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Recent progress in digital health data recording, advances in computing power, and
methodological approaches that extract information from data as artificial intelligence
are expected to have a disruptive impact on technology in medicine. One of the
potential benefits is the ability to extract new and essential insights from the vast
amount of data generated during health care delivery every day. Cardiovascular imaging
is boosted by new intelligent automatic methods to