lines show the width of the gap between the lowest and
the higher Landau levels. (Both quantities are measured
in terms of the light quark mass, as this results in a renor-
malization group invariant spectral density, see [62].) The
continuum limit (𝑁𝑠 → ∞) shows that the gap is larger
than the level spacing above it, even at small 𝑁𝑏. Thus
the lowest Landau level is well separated even in the con-
tinuum with QCD interactions.

Figure 3.3 shows the width of the gap 𝛿𝜆 as a function of the magnetic
flux 𝑁𝑏 for different lattice spacings. The curves are for a fixed physical
volume and the lattices have an aspect ratio 𝑁𝑠/𝑁𝑡 = 4; so the contin-
uum limit corresponds to 𝑁𝑠 → ∞. It is evident that the width of the
gap always exceeds the average level spacing above the gap for 𝑁𝑏 > 0.

6 The 𝑆𝑈(3) gauge links for the figure come from a 2𝑑 slice of a 4𝑑 gauge configuration
at 𝑇 = 400MeV with physical quark masses.
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Thus the gap between the lowest and the higher Landau levels survives
the continuum limit.
This finding is not accidental; namely, the lowest Landau level is pro-
tected by topology: In two dimensions the topological charge,

𝑄2𝐷
top = 1

2𝜋 ∫ 𝑑2𝑥 𝐹𝑥𝑦 = 1
2𝜋𝐿2𝑞𝐵 = 𝑁𝑏, (3.9)

is just the magnetic flux quantum number 𝑁𝑏. The four dimensional
notion of handedness is replaced by the spin projection. In that way,
the index theorem ensures that the topological charge,

𝑄2𝐷
top = 𝑁↑ − 𝑁↓, (3.10)

is equal to the difference between spin up and spin down zero modes.
Moreover, in two dimensions the vanishing theorem[86–88] makes sure
that either 𝑁↑ or 𝑁↓ is zero. For positive 𝑞𝐵 > 0, the only states with
definite spin have spin up and thus 𝑁↑ = 𝑁𝑏. The states belonging to
the lowest Landau level, indeed, vanish and their degeneracy is just 𝑁𝑏
for each color component separately.
Figure 3.4 shows a plot of the squared matrix elements |𝜑†

𝑖 𝜎𝑥𝑦𝜑𝑗|2 of
the spin operator 𝜎𝑥𝑦 = 𝜎𝑧 for different eigenmodes 𝜑𝑖, 𝜑𝑗. (Details of
how the spin operator is implemented on the lattice in the staggered
formulation can be found in [50].) Only the (diagonal) matrix elements
corresponding to the lowest Landau level are significantly different from
zero. The matrix elements corresponding to higher Landau levels as
well as off diagonal matrix elements are all compatible with zero. This
shows that, even in the interacting case, the lowest Landau level is the
only one with a definite spin.

3.2 Landau levels in four dimensions
In four dimension the situation becomes more involved. Again we
will first look at the free case, where the quark solely interacts with
the background magnetic field: Now there are additionally the 𝑧- and
𝑡-directions. Since the magnetic field acts only in the 𝑥𝑦 plane via
the vector potential in eq. (3.1), the 𝑧- and 𝑡-components of the Dirac
equation decouple from those in the 𝑥𝑦 plane. The solutions in the 𝑧-
and 𝑡-directions are just plane waves, while the solutions in the 𝑥𝑦 plane
are the Landau levels as before in the two dimensional case. Together
the eigenmodes can be written
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Figure 3.4 The squared matrix elements |𝜑†
𝑖 𝜎𝑥𝑦𝜑𝑗|2 of

the spin operator 𝜎𝑥𝑦 = 𝜎𝑧 for different eigenmodes 𝜑𝑖, 𝜑𝑗.
The off diagonal matrix elements are close to zero (<
10−4). For higher Landau levels, the diagonal matrix ele-
ments are also close to zero (< 10−2). Only for the modes
from the lowest Landau level the matrix elements are sig-
nificantly different from zero. (The eigenmodes and eigen-
values are indexed by their mode number 𝑖 in this figure.
For this figure a magnetic flux quantum 𝑁𝑏 = 10 was
chosen. The eigenmodes correspond to those of the down
quark.)

𝜓𝑛𝛼𝑝𝑧𝑝𝑡
= 𝜑𝑛𝛼𝑒𝑖𝑝𝑧𝑧𝑒𝑖𝑝𝑡𝑡, (3.11)

where 𝛼 labels the degeneracy within each Landau level. The eigenval-
ues7 of −D/ 2 now have additional momenta 𝑝𝑧 and 𝑝𝑡:

𝜆2
𝑛𝑝𝑧𝑝𝑡

= 2𝑛𝑞𝐵 + 𝑝2
𝑧 + 𝑝2

𝑡 , 𝜈𝑛𝑝𝑧𝑝𝑡
= 2𝑁𝑏𝑁𝑐(2 − 𝛿𝑛,0). (3.12)

Now each Landau level, 𝑛, can have arbitrary contributions from the 𝑝𝑧
and 𝑝𝑡 momenta, so different Landau levels necessarily overlap. Thus
it is no longer possible to distinguish the lowest Landau level from the
rest just by looking at the eigenvalues 𝜆𝑛𝑝𝑧𝑝𝑡

.

7 The additional factor of 2 for the degeneracy comes from the fact that in 4𝐷 we have
to use 4-spinors instead of 2-spinors in 2𝐷.
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(a) (b)
Figure 3.5 (a): The spectral density of the free Dirac operator (only
interacting with the magnetic field). The spectral density has distinct
jumps at 𝜆 =

√
2𝑛𝑞𝐵. It is no longer possible to distinguish different

Landau levels by their eigenvalue alone. (b): In the interacting case
the steps are smoothed out.

Figure 3.5(a) shows the spectral density,

𝜌(𝜆) = ∫ 𝑑2𝑝
(2𝜋)2 ∑

𝑛
𝜈𝑛𝛿(𝜆 − 𝜆𝑛𝑝𝑧𝑝𝑡

) = ∑
𝑛

𝜈𝑛
𝜆
2𝜋Θ(𝜆2 − 2𝑛𝑞𝐵), (3.13)

as a function of the eigenvalue. Higher Landau levels clearly start to
contribute at the onsets 𝜆 =

√
2𝑛𝑞𝐵 to the spectral density. In the

interacting case, shown in Figure 3.5(b), this signature of the Landau
levels is smoothed out.
Since it is no longer possible to distinguish the lowest Landau level by
simple mode counting, we will use a projection operator that projects
arbitrary modes down to the lowest Landau level. In the free case in
the continuum it is obvious that

continuum, non-int.: 𝑃 = ∑
𝑝𝑧𝑝𝑡

∑
𝛼

𝜓0𝛼𝑝𝑧𝑝𝑡
𝜓†

0𝛼𝑝𝑧𝑝𝑡
(3.14)

= ∑
𝛼

𝜑0𝛼𝜑†
0𝛼 ⊗ 𝟙𝑧 ⊗ 𝟙𝑡

projects down to the lowest Landau level. On the lattice it is still true
that the eigenmodes factorize as in eq. (3.11), however, later it will be
more convenient to use a coordinate basis for the 𝑧- and 𝑡-directions. In
that case the eigenmodes can be written as

𝜓𝑖𝑧𝑡(𝑥, 𝑦, 𝑧′, 𝑡′) = 𝜑𝑖(𝑥, 𝑦)𝛿𝑧,𝑧′𝛿𝑡,𝑡′ , (3.15)
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where 𝑖 labels the two dimensional Landau levels (with the eigenvalues
in ascending order). The lowest Landau level corresponds to the first
2𝑁𝑐𝑁𝑏 two dimensional eigenmodes 𝜑𝑖. Thus the projector on the
lattice reads (the sum over the doublers is an artifact of the staggered
discretization)

lattice, non-int.: 𝑃 = ∑
𝑖≤2𝑁𝑐𝑁𝑏

∑
doublers

∑
𝑧𝑡

𝜓𝑖𝑧𝑡𝜓
†
𝑖𝑧𝑡 (3.16)

= ∑
𝑖≤2𝑁𝑐𝑁𝑏

∑
doublers

𝜑𝑖𝜑
†
𝑖 ⊗ 𝟙𝑧 ⊗ 𝟙𝑡.

In the interacting case, that is, when QCD interactions are switched on,
the eigenmodes no longer factorize, as the 𝑥𝑦 and 𝑧𝑡 components of the
Dirac operator D/ = D/𝑥𝑦 +D/ 𝑧𝑡 do not commute in general. Still, we can

use the eigenmodes 𝜑(𝑧𝑡)
𝑖 of 𝐷(𝑧𝑡)

𝑥𝑦 on a 𝑧𝑡 slice to span the space

𝜓𝑖𝑧𝑡(𝑥, 𝑦, 𝑧′, 𝑡′) = 𝜑(𝑧𝑡)
𝑖 (𝑥, 𝑦)𝛿𝑧𝑧′𝛿𝑡𝑡′ .

Just as in the noninteracting case the projector can be written

lattice, int.: 𝑃 = ∑
𝑖≤2𝑁𝑐𝑁𝑏

∑
doublers

∑
𝑧𝑡

𝜓𝑖𝑧𝑡𝜓
†
𝑖𝑧𝑡, (3.17)

only it cannot be simplified any further than that. A similar construction
can be made from 𝜑̃(𝑧𝑡)

𝑖 , which are eigenvalues of D/ (𝑧𝑡)
𝑥𝑦 (𝐵 = 0), the two

dimensional Dirac operator at zero magnetic field. Similarly a basis is
formed by the modes

𝜓𝑖𝑧𝑡(𝑥, 𝑦, 𝑧′, 𝑡′) = 𝜑̃(𝑧𝑡)
𝑖 (𝑥, 𝑦)𝛿𝑧𝑧′𝛿𝑡𝑡′ ,

yielding the projector

𝑃 = ∑
𝑖≤2𝑁𝑐𝑁𝑏

∑
doublers

∑
𝑧𝑡

𝜓𝑖𝑧𝑡𝜓
†
𝑖𝑧𝑡. (3.18)

The projector 𝑃 can be used to cancel additive divergencies, as will be
shown later.
To see that the construction of 𝑃, as a lowest Landau level projector, in
eq (3.17) is justified, we can define the quantity

𝑊𝑖(𝜙) = ∑
𝑧𝑡

∑
doublers

|𝜓†
𝑖𝑧𝑡𝜙|2.
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Here 𝜙 is an arbitrary eigenmode of the full Dirac operator D/ (𝐵). Thus
𝑊𝑖(𝜙) measures the overlap of 𝜙 with the 𝑖-th two dimensional Landau
mode. The fact that 𝜓𝑖𝑧𝑡 form a complete basis, as well as, the normal-
ization, 𝜙†𝜙 = 1, ensures that the overlap factors 𝑊𝑖 are also properly
normalized: ∑𝑖 𝑊𝑖(𝜙) = 1.

(a) 220 < 𝜆/𝑚𝑢𝑑 < 225 (b) 535 < 𝜆/𝑚𝑢𝑑 < 545
Figure 3.6 The overlap factor 𝑊𝑖(𝜙) as a function of the Landau
eigenmode number 𝑖. 𝑊𝑖(𝜙) is averaged over several modes 𝜙 lying in
a small spectral window as well as over several gauge configurations.
Low lying modes show a stronger overlap with modes from the lowest
Landau level. (The magnetic flux quantum is 𝑁𝑏 = 8, the temperature
is 𝑇 = 400MeV, and 𝑚𝑢𝑑 is the light quark mass. Thus the degeneracy
of the lowest Landau level is 𝑁𝑐𝑁𝑏 = 24.)

Figure 3.6(a) shows that low lying eigenmodes, indeed, have a stronger
overlap with the lowest Landau level than higher modes that lie in the
bulk of the spectrum, as depicted in Figure 3.6(b). Moreover, there
is a distinct jump in the overlap factor between the lowest and higher
Landau levels. Also the overlap factor is approximately constant for
the lowest Landau level, signaling that these modes are equivalent in
that respect. (In the case of vanishing magnetic field 𝐵 = 0, the overlap
factor becomes a smoothly decreasing function.) This shows that 𝑃 can,
indeed, be used to analyze the effects of the lowest Landau level in full
QCD.
It is not clear, a priori, that the action corresponding to this restricted
Dirac operator is local. This is an important point, since the universality
of the continuum limit rests on this fact. In the continuum the lowest
Landau level has a natural length scale 𝑙𝐵 =

√
𝑞𝐵 associated with it.

Thus it is sufficient to show that the projector 𝑃 is local down to that
same length scale.
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From the definition of 𝑃 in eq. (3.17) it is clear that it is already perfectly
local in the 𝑧- and 𝑡-directions. (This is to be expected, since a magnetic
field in the 𝑧-direction, ⃗⃗⃗ ⃗⃗𝐵 = 𝐵 ⃗𝑒𝑧, affects only the transverse motion in
the 𝑥𝑦 plane.) We can analyze the effect of 𝑃 in the 𝑥𝑦 plane by acting
with 𝑃 on a source vector 𝜉, localized at a lattice site (𝑥, 𝑦, 𝑧, 𝑡):

Ψ = 𝑃𝜉. (3.19)

We can measure the effect of 𝑃 by analyzing the decay of Ψ in the 𝑥𝑦
plane. In particular, we can measure the decay of

𝐿(𝑑) = ⟨‖Ψ(𝑥′, 𝑦′, 𝑧, 𝑡)‖⟩, 𝑑 = √(𝑥 − 𝑥′)2 + (𝑦′ − 𝑦)2, (3.20)

where the expectation value ⟨…⟩ involves an average over different
𝑧-𝑡-slices as well as different gauge configurations.

(a) decay of 𝐿(𝑑) (b) continuum limit
Figure 3.7 (a): 𝐿(𝑑) as a function of the distance 𝑑 for 𝐵 = 0.5GeV2

and 𝐵 = 0. For 𝐵 ≠ 0 𝐿(𝑑) decays exponentially, while for 𝐵 = 0 no
such decay is observed. (b): The continuum extrapolation shows that
the characteristic length 𝑙 is compatible with that of the lowest Landau
level 𝑙𝐵 =

√
𝑞𝐵.

Figure 3.7(a) shows that 𝐿(𝑑) ∼ 𝑒−𝑑/𝑙 has an exponential decay for
𝐵 > 0, with a characteristic decay length 𝑙. In the continuum limit
the characteristic length 𝑙 is compatible with that of the lowest Landau
level 𝑙𝑏, as is shown in Figure 3.7(b). The fact that 𝑃 appears to
be a local operator is highly nontrivial. This has to be due to an
intricate interplay of the modes in the lowest Landau level. Generally
speaking, the projection down to a subset of the spectrum is a highly
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nonlocal object, which is confirmed by the slow decay of 𝐿(𝑑) due to
the projection operator 𝑃, as depicted in Figure 3.7(a) (lower panel).
(Remember that 𝑃 is built up from the first 2𝑁𝑐𝑁𝑏 two dimensional
modes at 𝐵 = 0, cf. eq. (3.18). 𝑁𝑏 is set to the would be value for
𝐵 > 0, of course.)

3.3 Observables for the lowest Landau level
Now we can use the projector 𝑃 in eq. (3.17) to define lowest Landau
level projected observables. This enables us to assess to what extend
the observable in question is dominated by the lowest Landau level.
In principle any observable that can be expressed in terms of quark
eigenvalues or eigenmodes is suitable for this. In the following we will
focus on quark bilinears ⟨𝜓𝑓Γ𝜓𝑓⟩ for a particular quark flavor 𝑓.
The QCD partition function 𝒵 for three flavors, up, down, and strange,
reads

𝒵 = ∫ 𝒟𝑈𝒟𝜓𝒟𝜓 𝑒−𝑆𝐺−𝑆𝑀 , (3.21)

𝑆𝑀 = 𝜓𝑀𝜓 = ∑
𝑓

𝜓𝑓𝑀𝑓𝜓𝑓, (3.22)

where 𝑀 = diag(𝑀𝑢, 𝑀𝑑, 𝑀𝑠) is the fermion matrix and 𝑆𝐺 is the action
for the 𝑆𝑈(3) gauge fields 𝑈. The quark matrix for the flavor 𝑓 is given
by 𝑀𝑓 = D/ 𝑓 − 𝑚𝑓. The explicit flavor dependence of the Dirac operator
comes from the fact that the different flavors couple to the background
magnetic field via different electric charges: 𝑞𝑢 = −2𝑞𝑑 = −2𝑞𝑠 = 2𝑒/3,
where 𝑒 > 0 is the positive elementary charge. The quark bilinears can
be written

⟨𝜓𝑓Γ𝜓𝑓⟩ = 𝑇
4𝑉

1
𝒵 ∫ 𝒟𝑈𝒟𝜓𝒟𝜓 (𝜓𝑓Γ𝜓𝑓)𝑒−𝑆𝐺−𝑆𝑀

= 𝑇
4𝑉

1
𝒵 ∫ 𝒟𝑈𝑒−𝑆𝐺(det 𝑀)1/4 Tr(𝑀−1

𝑓 Γ), (3.23)

where in the last step the quark fields have been integrated out analyti-
cally and the rooting trick for staggered fermions has been applied, in
order to have only the above mentioned three flavors in the continuum
limit. The prefactor 𝑇 /𝑉 makes the observable intensive. Details of
the lattice setup involving the scale setting as well as the setting of the
quark masses 𝑚𝑢 = 𝑚𝑑 and 𝑚𝑠 are described in [9,58].
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In order to obtain the contribution of the lowest Landau level to these bi-
linears, the projector 𝑃 from eq. (3.17) can be used. The projector can be
represented in block diagonal form in flavor space, 𝑃 = diag(𝑃𝑢, 𝑃𝑑, 𝑃𝑠),
just as the fermion matrix. For the observable the quark matrix is sim-
ply replaced by 𝑀 → 𝑃𝑀𝑃. For the weight the higher Landau levels
should be quenched, 𝑀 → 𝑃𝑀𝑃 + 1 − 𝑃, otherwise the determinant
would vanish altogether. Thus the lowest Landau level contribution of
the quark bilinears is given by

⟨𝜓𝑓Γ𝜓𝑓⟩𝐿𝐿𝐿 = (3.24)

= 𝑇
4𝑉

1
𝒵 ∫ 𝒟𝑈𝑒−𝑆𝐺(det(𝑃𝑀𝑃 + 1 − 𝑃))1/4 Tr(𝑀−1

𝑓 𝑃𝑓Γ𝑃𝑓).

It is possible to study the valence and sea effects separately, that is, one
can either leave out the projector from the weight (using just det 𝑀
as the weight) or one can leave out the projector from the observable
(using just Tr(𝑀−1

𝑓 Γ) as the observable). Furthermore, it is possible
to consider the weight det 𝑀 with or without the 𝐵-dependence. At
present, only the valence case with zero magnetic field in the weight
has been studied. (The other cases are more complicated to implement
and computationally more expensive.) This means that only the quarks
in the valence sector feel the presence of the magnetic field, while the
sea quarks, governing the distribution of the gauge configurations, are
not affected by the magnetic field at all. For temperatures below and
above the QCD transition temperature, 𝑇𝑐 ≈ 160MeV, the valence
contribution is the dominant one[49], e.g., for the quark condensate.
Only around the transition temperature the sea effect takes the lead,
see [10]. In the following, we will use the quark bilinears in the valence
approximation:

⟨𝜓𝑓Γ𝜓𝑓⟩ = (3.25)

= 𝑇
4𝑉

1
𝒵(0) ∫ 𝒟𝑈𝑒−𝑆𝐺 [det 𝑀(0)]1/4 Tr[𝑀−1

𝑓 (𝐵)Γ],

⟨𝜓𝑓Γ𝜓𝑓⟩𝐿𝐿𝐿 = (3.26)

= 𝑇
4𝑉

1
𝒵(0) ∫ 𝒟𝑈𝑒−𝑆𝐺 [det 𝑀(0)]1/4 Tr[𝑀−1

𝑓 (𝐵)𝑃𝑓Γ𝑃𝑓].

In particular, we will focus on the quark condensate, ⟨𝜓𝜓⟩ (i.e., Γ =
1), and the spin polarization, ⟨𝜓𝜎𝑥𝑦𝜓⟩ (i.e., Γ = 𝜎𝑥𝑦); the staggered
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implementation of 𝜎𝑥𝑦 = 𝑖
2 [𝛾𝑥, 𝛾𝑦], containing also the gauge fields in

the 𝑥𝑦 plane, can be found in [50].

3.3.1 Renormalization

Observables like quark bilinears are UV-divergent quantities, which
means that comparing the lowest Landau level contribution to the full
quantity has to be done with care. Let us start by considering these
for the free case in the continuum first. For this we assume a large but
finite volume, 𝑉 = 𝐿3, and 𝑞𝐵 > 0 for simplicity. Also the temperature
is assumed to be 𝑇 = 0; since the lowest Landau level approximation
is expected to work best when the magnetic field is the largest scale
in the system, relaxing this condition to 0 < 𝑇 <

√
𝐵 is not expected

to make much of a difference. To simplify the notation further we will
neglect a factor of 𝑁𝑐 = 3 because all three color components give the
same contribution in the free case.

3.3.1.1 Additive divergencies in the free case

The condensate can be written as

⟨𝜓𝜓⟩𝐵 = 𝑇
𝑉 Tr(D/ + 𝑚)−1 = ∑∫

𝜆

1
𝑖𝜆 + 𝑚 = ∑∫

𝜆>0

2𝑚
𝜆2 + 𝑚2 , (3.27)

with ∑∫
𝜆>0

= 𝑇 ∑
𝑝𝑡

∑
𝑛

∫ 𝑑𝑝𝑧
2𝜋

𝜈𝑛
𝐿2 ,

for the third equality the fact that there are chiral partners with opposite
eigenvalue has been used. The eigenvalues 𝜆 and degeneracies 𝜈𝑛 are
those of the Landau levels in eq. (3.12). At 𝑇 = 0 the discrete sum
over Matsubara frequencies turns into an integral over 𝑝𝑡, similar to 𝑝𝑧.
Thus for any fixed Landau level, 𝑛, the integration over 𝑝𝑧 and 𝑝𝑡 is
UV-divergent.
We can rewrite the condensate by exponentiating the denominator, that
is, by using 1/𝑦 = ∫ ∞

0
𝑑𝑠 𝑒−𝑠𝑦, which is essentially Schwinger’s proper

time[89] formulation. Thus it becomes possible to sum up all the Landau
levels and integrate over the 𝑝𝑧 and 𝑝𝑡 momenta analytically:
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⟨𝜓𝜓⟩𝐵 = 𝑚𝑞𝐵
2𝜋2

∞

∫
0

𝑑𝑠 𝑒−𝑚2𝑠 ∑
𝑛

(2 − 𝛿𝑛0)𝑒−2𝑞𝐵𝑛𝑠

∞

∫
0

𝑑𝑝 𝑝𝑒−𝑝2𝑠

= 𝑚𝑞𝐵
4𝜋2

∞

∫
0

𝑑𝑠 𝑒−𝑚2𝑠

𝑠 coth(𝑞𝐵𝑠). (3.28)

In this formulation, the divergence comes from the lower boundary of
the 𝑠 integration. Using the cutoff scale Λ and expanding the coth for
small 𝑠, we can identify the divergence,

⟨𝜓𝜓⟩𝐵 = 𝑚𝑞𝐵
4𝜋2

∞

∫
1/Λ2

𝑑𝑠 𝑒−𝑚2𝑠 [ 1
𝑞𝐵𝑠2 + 𝑞𝐵

3 + 𝒪(𝑠2)]

= 𝑚Λ2

4𝜋2 − 𝑚3

4𝜋2 log Λ2

𝑚2 + finite. (3.29)

The divergence does not depend on the magnetic field 𝐵 at all; thus it
can be removed by subtracting the condensate at 𝐵 = 0. In this way
Δ⟨𝜓𝜓⟩ is a finite quantity,

Δ⟨𝜓𝜓⟩𝐵 = ⟨𝜓𝜓⟩𝐵 − ⟨𝜓𝜓⟩0 = 𝑚𝑞𝐵
4𝜋2

∞

∫
0

𝑑𝑠 𝑒−𝑚2𝑠/𝑞𝐵

𝑠2 (𝑠 coth(𝑞𝐵𝑠) − 1)

= 𝑚𝑞𝐵
2𝜋2 [log Γ(𝑥) − (𝑥 − 1

2) log 𝑥 + 𝑥 − 1
2 log(2𝜋)] , (3.30)

with 𝑥 = 𝑚2/(2𝑞𝐵).
For the lowest Landau level contribution to the condensate we can
simply take the 𝑛 = 0 part of the sum in eq. (3.28) above, which is
tantamount to replacing coth(𝑞𝐵𝑠) by 1:

⟨𝜓𝜓⟩𝐿𝐿𝐿
𝐵 = 𝑚𝑞𝐵

4𝜋2

∞

∫
0

𝑑𝑠 𝑒−𝑚2𝑠

𝑠 . (3.31)

In this case the divergence is milder; namely, it is only logarithmic,

⟨𝜓𝜓⟩𝐿𝐿𝐿
𝐵 = 𝑚𝑞𝐵

4𝜋2 log Λ2

𝑚2 + finite. (3.32)

Here the divergence cannot be removed by subtracting the 𝐵 = 0 con-
tribution as the divergence does depend on the magnetic field. However,



Landau Levels in QCD 65

the divergence can be removed by subtracting ⟨𝜓𝑃𝜓⟩, using the projec-
tor 𝑃 in eq. (3.18). 𝑃 projects on the first 𝑁𝑏 two-dimensional (𝐵 = 0)
modes, i.e., onto the modes that would be in lowest Landau level at
𝐵 > 0. In that way the quantity Δ⟨𝜓𝜓⟩𝐿𝐿𝐿

𝐵 stays finite:

Δ⟨𝜓𝜓⟩𝐿𝐿𝐿
𝐵 = ⟨𝜓𝜓⟩𝐿𝐿𝐿

𝐵 − ⟨𝜓𝑃𝜓⟩0

= 𝑚
𝜋

∞

∫
0

𝑑𝑝 𝑝
2𝜋

⎡
⎢
⎣

𝑞𝐵
𝑝2 + 𝑚2 − 2

√
𝑞𝐵

∫
0

𝑑𝑝𝑥𝑦 𝑝𝑥𝑦
2𝜋

2𝑚
𝑝2 + 𝑝2

𝑥𝑦 + 𝑚2
⎤
⎥
⎦

= 𝑚𝑞𝐵
4𝜋2 [(1 + 2𝑥) log (1 + 1

2𝑥) − 1] , (3.33)

with 𝑥 = 𝑚2/(2𝑞𝐵) again. The upper bound
√

𝑞𝐵 ensures that only
the first 𝑁𝑏 two-dimensional modes participate. This can be derived by
counting free fermionic states in a box of size 𝐿𝑥𝐿𝑦:

2
𝐿𝑥𝐿𝑦
(2𝜋)2 ∫

𝑝2
𝑥+𝑝2

𝑦≤𝑞𝐵

𝑑𝑝𝑥𝑑𝑝𝑦 = 2
𝐿𝑥𝐿𝑦

2𝜋

√
𝑞𝐵

∫
0

𝑑𝑝 𝑝 =
𝐿𝑥𝐿𝑦

2𝜋 𝑞𝐵 = 𝑁𝑏. (3.34)

An alternative way of regularization is the gradient flow method[90,91],
which involves smearing the fields with the help of the heat kernel

𝐾𝑡 = 𝑒−𝑡(−𝐷2+𝑚2),

where 𝐷2 is the (gauge-covariant) Laplacian, 𝑚 the quark mass, and 𝑡
the flow time. The flow time can be related to the smearing radius[90]
𝑅𝑠 via 𝑡 = 𝑅2

𝑠/8. In the condensate both quark fields 𝜓 and 𝜓 are
flowed, resulting in

⟨𝜓𝜓⟩𝐵(𝑡) = 𝑇
𝑉 Tr[(D/ + 𝑚)−1𝐾2𝑡].

In the free case the Laplacian 𝐷2 commutes with the squared Dirac
operator D/ 2. Also the eigenvalues of 𝐷2 are essentially the same as
those of D/ 2, only with the spin set to zero, 𝑠𝑧 = 0, and degeneracy 𝜈𝑙:

𝜆𝑙𝑝𝑧𝑝𝑡
= 𝑞𝐵(2𝑙 + 1) + 𝑝2

𝑧 + 𝑝2
𝑡 , 𝜈𝑙 = 𝑁𝑏. (3.35)

Just as before we can use the chiral partners to obtain a spectral
representation for the condensate, cf. eq. (3.27):
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⟨𝜓𝜓⟩𝐵(𝑡) = 𝑚𝑞𝐵
2𝜋2 𝑒−2𝑡𝑚2

∞
∑
𝑙=0

∑
𝑠𝑧=± 1

2

∞

∫
0

𝑑𝑝 𝑝 𝑒−2𝑡[𝑞𝐵(2𝑙+1)+𝑝2]

𝑞𝐵(2𝑙 + 1 − 2𝑠𝑧) + 𝑝2 + 𝑚2 .

Also here we can use Schwinger’s proper time, as well as, sum over
Landau levels and integrate over the momenta, yielding

⟨𝜓𝜓⟩𝐵(𝑡) = 𝑚𝑞𝐵
4𝜋2 𝑒−2𝑡𝑚2

∞

∫
0

𝑑𝑠 𝑒−𝑠𝑚2 cosh(𝑞𝐵𝑠)
(2𝑡 + 𝑠) sinh(𝑞𝐵(2𝑡 + 𝑠)). (3.36)

For any flow time 𝑡 > 0 the integral no longer diverges, with 1/𝑡 = Λ2

being essentially the momentum cutoff scale. Again, the lowest Landau
level approximation can be obtained by taking only the 𝑙 = 0 and
𝑠𝑧 = +1/2 contribution to the sum:

⟨𝜓𝜓⟩𝐿𝐿𝐿
𝐵 (𝑡) = 𝑚𝑞𝐵

4𝜋2 𝑒−2𝑡𝑚2𝑒−2𝑡𝑞𝐵

∞

∫
0

𝑑𝑠 𝑒−𝑠𝑚2

(2𝑡 + 𝑠). (3.37)

The lowest Landau level approximation is expected to be valid (if at all)
when the magnetic field is the largest scale in the system. Consequently,
the flow time can be chosen in terms of the magnetic field; namely,
choosing 8𝑡 = 𝑐2/(𝑞𝐵) = 𝑅2

𝑠 with 𝑐 ≈ 1 has a well defined continuum
limit for fixed 𝐵 because the physical smearing radius 𝑅𝑠 then also stays
fixed.
The other observable left to consider is the spin polarization ⟨𝜓𝜎𝑥𝑦𝜓⟩.
A spectral representation can be obtained in a similar fashion as for the
condensate in eq. (3.27):

⟨𝜓𝜎𝑥𝑦𝜓⟩𝐵 = ∑∫
𝜆>0

2𝑚
𝜆2 + 𝑚2 ⟨𝜆|𝜎𝑥𝑦|𝜆⟩ = ⟨𝜓𝜎𝑥𝑦𝜓⟩𝐿𝐿𝐿

𝐵 = ⟨𝜓𝜓⟩𝐿𝐿𝐿
𝐵 , (3.38)

where the fact has been used that only the lowest Landau level has
a definite spin projection, i.e., ⟨𝜆𝐿𝐿𝐿|𝜎𝑥𝑦|𝜆𝐿𝐿𝐿⟩ = 1 while all higher
Landau levels are composed of both spin-up and spin-down states. Thus
in the free case there is no distinction between the lowest Landau level
contribution and the full observable in this case. Both are equal to the
lowest Landau level condensate in eq. (3.31) and hence logarithmically
divergent. The divergence is proportional to 𝑚 log Λ2/𝑚2; therefore a
possible way to extract the finite part is
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𝑇 𝑑𝑖𝑣 ≡ 𝑚 ∂
∂𝑚⟨𝜓𝜎𝑥𝑦𝜓⟩𝐵, (3.39)

Δ⟨𝜓𝜎𝑥𝑦𝜓⟩𝐵 = ⟨𝜓𝜎𝑥𝑦𝜓⟩𝐵 − 𝑇 𝑑𝑖𝑣 = 𝑚𝑞𝐵
2𝜋2 . (3.40)

This procedure also works in the interacting case, where 𝑇 𝑑𝑖𝑣 has been
measured in Ref. [50] for full QCD.

3.3.1.2 Analyzing the ratios of the observables

In the last section we have seen that additive UV-divergencies can be
eliminated in two different ways. One is by subtracting the observable
at 𝐵 = 0, the other is by smearing the gauge as well as the fermion fields
over an area 𝑅2

𝑠 with the help of the gradient flow, which eliminates
short scale (UV) noise.
The multiplicative renormalization constants on the other hand are
expected to be independent of the magnetic field. Also in the limit
of exceedingly large magnetic fields, 𝐵 → ∞, the lowest Landau level
approximation should be valid. In that case it seems natural that
the lowest Landau level projected observables should have the same
renormalization constants as the full observable. However, since the
lowest Landau level projection on the lattice effectively involves the
limit 𝐵 → ∞ before the continuum limit, 𝑎 → 0, it is still conceivable
that the ultra violet behavior might be affected. Whether this is the
case or not has to be checked in a future study.
In the following we will consider the ratio of observables, first in the
free case and afterwards numerically at a fixed cutoff. Let us start with
the condensate and the 𝐵 = 0 subtraction scheme and define the ratio

𝐷𝑆
𝑓 (𝐵) =

Δ⟨𝜓𝑓𝜓𝑓⟩𝐿𝐿𝐿

Δ⟨𝜓𝑓𝜓𝑓⟩
, (3.41)

Δ⟨𝜓𝑓𝜓𝑓⟩𝐿𝐿𝐿
𝐵 = ⟨𝜓𝑓𝑃𝜓𝑓⟩𝐵 − ⟨𝜓𝑓𝑃𝜓𝑓⟩0, (3.42)

Δ⟨𝜓𝑓𝜓𝑓⟩𝐵 = ⟨𝜓𝑓𝜓𝑓⟩𝐵 − ⟨𝜓𝑓𝜓𝑓⟩0, (3.43)

where we have used the lowest Landau level projector 𝑃 from eq. (3.17)
as well as the projector at vanishing magnetic field 𝑃 from eq. (3.18). In
the free case the numerator and denominator were given in the previous
section in eq. (3.33) and (3.30), respectively. Taking the ratio and also
the limit 𝐵 → ∞ yields
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𝐷𝑆(𝐵)
𝐵→∞

→→→→→→→→→→ 1 − 𝒪 ( 1
log(𝑞𝐵/𝑚2)) . (3.44)

So the ratio only very gradually approaches 1 from below.
Secondly we consider the same type of ratio only now with the flowed
observables rather than the subtracted ones:

𝐶𝑆
𝑓 (𝐵, 𝑡) =

⟨𝜓𝑓𝜓𝑓⟩𝐿𝐿𝐿
𝐵 (𝑡)

⟨𝜓𝑓𝜓𝑓⟩𝐵(𝑡)
. (3.45)

The flow time can be set by the magnetic field via 𝑡 = 𝑐2/(8𝑞𝐵) where
𝑐 ≈ 1 is just a fixed parameter. In the free case this ratio can be written

𝐶𝑆(𝐵, 𝑡) = 𝐼2(𝑡)
𝐼1(𝐵, 𝑡) , (3.46)

𝐼1(𝐵, 𝑡) =
∞

∫
0

𝑑𝑠 𝑒−𝑠𝑚2

2𝑡 + 𝑠
1 + 𝑒−2𝑞𝐵𝑠

1 − 𝑒−2𝑞𝐵(2𝑡+𝑠) , (3.47)

𝐼2(𝑡) =
∞

∫
0

𝑑𝑠 𝑒−𝑠𝑚2

2𝑡 + 𝑠. (3.48)

For large magnetic fields, 𝐵 → ∞, 𝐼2 has the asymptotic form:

𝐼2
𝐵→∞

→→→→→→→→→→ log(𝑞𝐵/2𝑐𝑚2)

The difference 𝐼1 − 𝐼2 is bounded, which can be seen from

𝐼1 − 𝐼2 =
∞

∫
0

𝑑𝑠 𝑒−𝑠𝑚2𝑒−2𝑠𝑞𝐵

2𝑡 + 𝑠
1 + 𝑒−4𝑞𝐵𝑡

1 − 𝑒−4𝑞𝐵𝑡𝑒−2𝑞𝐵𝑠

≤ 1 + 𝑒−4𝑞𝐵𝑡

1 − 𝑒−4𝑞𝐵𝑡

∞

∫
0

𝑑𝑠 𝑒−𝑠𝑚2𝑒−2𝑠𝑞𝐵

2𝑡 + 𝑠

= 1 + 𝑒−4𝑞𝐵𝑡

1 − 𝑒−4𝑞𝐵𝑡

∞

∫
0

𝑑𝑠 𝑒−𝑠𝑚2/𝑞𝐵𝑒−2𝑠

2𝑞𝐵𝑡 + 𝑠

≤ 1
4𝑞𝐵𝑡

1 + 𝑒−4𝑞𝐵𝑡

1 − 𝑒−4𝑞𝐵𝑡 . (3.49)
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Since 𝑞𝐵𝑡 ∼ 𝑐 is kept fixed by the parameter 𝑐 ≈ 1, the difference is
bounded from above independently from the magnetic field. Conse-
quently we can write

1
𝐶𝑆 = 1 + 𝐼1 − 𝐼2

𝐼2

𝐵→∞
→→→→→→→→→→ 1 + 𝒪 ( 1

log(𝑞𝐵/𝑚2))

and conversely 𝐶𝑆 𝐵→∞
→→→→→→→→→→ 1 − 𝒪 ( 1

log(𝑞𝐵/𝑚2)) . (3.50)

Strictly speaking, the above analysis is only valid at zero temperature.
However, it turns out that the asymptotic behavior at 𝐵 → ∞ remains
valid even at nonzero temperature. Intuitively this is clear, since then
the magnetic field 𝐵 is the largest scale in the system which cannot be
spoiled by any finite temperature 𝑇.

3.3.2 Results

Figures 3.8(a,c) show the ratio 𝐷𝑆
𝑑 (𝐵) for the down8 quark as a function

of the magnetic field for two different temperatures, 𝑇 = 124MeV
and 𝑇 = 170MeV, which are below and above the QCD crossover
temperature, respectively. Shown are curves for different lattice spacings
towards the continuum limit, 𝑎 → 0, at a fixed temperature 𝑇 = 1/(𝑁𝑡𝑎);
that is, a larger value of 𝑁𝑡 is closer to the continuum. The total physical
volume is kept fixed with an aspect ratio of 𝑁𝑠/𝑁𝑡 = 4. In both cases 𝐷𝑆

𝑑
rises from about 30% at 𝑒𝐵 ≈ 0.4GeV2 to 50%−80% at 𝑒𝐵 ≈ 1.6GeV2.
Also the curves for the finer lattices lie closer together, which implies
that a continuum limit may be possible for this observable.
Figures 3.8(b,d) show the ratio 𝐶𝑆

𝑑 (𝐵) as a function of the magnetic
field, again for the two temperatures 𝑇 = 124MeV and 𝑇 = 170MeV.
Here the ratio 𝐶𝑆

𝑑 (𝐵) rises from about 20% at 𝑒𝐵 ≈ 0.4GeV2 to about
50% at 𝑒𝐵 ≈ 1.6GeV2. However, in this case the curves even for the
finest lattice spacings still differ significantly, that is, there seems to be
no scaling towards the continuum limit for this observable. (This may
change for finer lattices.)
Provided we take the 𝑁𝑡 = 10 and 𝑁𝑡 = 12 curves to assess the validity
of the lowest Landau level approximation, we find that both 𝐶𝑆

𝑑 and 𝐷𝑆
𝑑

8 Since the lowest Landau level projector only acts in the valence sector, the results
for the up quark are the same only at a different value of the magnetic field, i.e.,
⟨𝜓𝑢Γ𝜓𝑢⟩𝐵 = ⟨𝜓𝑑Γ𝜓𝑑⟩2𝐵, where also the parity symmetry 𝐵 → −𝐵 has been used.
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Figure 3.8 The ratios 𝐷𝑆 and 𝐶𝑆 both for the down quark as a func-
tion of the magnetic field for different lattice spacings. For comparison
also the line 𝑒𝐵 = 3(𝜋𝑇 )2 where the magnetic field becomes the largest
dimensionful scale in the system is included.

are at most 50%-60% at our largest magnetic field 𝑒𝐵 ≈ 1.6GeV2. This
is well in accordance with the findings for the free case above: Both 𝐶𝑆

and 𝐷𝑆 only very gradually approach 1, where the deviation from 1 is
of the form 1/log(𝐵), cf. eq. (3.44) and (3.50).
For the spin polarization we can define similar ratios. Since the spin
polarization ⟨𝜓𝜎𝑥𝑦𝜓⟩ vanishes at 𝐵 = 0, the subtraction scheme to
extract the finite part has to be defined differently, see eq. (3.40) above.

𝐷𝑇
𝑓 (𝐵) =

⟨𝜓𝜎𝑥𝑦𝜓⟩𝐿𝐿𝐿
𝐵 − 𝑇 𝑑𝑖𝑣

⟨𝜓𝜎𝑥𝑦𝜓⟩𝐵 − 𝑇 𝑑𝑖𝑣 ,

with 𝑇 𝑑𝑖𝑣 from eq. (3.39) from above.
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In the free case only the lowest Landau level contributes to the spin
polarization, ⟨𝜓𝜎𝑥𝑦𝜓⟩𝐿𝐿𝐿

𝐵 = ⟨𝜓𝜎𝑥𝑦𝜓⟩𝐵, and consequently the ratio is
trivially 𝐷𝑇 ≡ 1 in this case.
In the case of the flowed observables, the ratio can simply be written as

𝐶𝑇
𝑓 (𝐵) =

⟨𝜓𝜎𝑥𝑦𝜓⟩𝐿𝐿𝐿
𝐵 (𝑡)

⟨𝜓𝜎𝑥𝑦𝜓⟩𝐵(𝑡)
,

where the flow time is set by 𝑡 = 𝑐2/(8𝑞𝐵) with 𝑐 ≈ 1. In the free case
this ratio is also trivially equal to unity.
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Figure 3.9 The ratios 𝐷𝑇

𝑑 and 𝐶𝑇
𝑑 for the down quark as a function of

the magnetic field for different lattice spacings. For comparison the line
𝑒𝐵 = 3(𝜋𝑇 )2 where the magnetic field becomes the largest dimensionful
scale in the system is included.

In Figures 3.9(a,c) the ratio 𝐷𝑇
𝑑 is shown as a function of the magnetic

field, again for the same two temperatures as above. The curves for dif-
ferent lattice spacings reveal that 𝐷𝑇

𝑑 scales nicely towards the continuum
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limit. All the curves show 𝐷𝑇
𝑑 > 1, namely that the spin polarization is

overestimated by the lowest Landau level approximation. This may be
understood as follows: For the lowest Landau level the eigenvalues of
𝜎𝑥𝑦 are close to 1, see Figure 3.4. The higher Landau levels must have
negative matrix elements, in order for 𝜎𝑥𝑦 to be a traceless operator.
This also entails negative contributions from higher Landau levels to
the spin polarization ⟨𝜓𝜎𝑥𝑦𝜓⟩. Nevertheless, the deviation of 𝐷𝑇

𝑑 from 1
is much milder than that of the condensate 𝐷𝑆

𝑑 above. It remains below
15% for the finest lattice spacing (𝑁𝑡 = 12). This is in good agreement
with the expectation from the free case where the ratio is trivially equal
to unity.
For the ratio 𝐶𝑇

𝑑 the situation is not so clear, as can be seen in Figures
3.9(b,d). Here the different lattice spacings show large cutoff effects,
e.g., sometimes 𝐶𝑇

𝑑 approaches 1 from above, and sometimes from
below.

3.4 Summarizing the results
In the last sections the Landau level structure of QCD in a background
magnetic field has been analyzed. In the free case, i.e., when no QCD
interactions are present, the spectrum of the Dirac operator can be con-
veniently grouped into Landau levels. The degeneracies of the Landau
levels are all proportional to the magnetic flux. The lowest Landau
level’s eigenvalues are independent of 𝐵, while the higher Landau levels
have squared eigenvalues proportional to 𝐵. Therefore with a rising
magnetic field the higher Landau levels become ever more suppressed,
while the lowest Landau level approximation becomes better and better.
In the case of full QCD, i.e., when color interactions are present, the
situation becomes much more involved because the color interactions mix
different Landau levels. Consequently it is no longer possible to easily
distinguish between different Landau levels. Nevertheless, it has been
shown that even in that case the lowest Landau level can be extracted in
a consistent manner. That this is at all possible has topological reasons.
Namely, it rests on the fact that the two-dimensional lowest Landau
level modes have zero-eigenvalues and the number of these modes is a
topological invariant, which depends solely on the magnetic flux but not
on the gluonic field configuration. On the lattice these zero-modes are
shifted to nonzero values, however, there is still a gap in the spectrum
between these modes and the rest. This gap corresponds to the largest
gap in Hofstadter’s butterfly in solid state physics, which also there
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separates the lowest Landau level from the higher ones. Thus in two
dimensions the lowest Landau level can be identified unambiguously
even in the interacting case.
In four dimensions this is no longer true. Nevertheless, for each 𝑥𝑦 plane
(perpendicular to ⃗⃗⃗ ⃗⃗𝐵) the lowest Landau level can be clearly identified.
In this way a projector 𝑃 can be constructed that projects a four-
dimensional mode precisely onto the lowest Landau level subspace in
each 𝑥𝑦 plane. In this way it was found that low lying four dimensional
modes, indeed, have a larger overlap with the lowest Landau level than
higher four-dimensional modes have.
With the help of the projector 𝑃 the lowest Landau level contribution
to a number of common fermionic observables could be defined. The
focus was mainly on the quark condensate 𝜓𝑃𝜓 and the spin polariza-
tion 𝜓𝑃𝜎𝑥𝑦𝑃𝜓. The ratios of the lowest Landau level approximated
observable to the full observable give an estimation of the validity of
the lowest Landau level approximation. In particular, the ratios are
constructed in such a way as to become unity in the limit 𝐵 → ∞.
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Figure 3.10 The ratio 𝐷𝑆
𝑑 showing the validity of the

condensate in the 𝑇-𝐵 plane. The lighter the color, the
closer the lowest Landau level approximation is to the full
result. The orange dots indicate the simulation points and
black line, 𝑞𝑑𝐵 = (𝜋𝑇 )2, marks when the magnetic field
becomes the largest dimensionful scale in the system.

For the quark condensate the lowest Landau level approximation is found
to generally underestimate the full condensate. For the spin polarization
the opposite is true, namely, the spin polarization is overestimated by
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the lowest Landau level approximation. Still, in both cases the full
observable is slowly approached by the lowest Landau level approximated
one with rising magnetic field.
Finally, Figure 3.10 shows the results for 𝐷𝑆

𝑑 (at 𝑁𝑡 = 12) in the 𝑇 − 𝐵
plane for a wide range of temperatures and magnetic fields. Darker
regions indicate where the approximation becomes worse and worse, that
is, where the approximation is only 50%, 37%, and 25% of the full result,
respectively. White areas on the other hand indicate that there the
lowest Landau level approximation makes up more that 50% of the full
result. The contours have been found using splines of 𝐷𝑆

𝑑 (𝐵) to calculate
the magnetic field at which 𝐷𝑆

𝑑 reaches a given percentage. Using these
threshold values at the different temperatures a second spline, this time
in 𝑇, was employed to give the contours shown in the figure. These
results can also be compared with the naive expectation that the lowest
Landau level approximation becomes valid when the magnetic field
becomes the largest scale in the system, i.e., when 𝑞𝐵 > (𝜋𝑇 )2.
All in all, the above analysis shows that the validity of the lowest Landau
level approximation can be assessed quantitatively using first principle
methods, i.e., lattice simulations. One has to stress that the findings
above are only for the valence part. A lowest Landau level projection
for the virtual sea quarks is left for future studies.



4 Addressing the sign problem with
dual variables

Lattice gauge theory, and lattice QCD in particular, has been immensely
successful in computing physical quantities from first principles. Among
these were decay constants as well as hadronic masses, see e.g., [92,
93]. Moreover, also the thermodynamic properties can be studied quite
naturally. Nevertheless, problems arise as soon as one considers non-
zero density, that is, an abundance of particles over anti particles or
vice versa. In that case we face difficulties when applying the usual
Monte-Carlo methods with importance sampling due to the occurrence
of a sign problem: In the Euclidean path integral representation of the
partition function,

𝒵 = ∫ 𝒟Φ 𝑒−𝑆[Φ],

each configuration of the fields Φ is weighted with the negative exponent
of the action 𝑆[Φ]. As long as the action is real, 𝑒−𝑆 can be viewed as a
probability distribution. However, when the action is complex this is
no longer the case and we are confronted with a sign problem.
Over the years there have been numerous proposals of how to overcome
the sign problem. These include reweighting, stochastic quantization,
dual variables, and Lefschetz-thimbles. Reweighting works by adding
the imaginary part of the action to the observable, while using the real
part of the action as the weight of the probability distribution. Thus
the expectation value of an observable 𝑋 can be computed as

⟨𝑋⟩complex = ⟨𝑋𝑒−𝑖ℑ(𝑆)⟩real
⟨𝑒−𝑖ℑ(𝑆)⟩real

, (4.1)

where ⟨...⟩complex denotes the expectation value with respect to the
complex action and ⟨...⟩real denotes the expectation value with respect
to only the real part of the action. Even though this is an exact
rewriting with no approximations, in practice there is the problem
that the imaginary part of the action may be highly oscillatory. Thus
evaluating eq. (4.1) numerically is tricky because delicate cancellations
have to appear. Hence this method only works when the so called
reweighting factor 𝑟 = ⟨𝑒−𝑖ℑ(𝑆)⟩real is not too small. Physically this
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means that the free energy difference between the system with ℑ(𝑆) = 0
and ℑ(𝑆) ≠ 0 should be small.
Complex-Langevin is a form of stochastic quantization. It works by
complexifying field space and then using the Langevin equation for the
evolution of the fields. Under certain conditions it can be shown that
the resulting field configurations at large evolution times are distributed
according to the original action. The advantage of the Langevin-method
is that a Markov-chain can be generated without importance sampling.
While the (real) Langevin method works very well in many different
contexts, see e.g., [94–96], the complexified version has serious prob-
lems, in that convergence to the right distribution is not guaranteed
in all cases[97–99]. Moreover, it is not clear whether these problems are
technical or principal in nature.
For the dual variable approach notice that even though the integrand in
the partition function can be complex, the partition function itself has
to be real for a stable physical system in equilibrium, i.e., for a partition
function that can be represented as

𝒵 = Tr𝑒−𝛽(𝐻̂−𝜇𝑁̂). (4.2)

Thus all the imaginary contributions have to cancel. The partition
function can be decomposed into a sum/integral over only positive
terms in arbitrarily many different ways. The problem is to find such
a useful representation for the partition function for a given (complex)
action. One way to obtain such a decomposition is to analytically
integrate out some or all of the fields appearing in the action at the
expense of introducing new variables while doing so. It has then to be
checked whether the resulting decomposition has the desired properties.
Finally, the Lefschetz-thimble method is in some sense similar to the
Langevin approach. The idea is to write the partition function as a sum
over different so called thimbles, on which the imaginary part of the
action remains constant. This relies on the deformation of the integration
contour for complex integrals. One such thimble can be defined as the
union of all paths of steepest decent ending on a particular critical point
of the action. Now, if only a few of the thimbles contribute to the
partition function, the sign problem is solved, in the sense that one has
only to sum up a few terms with different complex phases. Whether
this is the case in realistic examples, e.g., QCD, remains to be seen.
In the following we will focus on dual variables. First, the situation in
QCD is reviewed; afterwards, the particular example of QCD with scalar
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quarks is presented. If not indicated otherwise, the chemical potential
𝜇 and the mass 𝑚 are measured in lattice units.

4.1 QCD
The QCD partition function for one fermion flavor can be written as

𝒵(𝜇) = ∫ 𝒟𝑈𝒟𝜓𝒟𝜓 𝑒−𝑆𝑔−𝑆𝑓(𝜇), (4.3)

with 𝑆𝑔 the gauge action and the fermionic action using staggered
fermions

𝑆𝑓(𝜇) = ∑
𝑥

[ ∑
𝜈

(𝜂𝜈(𝑥)𝑒𝜇𝛿𝜈,0̂𝜓(𝑥)𝑈𝜈(𝑥)𝜓(𝑥 + 𝜈)

− 𝜂𝜈(𝑥)𝑒−𝜇𝛿𝜈,0̂𝜓(𝑥 + 𝜈)𝑈†
𝜈 (𝑥)𝜓(𝑥))

+ 2𝑚𝜓(𝑥)𝜓(𝑥)]. (4.4)

As long as 𝜇 = 0 the first and the second terms in the sum are complex
conjugates of each other, and thus the action yields a positive determi-
nant when the Grassmann fields are integrated out. Similarly also for
𝜇 purely imaginary the action remains real. For real 𝜇, however, the
action becomes complex and we end up with a sign problem. The gauge
action 𝑆𝑔 does not couple to the chemical potential and thus remains
real irrespective of 𝜇.
Since the gauge action plays no role for the sign problem, it is often
neglected when studying the sign problem. This is equivalent to the
strong coupling limit, where the lattice coupling is set to 𝛽 = 0. The
first proposal of dual variables in 𝑈(3) QCD was in [100]. This was
then extended to the case of 𝑆𝑈(3) at finite baryon density by Karsch
& Mütter in [101]. Later works contributed to these formulations by
refining the algorithmic details and mapping out the phase diagram[102].
A similar construction works with center subsets, where instead of the
whole 𝑆𝑈(3) integration only ℤ3 rotations are performed[103,104]. The
resulting formulation does retain the 𝑆𝑈(3) gauge links, but contains
the same building blocks[103], since the 𝑆𝑈(3) integration and the ℤ3
summation project onto the same terms.
In order to obtain the dual formulation, note that in the strong coupling
limit the integration over the gauge field variables 𝑈𝜈(𝑥) factorizes. Also
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the exponential at a single link can be factorized further. With the
shorthand notation

𝑢 = 𝜂𝜈(𝑥)𝜓(𝑥)𝑈𝜈(𝑥)𝜓(𝑥 + 𝜈),
𝑢̄ = −𝜂𝜈(𝑥)𝜓(𝑥 + 𝜈)𝑈†

𝜈 (𝑥)𝜓(𝑥), (4.5)

we can expand the kinetic term at a single link as

𝑒𝑢𝑒𝜇𝛿𝜈,0̂ 𝑒𝑢̄𝑒−𝜇𝛿𝜈,0̂ =
3

∑
𝑚,𝑛=0

1
𝑚!𝑛!(𝑒

𝜇𝛿𝜈,0̂𝑢)𝑚(𝑒−𝜇𝛿𝜈,0̂ 𝑢̄)𝑛

=1+ 𝑢𝑢̄ + 1
4𝑢2𝑢̄2 + 1

36𝑢3𝑢̄3 + 1
6(𝑒3𝜇𝛿𝜈,0̂𝑢3 + 𝑒−3𝜇𝛿𝜈,0̂ 𝑢̄3)

+ terms vanishing under 𝑆𝑈(3) integration, (4.6)

where it has been used that 𝑢 and 𝑢̄ are Grassmann bilinears and hence
commuting. There are also a number of mixed terms that vanish when
the 𝑆𝑈(3) integration is performed. For instance the term 𝑢 vanishes
due to ∫ 𝑑𝑈𝑈 = 0, and similarly for the other mixed terms. Only the
terms written explicitly do not vanish under the 𝑆𝑈(3) integration. In
order to perform the integrals, we can make use of the 𝑆𝑈(3) integrals[23]

∫ 𝑑𝑈 𝑈𝑎𝑏(𝑈†)𝑐𝑑 = 1
3𝛿𝑎𝑑𝛿𝑏𝑐, (4.7)

∫ 𝑑𝑈 𝑈𝑎𝑏𝑈𝑐𝑑𝑈𝑒𝑓 = 1
6𝜀𝑎𝑐𝑒𝜀𝑏𝑑𝑓. (4.8)

With the help of (4.7) the integral over the 𝑢𝑢̄-term gives

∫ 𝑑𝑈 𝑢𝑢̄ = 1
3𝜓(𝑥)𝜓(𝑥)𝜓(𝑥 + 𝜈)𝜓(𝑥 + 𝜈). (4.9)

The 𝑢2𝑢̄2-term is somewhat more complicated. Due to the Grass-
mann nature of the 𝜓s we can substitute the color components 𝜓𝑎𝜓𝑐 =
1
2𝜀𝑎𝑐𝑒𝜀𝐴𝐶𝑒𝜓𝐴𝜓𝐶 and similarly for the 𝜓s. Denoting with 𝜓′ = 𝜓(𝑥 + 𝜈),
the 𝑢2-term becomes

𝑢2 = 1
4𝜓𝐴𝜓′

𝐵𝜓𝐶𝜓′
𝐷𝜀𝑎𝑐𝑒𝜀𝐴𝐶𝑒𝜀𝑏𝑑𝑓𝜀𝐵𝐷𝑓𝑈𝑎𝑏𝑈𝑐𝑑.

The two 𝑈s can be contracted[105] with two of the 𝜀s, using 𝜀𝑎𝑐𝑒𝜀𝑏𝑑𝑓𝑈𝑎𝑏𝑈𝑐𝑑 =
2(𝑈†)𝑒𝑓, which gives
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𝑢2 = 1
2𝜓𝐴𝜓′

𝐵𝜓𝐶𝜓′
𝐷𝜀𝐴𝐶𝑒(𝑈†)𝑒𝑓𝜀𝐵𝐷𝑓.

In the same way the 𝑢̄2-term can be reduced to

𝑢̄2 = 1
2𝜓′

𝐴𝜓𝐵𝜓′
𝐶𝜓𝐷𝜀𝐴𝐶𝑒𝑈𝑒𝑓𝜀𝐵𝐷𝑓.

Thus for the 𝑈 integration we can again use eq. (4.7), giving

∫ 𝑑𝑈 𝑢2𝑢̄2 = 1
3((𝜓𝜓)(𝑥))2((𝜓𝜓)(𝑥 + 𝜈))2. (4.10)

The remaining 𝑢3- and 𝑢̄3-terms can also be simplified using the Grass-
mann nature of the 𝜓s:

𝑢3 = 𝜂𝜈(𝑥)𝜓𝑎𝑈𝑎𝑏𝜓′
𝑏𝜓𝑐𝑈𝑐𝑑𝜓′

𝑑𝜓𝑒𝑈𝑒𝑓𝜓′
𝑓

= −𝜂𝜈(𝑥)𝜓3𝜓′3𝜀𝑎𝑐𝑒𝜀𝑏𝑑𝑓𝑈𝑎𝑏𝑈𝑐𝑑𝑈𝑒𝑓

= −6𝜂𝜈(𝑥)𝜓3(𝑥)𝜓3(𝑥 + 𝜈),

where it was used that 𝜀𝑎𝑐𝑒𝜀𝑏𝑑𝑓𝑈𝑎𝑏𝑈𝑐𝑑𝑈𝑒𝑓 = 6 det 𝑈 = 6 and the short-
hands 𝜓3 = 𝜓1𝜓2𝜓3 and 𝜓3 = 𝜓1𝜓2𝜓3 were introduced. In the same
way 𝑢̄3 gives

𝑢̄3 = 6𝜂𝜈(𝑥)𝜓3(𝑥 + 𝜈)𝜓3(𝑥).

Therefore the 𝑈 integration becomes trivial for those terms, and we can
write

∫𝑑𝑈 𝑒𝑢𝑒𝜇𝛿𝜈,0̂ 𝑒𝑢̄𝑒−𝜇𝛿𝜈,0̂ = 1 + 1
3𝜓𝜓(𝑥)𝜓𝜓(𝑥 + 𝜈) + 1

12 (𝜓𝜓(𝑥)𝜓𝜓(𝑥 + 𝜈))2

+ 1
36𝜓3𝜓3(𝑥)𝜓3𝜓3(𝑥 + 𝜈)

− 𝜂𝜈(𝑥)𝑒3𝜇𝛿𝜈,0̂𝜓3(𝑥)𝜓3(𝑥 + 𝜈)

+ 𝜂𝜈(𝑥)𝑒−3𝜇𝛿𝜈,0̂𝜓3(𝑥 + 𝜈)𝜓3(𝑥). (4.11)

Similarly, also the mass term can be expanded at each site:

𝑒2𝑚𝜓𝜓(𝑥) = 1 + 2𝑚𝜓𝜓(𝑥) + (2𝑚)2

2 (𝜓𝜓(𝑥))2 + (2𝑚)3

6 (𝜓𝜓(𝑥))3. (4.12)
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The partition function is the product of all links as in eq. (4.11) together
with all sites as in eq. (4.12), integrated over the Grassmann fields at all
sites. The Grassmann integration introduces a number of constraints
on which terms contribute to the partition function. Using the common
definition for Grassmann integrals, ∫ 𝑑𝜉 = 0 and ∫ 𝑑𝜉 𝜉 = 1, one finds
that at each site all the color components of 𝜓 and 𝜓 have to be present,
in order to have a nonvanishing contribution.
The first two lines in eq. (4.11) add equal amounts of 𝜓 and 𝜓 on each of
the two neighboring sites. Also the mass terms only add equal amounts
of 𝜓 and 𝜓 to a site. The 𝜇-dependent terms, on the other hand, only
add 𝜓3 on one site and 𝜓3 on a neighboring site, and vice versa. This
means that all the color components on one site are already saturated
for 𝜓, but not for the conjugate 𝜓 on that same site. The only way to
also saturate the color components of the conjugate field is by building
up closed, nonintersecting loops. Since these are oriented and they
depend on the chemical potential, they are referred to as baryonic loops.
The other terms do not depend on 𝜇 and are thus called mesonic. Also
they can form paths, in order to saturate the Grassmann fields on the
sites, which do not necessarily have to be closed.
Provided that the Grassmann fields are saturated at every site, the
Grassmann integration can be performed, yielding a dual configuration.
The dual configuration consists of a set of three occupation numbers or
dual variables:

𝑛(𝑥) ∈ {0, 1, 2, 3}, 𝑘𝜈(𝑥) ∈ {0, 1, 2, 3}, 𝑏𝜈(𝑥) ∈ {−1, 0, 1} (4.13)

Here 𝑛(𝑥) stands for one of the mass terms in eq. (4.12). 𝑘𝜈(𝑥) is the
mesonic occupation number, i.e., the first two lines of eq. (4.11). And
finally, 𝑏𝜈(𝑥) is the baryonic occupation number, namely, the last two
lines of eq. (4.11). The constraint for the baryonic variable is that
∑𝜈 𝑏𝜈(𝑥) = 09, which essentially states flux conservation on each site,
thus ensuring that only closed loops can exist. Furthermore, the 𝑏𝜈(𝑥)
can only be nonzero if 𝑘𝜈 = 𝑛 = 0 on the sites 𝑥 and 𝑥 + 𝜈. Hence the
baryonic parts of space are completely disjoint from the rest. A value of
𝑏𝜈(𝑥) = −1 is interpreted as an antibaryon hopping from 𝑥 to 𝑥 + 𝜈, or
equivalently a baryon hopping from 𝑥 + 𝜈 to 𝑥. In this sense a baryon
leaving one site can always be interpreted as an antibaryon entering a
neighboring site, and vice versa.

9 The sums over 𝜈 are understood to go over all 2 ⋅ 𝑑 directions, i.e., all forward and
backward hoppings.
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The other two variables are subject to the constraint ∑𝜈 𝑘𝜈(𝑥)+𝑛(𝑥) = 3.
This means that the 𝑘s can either also form closed paths, or the paths
have to end with mass terms 𝑛. The case 𝑘𝜈 = 3 is somewhat special
as it is also completely disjoint from all neighboring sites. Moreover,
it can also be seen as a special kind of baryon loop, which after one
forward hopping immediately closes by hopping backward again; thus
being 𝜇-independent.
The partition function can now be entirely written in terms of the dual
variables 𝑘𝜈, 𝑛, and baryonic loops ℓ formed by the 𝑏𝜈s[102]:

𝒵(𝜇) = (4.14)

= ∑
{𝑘,𝑛,𝑙}

(∏
𝑥,𝜈

(3 − 𝑘𝜈(𝑥))!
3!𝑘𝜈(𝑥)! ) (∏

𝑥

3!
𝑛(𝑥)!(2𝑚)𝑛(𝑥)) (∏

ℓ
𝑊ℓ(𝜇))) ,

where the weight of a baryonic loop is given by

𝑊ℓ(𝜇) = 𝑒3𝜇𝑁𝑡𝑤𝑡

(3!)𝑁ℓ
(−1)𝑁−+𝑤𝑡+1 ∏

(𝑥,𝜈)∈ℓ
𝜂𝜈(𝑥).

𝑁ℓ is the length of the loop, 𝑤𝑡 ∈ ℤ is the winding number in tempo-
ral direction, and 𝑁− counts the total number of backward hoppings10.
Therefore there is a sign problem remaining in this formulation. This is
due to the closing of the loop, the antiperiodic boundary conditions for
fermions in the temporal direction, the backward hoppings, and the stag-
gered phases 𝜂𝜈(𝑥). At 𝜇 = 0 the sign problem can be circumvented by
a clever combination of similar configurations[101]. For 𝜇 > 0, however,
a sign problem reappears.
Figure 4.1 shows an example configuration of the dual variables. The
configuration has two baryonic loops: one that closes trivially and one
with a winding in the temporal direction, introducing a factor 𝑒3𝜇𝑁𝑡 to
the weight. Notice that this produces the correct factor exp(3𝜇𝑁𝑡) =
exp(𝜇𝐵𝑎𝑟𝑦𝑜𝑛/𝑇 ), as it should. (Here 𝜇𝐵𝑎𝑟𝑦𝑜𝑛 is measured in physical
units, as opposed to the conventions so far, that 𝜇 is measured in lattice
units.) The total sign of the configuration is positive. It is important
to notice that no site is unoccupied and that the baryon loops are
completely disjoint from the mesonic sites, which is both due to the
constraints from the Grassmann integration.

10 One could equally well use the number of forward hoppings, since for even-sized
lattices the two give the same parity.
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Figure 4.1 An example configuration on a 6 × 6 lattice
for the dual variables 𝑘, 𝑛, 𝑏. Dots symbolize sites where
𝑛 is nonzero. The mesonic variables 𝑘 are shown as un-
oriented bonds. The baryonic variables 𝑏 are visualized as
directed bonds, forming closed loops. One trivially closed
loop and one that winds around in the temporal direction
are shown. The loop with the temporal winding intro-
duces a factor 𝑒3𝜇𝑁𝑡 to the weight. The total sign of this
particular configuration is positive.

4.2 QCD with scalar quarks
The following section is based on the publications [8,106] together with
Falk Bruckmann.
As we have seen in the previous section, QCD still has a sign problem
even in the dual formulation11. Nevertheless, the dual formulation makes
it transparent where the sign problem comes from. Namely, signs are

11 This refers to the strong coupling limit. Full QCD also has a sign problem, but until
now there has not been a dual formulation for full QCD.
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introduced by (i) the closing of the fermion loops, (ii) the antiperiodic
temporal boundary conditions for fermions, (iii) the staggered phases,
and (iv) the relative sign in the Dirac operator, since it is a first order
derivative. Hence it seems that the sign problem is purely fermionic in
nature.
In this way it may be expected that there would be no sign problem
if quarks were scalar particles rather than fermions. Even so, this
conjecture is nontrivial since the 𝑆𝑈(3) gauge links are complex and
the group integral are not necessarily positive[22]. In the following, this
conjecture will be analyzed. The setup is more or less the same as in
the previous section, that is, we still work in the strong coupling regime,
only now the fermionic action 𝑆𝑓 is replaced by a bosonic one 𝑆𝑏.

𝑆𝑏 = ∑
𝑥

𝑁𝑓

∑
𝑓=1

((𝑚2 + 2𝑑)𝜙𝑓†(𝑥)𝜙𝑓(𝑥) − (4.15)

−
𝑑−1
∑
𝜈=0

(𝑒𝜇𝛿𝜈,0̂𝜙𝑓†(𝑥)𝑈𝜈(𝑥)𝜙𝑓(𝑥 + 𝜈) + 𝑒−𝜇𝛿𝜈,0̂𝜙𝑓†(𝑥 + 𝜈)𝑈†
𝜈 (𝑥)𝜙𝑓(𝑥))) .

In the first line there is a mass term for the complex scalar field 𝜙𝑓 for
each flavor. For simplicity we take all the flavors to have the same mass
𝑚; nevertheless, the following discussion holds true also for different
masses 𝑚𝑓. The second line, together with the 2𝑑-term in the first, is a
discretized covariant Laplacian in 𝑑 dimensions, using the 𝑆𝑈(3) gauge
field 𝑈. For the temporal direction 𝜈 = 0̂ we couple a chemical potential
𝜇 to the scalar field in the usual way.
We can rewrite the action in the following form:

𝑆𝑏 = ∑
𝑥

( − ∑
𝜈

Tr(𝛼𝜈𝐽𝜈(𝑥)𝑈𝜈(𝑥) + 𝛼−1
𝜈 𝐽†

𝜈 (𝑥)𝑈†
𝜈 (𝑥)) (4.16)

+ ∑
𝑓

((2𝑑 + 𝑚2)𝜙𝑓†(𝑥)𝜙𝑓(𝑥))),

𝐽𝜈(𝑥) = ∑
𝑓

𝜙𝑓(𝑥 + 𝜈)𝜙𝑓†(𝑥) forward hopping, (4.17)

𝐽†
𝜈 (𝑥) = ∑

𝑓
𝜙𝑓(𝑥)𝜙𝑓†(𝑥 + 𝜈) backward hopping, (4.18)

where we constructed the forward- and backward-hopping matrices 𝐽
and 𝐽† from the scalar fields at adjacent sites and 𝛼𝜈 = 𝑒𝜇𝛿𝜈,0̂ is the
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fugacity factor. In the case of 𝜇 = 0 or when 𝜇 is purely imaginary,
the fugacity factor fulfills 𝛼−1

𝜈 = 𝛼∗
𝜈, resulting in a real action, 𝑆𝑏 ∈ ℝ.

However, in general for 𝜇 ≠ 0 the action becomes complex and we end
up with a sign problem, similar to the fermionic case.

4.2.1 Assessing the sign problem

In order to assess the severity of the sign problem we integrate over the
scalar fields 𝜙 in the partition function 𝑍, resulting in a determinant
representation:

𝑍 = ∫ 𝒟𝑈 ∫ 𝒟𝜙𝒟𝜙†𝑒−𝑆 = ∫ 𝒟𝑈 1
det(𝑀[𝑈])𝑁𝑓

, (4.19)

𝑀𝑥,𝑦 = (𝑚2 + 2𝑑)𝛿𝑥,𝑦 − ∑
𝜈

(𝑒𝜇𝛿𝜈,0̂𝑈𝜈(𝑥)𝛿𝑥+𝜈,𝑦 + 𝑒−𝜇𝛿𝜈,0̂𝑈𝜈(𝑥)†𝛿𝑦+𝜈,𝑥) .

A measure for the severity of the sign problem is the phase quenched
reweighting factor:

𝑟𝑝𝑞 = ⟨(| det(𝑀)|
det(𝑀) )

𝑁𝑓

⟩ . (4.20)

For 𝜇 = 0 the determinant is real and positive, and hence 𝑟𝑝𝑞 = 1. For
large 𝜇 the dominating contribution to the determinant is again positive,
such that also here 𝑟𝑝𝑞 = 1. This comes from the fact that det 𝑀
is a polynomial in 𝑒𝜇, i.e., det 𝑀 = 𝑒3𝑉 𝜇(1 + 𝒪(𝑒−𝜇)). In the range
𝜇 ∈ [0.5, 2] the reweighting factor differs significantly from 1. For these
intermediate values of the chemical potential, delicate cancellations can
occur, as can be seen in Figure 4.2.
In order to compare different (lattice) volumes 𝑉 it is useful to consider
the free energy density difference Δ𝑓, which is defined by

𝑟𝑝𝑞 = 𝑒−𝑉 Δ𝑓. (4.21)

A naive extrapolation of the data points in Figure 4.3 yields the values
𝜇𝑐 = 1.233(1) and Δ𝑓𝑐 = 1.33(2) for where the sign problem is most
severe. This would result in reweighting factors 𝑟𝑝𝑞(𝜇𝑐) ≈ 10−10 already
for a 4 × 4 lattice. Hence it is not feasible to simulate the theory around
𝜇𝑐 with reweighting. Therefore another representation of the partition
function is needed.
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Figure 4.2 The phase quenched reweighting factor 𝑟𝑝𝑞

is shown as a function of the chemical potential 𝜇 in lattice
units. The simulation parameters are 𝑁𝑓 = 3, 𝑑 = 2,
and 105 configurations were used. The different data sets
correspond to different lattice sizes. In the region 𝜇 ∈
[0.7, 1.6] the autocorrelation becomes so large that neither
the errors, nor the mean values are reliable any more, and
thus these points are omitted in the plot.
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Figure 4.3 The free energy density Δ𝑓 as a function
of 𝜇. A naive extrapolation, yields 𝜇𝑐 = 1.233(1) and
Δ𝑓𝑐 = 1.33(2).

4.2.2 Dualizing scalar QCD

We start from eq. (4.16) for the action. In the partition function
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𝑍 =∫𝒟𝜙𝒟𝜙†∫𝒟𝑈 ∏
𝑥,𝜈

𝑒Tr(𝐽𝜈(𝑥)𝑈𝜈(𝑥)+𝑈†
𝜈(𝑥)𝐽†

𝜈(𝑥)) ∏
𝑥,𝑓

𝑒−(2𝑑+𝑚2)|𝜙𝑓(𝑥)|2(4.22)

we perform the integration over the gauge fields 𝑈 first. The 𝑆𝑈(3)
integral over a single link can be performed[107], giving a five-fold sum12

𝐼(𝐽, 𝛼𝜈) = ∫ 𝑑𝑈𝑒Tr(𝛼𝜈𝐽𝑈+𝛼−1
𝜈 𝑈†𝐽†) =

=
∞

∑
𝑗,𝑘,𝑙,𝑛,𝑛̄=0

2𝛼3(𝑛−𝑛̄)
𝜈

𝑔(1)!𝑔(2)!
𝑋𝑗𝑌 𝑘𝑍𝑙Δ𝑛Δ̄𝑛̄

𝑗!𝑘!𝑙!𝑛!𝑛̄! , (4.23)

where 𝑔(1) and 𝑔(2) are shorthands for

𝑔(1) = 𝑘 + 2𝑙 + 𝑛 + 𝑛̄ + 1 and 𝑔(2) = 𝑗 + 2𝑘 + 3𝑙 + 𝑛 + 𝑛̄ + 2.(4.24)

The other variables in eq. (4.23) are functions of the hopping matrices
𝐽 and 𝐽†:

𝑋 = Tr(𝐽𝐽†), 𝑌 = 1
2[𝑋2 − Tr((𝐽𝐽†)2)], 𝑍 = det(𝐽𝐽†), (4.25)

Δ = det(𝐽), Δ̄ = det(𝐽†).

The 𝑆𝑈(3) integrals in eq. (4.22) factorize and thus we can apply this
expansion for each bond separately,

𝑍 = ∑
{𝑗,𝑘,𝑙,𝑛,𝑛̄}

∫ 𝒟𝜙𝒟𝜙†𝜌(|𝜙|) ∏
𝑥,𝜈

(
2𝛼3(𝑛−𝑛̄)

𝜈
𝑔(1)𝑔(2)

𝑋𝑗𝑌 𝑘𝑍𝑙Δ𝑛Δ̄𝑛̄

𝑗!𝑘!𝑙!𝑛!𝑛̄! )
𝜈

(𝑥),

𝜌(|𝜙|) = ∏
𝑥,𝑓

𝑒−(2𝑑+𝑚2)|𝜙𝑓(𝑥)|2 , (4.26)

where [...]𝜈(𝑥) means that all the functions 𝑋, 𝑌 , 𝑍, Δ, Δ̄ and variables
𝑗, 𝑘, 𝑙, 𝑛, 𝑛̄ have a direction index and a position argument. In this way
the partition function is now written in terms of a sum over the dual
variables, 𝑗, 𝑘, 𝑙, 𝑛, 𝑛̄, and an integral over the scalar fields 𝜙. Thus
a configuration in this new representation is given by a set of values
for the dual variables 𝑗, 𝑘, 𝑙, 𝑛, 𝑛̄ on all bonds, together with a set of
values for the scalar field 𝜙 on each site. More details on the admissible
configurations of the dual variables will be discussed in the next section.

12 Also the term (det 𝐽 + det 𝐽 †)𝑛 in [107] has been expanded into separate terms. Also
there is a typo in the definition of 𝑌 in the reference.
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As can be seen from the partition function, the only 𝜇-dependence
comes from the fugacity factor 𝛼𝜈 = 𝑒𝜇𝛿𝜈,0̂ , which itself only contributes
when 𝑛 or 𝑛̄ are nonzero. For this reason we call 𝑛 and 𝑛̄ baryonic
variables. Similarly, Δ and Δ̄ are called baryonic building blocks, since
they describe the hopping of three quarks or antiquarks on a bond.
The other variables introduce no 𝜇-dependence; consequently, 𝑗, 𝑘, and
𝑙 will be called mesonic variables. And, since 𝑋, 𝑌 , and 𝑍 describe the
hopping of equal amounts of quarks and antiquarks on a bond, they are
called mesonic building blocks.

4.2.3 Discussion
To assess the sign problem in the dual formulation we have to analyze the
functions 𝑋, 𝑌 , 𝑍, Δ, and Δ̄: The functions 𝑋, 𝑌, and 𝑍 only depend on
𝐽𝐽†. Now 𝐽𝐽† is a positive matrix, with eigenvalues 𝜆𝑖 ≥ 0. Therefore
we have

𝑋 = ∑
𝑖

𝜆𝑖 ≥ 0,

𝑌 = 1
2 [∑

𝑖,𝑗
𝜆𝑖𝜆𝑗 − ∑

𝑖
𝜆2

𝑖 ] = ∑
𝑖<𝑗

𝜆𝑖𝜆𝑗 ≥ 0, (4.27)

𝑍 = ∏
𝑖

𝜆𝑖 ≥ 0.

For Δ and Δ̄ the situation is different, as they depend only on 𝐽 and 𝐽†,
respectively. And since 𝐽 and 𝐽† in general have complex eigenvalues,
the same is true for Δ and Δ̄. One can work out that

Δ𝜈(𝑥) = det (
𝑁𝑓

∑
𝑓=1

𝜙𝑓(𝑥 + 𝜈)𝜙𝑓†(𝑥))

= 1
3!

𝑁𝑓

∑
𝑓1,𝑓2,𝑓3=1

𝑑𝑓1𝑓2𝑓3
(𝑥 + 𝜈)𝑑∗

𝑓1𝑓2𝑓3
(𝑥)

= 1
3! ∑

𝜎
𝑑𝜎1𝜎2𝜎3

(𝑥 + 𝜈)𝑑∗
𝜎1𝜎2𝜎3

(𝑥), (4.28)

where 𝑑𝑓1𝑓2𝑓3
(𝑥) = det(𝜙𝑓1(𝑥)|𝜙𝑓2(𝑥)|𝜙𝑓3(𝑥)) denotes the determinant

with the different flavors as columns. The map 𝜎 runs over all choices of
3 out of 𝑁𝑓, i.e., 𝜎 : {1, 2, 3} → {1, ..., 𝑁𝑓}. The validity of eq. (4.28) can
easily be shown by writing the determinant with Levi-Civita-Symbols:
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det ( ∑
𝑓

𝜙𝑓𝜑𝑓†) = 1
3! ∑

𝑓1,𝑓2,𝑓2

𝜀𝑖𝑗𝑘𝜀𝑙𝑚𝑛𝜙𝑓1
𝑖 𝜑∗𝑓1

𝑙 𝜙𝑓2
𝑗 𝜑∗𝑓2

𝑚 𝜙𝑓3
𝑘 𝜑∗𝑓3

𝑛

= 1
3! ∑

𝑓1,𝑓2,𝑓2

𝜀𝑖𝑗𝑘𝜙𝑓1
𝑖 𝜙𝑓2

𝑗 𝜙𝑓3
𝑘 (𝜀𝑙𝑚𝑛𝜑𝑓1

𝑙 𝜑𝑓2
𝑚𝜑𝑓3

𝑛 )
∗

= 1
3! ∑

𝑓1,𝑓2,𝑓2

det(𝜙𝑓1 |𝜙𝑓2 |𝜙𝑓3) det(𝜑𝑓1 |𝜑𝑓2 |𝜑𝑓3)∗. (4.29)

As a consequence there is a flavor antisymmetry in the baryonic hopping
term Δ = det 𝐽, and likewise for the antibaryon Δ̄ = det 𝐽†. This makes
it also clear that for 𝑁𝑓 < 3, there cannot be any dependence on the
chemical potential, as then Δ = Δ̄ = 0. The reason for this is that
the determinant dictates that a baryon must be antisymmetric in three
flavors, compensating the color antisymmetry. Hence there is also no sign
problem for one and two flavors in the dual formulation. Nevertheless,
for 𝑁𝑓 ≥ 3 apparently a sign problem remains.

4.2.4 Three flavors

In the following we restrict the discussion to the simplest nontrivial case,
𝑁𝑓 = 3. In this case the sum in eq. (4.28) collapses to a single term

Δ𝜈(𝑥) = det (𝜙1|𝜙2|𝜙3)(𝑥 + 𝜈) det (𝜙1|𝜙2|𝜙3)∗(𝑥). (4.30)

In order to approach the remaining sign problem, notice that the par-
tition function also contains the integration over the matter field 𝜙.
Performing these analytically becomes increasingly complicated, when
several powers of the mesonic and baryonic building blocks are involved.
(The convergence of these integrals is guaranteed because the Gaussian
factor in 𝜌(|𝜙|) suppresses large field values.) Thus it seems advanta-
geous to do the 𝜙 integrations also numerically. Nevertheless, we can
use one important feature of this integration. At each site and for each
flavor- and color-component the integrals are of the form

∫ 𝑑𝜙𝑑𝜙∗ 𝑒−#|𝜙|2(𝜙)𝐴(𝜙∗)𝐵 ∼ 𝛿𝐴𝐵, (4.31)

where 𝛿𝐴𝐵 comes from integrating over the phase of 𝜙. As a consequence,
at each site there must be an equal power of 𝜙 and 𝜙∗ fields, otherwise
that term will not contribute to the partition function. Only when
the constraint 𝐴𝑓

𝑎(𝑥) != 𝐵𝑓
𝑎(𝑥) on the exponents in eq. (4.31) is fulfilled
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for each flavor 𝑓 and color component 𝑎 at each site, that term will
contribute to the partition function.
It will also be useful to introduce coarser constraints by summing over
the different flavors and colors, yielding ∑𝑓,𝑎 𝐴𝑓

𝑎(𝑥) = ∑𝑓,𝑏 𝐵𝑓
𝑎(𝑥). The

mesonic building blocks contain 𝜙 and 𝜙∗ in equal amounts on the same
site. Hence they already fulfill the constraint. The baryonic building
blocks are different; they are of third order in 𝜙𝑓

𝑎(𝑥)∗ and 𝜙𝑓
𝑎(𝑥 + 𝜈).

Thus a single baryonic building block cannot fulfill the constraint on its
own. Nevertheless, when other baryonic building blocks are attached to
both the sites 𝑥 and 𝑥 + 𝜈, the constraint can be fulfilled on these sites.
This yields a constraint on the baryonic dual variables:

∑
𝜈

[𝑚𝜈(𝑥) − 𝑚𝜈(𝑥 − 𝜈)] = 0, (4.32)

with 𝑚𝜈(𝑥) = 𝑛𝜈(𝑥) − 𝑛̄𝜈(𝑥). (4.33)

In fact this is just a discrete version of the current conservation equation
∑𝜈 ∂𝜈𝑚𝜈(𝑥) = 0 for the net baryon current 𝑚𝜈 = (𝑛 − 𝑛̄)𝜈. In the end
this has the consequence that baryonic building blocks must come in
closed loop configurations. The baryon chemical potential 3𝜇 couples
to the conserved charge of the net baryon current, namely, ∑𝑥 𝑚0(𝑥).
Furthermore, only loops that wind the temporal direction will introduce
a 𝜇-dependence.
When considering closed loops, ℓ, of baryonic building blocks, we find
that, in our 𝑁𝑓 = 3 case, they have the weight (ignoring the factorials
in the denominator for the moment)

𝑊ℓ(𝜇) ∼ 𝑒3𝜇𝑁𝑡𝑤𝑡 ∏
(𝑥,𝜈)∈ℓ

𝑑∗
123(𝑥)𝑑123(𝑥 + 𝜈) =

= 𝑒3𝜇𝑁𝑡𝑤𝑡 ∏
(𝑥,𝜈)∈ℓ

∣ det(𝜙1(𝑥)|𝜙2(𝑥)|𝜙3(𝑥))∣2 ≥ 0, (4.34)

where 𝑤𝑡 is the winding number in the temporal direction. This shows
that in this case there is no longer a sign problem at nonzero chemical
potential.
The diagrammatic representation of the dual configurations is in some
ways similar and in others different to the fermionic case. Figure 4.4
shows an example of such a configuration. The mesonic variables are
not directional, while the baryonic ones clearly are oriented, just as in
the fermionic case. Notable differences are that baryon loops can be
intersecting, that arbitrary large occupation numbers are allowed, and
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Figure 4.4 An example configuration on a 6 × 6 lat-
tice of the dual variables. Baryonic bonds are indicated
with arrows. All the different mesonic bonds are shown as
unoriented lines for simplicity. (Note that dots do not cor-
respond to mass terms as was the case in QCD in Figure
4.1.)

that even completely unoccupied sites are possible as well. Also the
mass is treated differently: together with the spacetime dimension it
determines the width of the Gaussian distribution of the scalar fields.
In the dual representation a hybrid strategy can be applied for updating
the configurations. Namely, for dual variables 𝑗, 𝑘, 𝑙, 𝑛+𝑛̄ local updates
can be used. The same is true for the scalar field 𝜙. For 𝑛 − 𝑛̄ on the
other hand worm algorithms[6,34] seem promising because the closed
loop constraints have to be preserved.

4.2.5 More flavors

As we have seen, the sign problem in the dual formulation can be
eliminated completely for three flavors. For 𝑁𝑓 > 3 it can be shown
numerically that a simple closed loop prescription as before does not
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result in positive weights. The following discussion focuses on 𝑁𝑓 = 4
as an example of the technical difficulties that are encountered with
more flavors.
Before we had the situation that only two baryonic factors had to be
multiplied at a given site. Namely, 𝑑123 from the ending of the incoming
bond and 𝑑∗

123 from the beginning of the outgoing bond, or vice versa.
Now the sum in eq. (4.28) consists of four terms, #𝑑123 + #𝑑124 +
#𝑑134 + #𝑑234, where the determinants on the neighboring site are
absorbed into the (different) coefficients, denoted as #. Considering
this to be part of a closed loop, the sum is multiplied by the another
such sum, #𝑑∗

123 +#𝑑∗
124 +#𝑑∗

134 +#𝑑∗
234, of the outgoing bond. When

the multiplication is carried out, there will obviously be mixed terms,
which are in general not positive.
This suggests that finer constraints than above have to be used, e.g., not
summing over the flavor indices for the constraint. Consider, for example,
the mixed term 𝑑123(𝑥)𝑑∗

124(𝑥). There the ‘mismatch’ is that 𝜙3(𝑥) and
𝜙4(𝑥)∗ is contained once, but not their complex conjugates. Therefore
such a term will not contribute, as it vanishes under the 𝜙 integration,
cf. eq. (4.31). Hence only the terms with equal flavor combinations,
𝑑𝑓1𝑓2𝑓3

𝑑∗
𝑓1𝑓2𝑓3

, give a contribution to the partition function.
However, this could change if also mesonic contributions are considered.
If we connect a mesonic building block 𝑋 to the baryonic loop only
at the site 𝑥, the missing complex conjugate pair 𝜙3(𝑥)∗ and 𝜙4(𝑥)
is present. Nevertheless, this conjugate pair is also accompanied by
𝜙3(𝑦) and 𝜙4(𝑦)∗ at some 𝑦 near 𝑥, and these do not survive the 𝜙
integration, so we are in the same situation as above, that only equal
flavor combinations, |𝑑𝑓1𝑓2𝑓3

|2, of the baryon loop contribute.

𝑥 𝑦 𝑥 𝑦

Figure 4.5 Two simple examples of a single meson con-
nected to a baryon loop, resulting in a (nontrivial) positive
weight.
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We can go further, and consider the mesonic building block 𝑋 connected
to two sites 𝑥 and 𝑦 which are both part of a baryon loop, as depicted
in Figure 4.5. The different flavor combinations (1,2,3), (1,2,4), (1,3,4),
(2,3,4) have to traverse the baryon loop separately, due to the 𝜙 integra-
tion. Only on the sites 𝑥 and 𝑦, where the meson is connected, also the
mixed terms play a role besides the |𝑑𝑓1𝑓2𝑓3

|2-contribution. A typical
nonvanishing mixed contribution reads

det(𝜙1|𝜙2|𝜙3)(𝑥) det(𝜙1|𝜙2|𝜙3)(𝑦)∗ det(𝜙1|𝜙2|𝜙4)(𝑥) det(𝜙1|𝜙2|𝜙4)(𝑦)∗

× Tr(𝜙4(𝑥)𝜙4(𝑦)†𝜙3(𝑦)𝜙3(𝑥)†)
= 𝜀𝑎𝑏𝑐𝜙1

𝑎𝜙2
𝑏𝜙3

𝑐𝜙4
𝑑(𝑥)𝜀𝐴𝐵𝐶𝜙1∗

𝐴 𝜙2∗
𝐵 𝜙4∗

𝐶 𝜙3∗
𝑑 (𝑥) × (𝑥 → 𝑦)∗. (4.35)

Of course, also other flavor combinations with the same structure are
possible. The 𝜙 integrations are only nonvanishing if 𝐴 = 𝑎, 𝐵 = 𝑏, 𝑐 =
𝑑 = 𝐶. In that way at site 𝑥 only a positive factor |𝜙1|2|𝜙2|2|𝜙3|2|𝜙4|2
remains, and similar for the site 𝑦. Thus also the total weight of such a
configuration is positive.
All in all, these examples suggest that also for 𝑁𝑓 > 3 the sign problem
can be eliminated in the dual theory, when the right kind of constraint
is used. For this one has to break down the dual variables 𝑗, 𝑘, 𝑙, 𝑛
and 𝑛̄ into components for all the different flavor combinations through
multinomial expansions. Keeping track of the contributing terms be-
comes rather intricate, especially when higher occupation numbers are
encountered, so it remains to be seen whether this is a viable option.

4.3 Conclusion and outlook
We have seen that dualization can be applied to both fermionic and
scalar QCD in a similar manner. However, in the fermionic case, a sign
problem remains in the dual formulation. This is due to the fermionic
anticommutation relations, the relative sign difference of the two terms
of the Dirac operator, the antiperiodic boundary conditions in the time
direction, and the staggered phases. In the scalar case, all these are are
absent. Consequently, it could be shown that scalar QCD has, indeed,
no sign problem in the dual formulation for up to 𝑁𝑓 ≤ 3 flavors. For
more flavors the formulation becomes vastly more complicated, so it is
not clear whether the formulation is positive.
So far, we have only considered the strong coupling limit. In recent
years, there have been several successful attempts to also find a dual
formulation for the gauge sector[108–111]. Essentially, they all work by
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integrating over the gauge field, at the expense of introducing new field
variables. In case of [109] these are matrix valued fields living on the
links between sites. Ref. [110] works with additional scalar fields on
the plaquettes, termed induced fields. Ref. [111] works with so called
color flux variables. In the context of scalar QCD it seems that the
induced fields could be incorporated most naturally into the existing
framework. Nevertheless, how to do this is not straight forward because
the induced fields most certainly will increase the number of scalar fields
beyond three flavors. Thus, if it turns out that the sign problem can be
eliminated for 𝑁𝑓 > 3, a dual representation of full scalar QCD seems
to be in reach.
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5 Summary

This thesis has analyzed a number of different nonperturbative aspects of
QCD and similar theories. On the one hand, the subject of localization
was covered in case of QCD, an Ising-Anderson toy model and 𝐶𝑃(𝑁−1).
On the other, one of the first studies of Landau levels of quarks from first
principles was presented. Finally, the sign problem of nonzero density
in QCD was studied using either fermionic or scalar quarks.
Localization in QCD extended previous work[15–18] on the subject to
the case of a background magnetic field. At zero magnetic field it
had been found that below the QCD transition temperature the Dirac
operator essentially behaves like a random unitary matrix. This entails
strong correlations between neighboring eigenvalues and delocalized
eigenmodes. Above the transition temperature, on the other hand, this
situation changes. The low modes near the origin become localized, while
the high modes remain extended. In between these two there is a point of
critical statistics in the spectrum, the mobility edge. From other studies
on background magnetic fields[9,10,50] it was known that observables
susceptible to the low end of the spectrum of the Dirac operator show
a strong dependence on the magnetic field. Hence this should be visible
in the spectrum as well. As was shown this is, indeed, the case. The
overall tendency of the magnetic field is to push the spectrum toward
lower eigenvalues. Likewise this also lowers the mobility edge.
Similar observations could be made in a simple three dimensional Ising-
Anderson model. A background magnetic field can be introduced in
an analogous way as in QCD. Also here the magnetic field shifts the
spectrum to lower eigenvalues, albeit in a much simpler manner than in
QCD. Nevertheless, this shows that the essential features of localization
in QCD are also captured by a much simpler model.
Furthermore, there are a number of toy models, 𝐶𝑃(𝑁 −1) in particular,
that serve as a playground to test out new ideas and methods for QCD.
These also share a number of properties with the latter. Among the most
notable ones are the dynamical generation of a mass gap and asymptotic
freedom. Hence the question arises whether in 𝐶𝑃(𝑁 − 1) localization
can also be observed. This was shown to be the case, depending on the
dimensionality of the model. In two dimensions all modes appear to be
localized. In three dimensions an Anderson-transition from localized to
delocalized modes takes place in the spectrum, similar to QCD.
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Another part of this thesis dealt with Landau levels of quarks in QCD.
In two dimensions the lowest Landau level is separated from the rest and
can easily be identified by simple mode counting. In four dimensions
the momenta from the additional two directions make the Landau levels
overlap, so they can no longer be identified by the eigenvalues alone.
Nevertheless, it was possible to find a way to identify the lowest Landau
level using the eigenmodes themselves. With this presciption the lowest
Landau level dominance was investigated for different observables at
several different temperatures and magnetic fields.
The last part of this thesis was concerned with the sign problem at
nonzero density in QCD. Using dual variables it has been possible to
eliminate the sign problem in a number of different systems. Neverthe-
less, from earlier works it is known that dual formulations of QCD still
suffer from a remnant sign problem. The remaining sign problem seems
to come exclusively from the fermionic nature of the quarks. Indeed,
as could be shown, the sign problem is absent if quarks were scalar
particles. In that case it depends on the number of flavors whether
there is a sign problem. For one and two flavors the dependence on
the chemical potential is completely absent, that is, no baryons can be
formed. For three flavors, on the other hand, baryons can be formed
and the resulting representation has no longer a sign problem. For more
than three flavors at first sight there seems to be a sign problem present.
Nevertheless, a closer look suggests that this sign could also be absent,
when considering baryons of only three distinct flavors. In the end, if
the sign problem is, indeed, absent for more than three flavors, this
could lead the way to going beyond strong coupling, i.e., also taking the
gauge action into account.
All in all, these findings shed some new light on the nonperturbative
aspects of strongly coupled theories. In particular, the results for localiza-
tion in 𝐶𝑃(𝑁 −1) models may have some relevance for antiferromagnetic
spin models[112,113] in condensed matter physics. On the other hand,
𝐶𝑃(𝑁 − 1) models in higher dimensions may be renormalizable nonper-
turbatively[38]. This would render them asymptotically safe and thus
also interesting in the context of particle physics as well as quantum
gravity.
Localization in QCD with a background magnetic field adds to our
understanding of the QCD phase diagram, by giving new insight at the
level of quark spectra. Also Landau levels in QCD fall into a similar
category. Furthermore, the findings on Landau levels can be used in
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effective model calculations. In this way there can be better control over
the errors involved when using the lowest Landau level approximation.
Lastly, scalar QCD could have some applications in grand unified the-
ories. In particular, this is the case when Gauge-Higgs models are
involved. Adding a Higgs-potential term is just a minor modification of
the action used in this thesis, leaving the technical aspects unchanged.
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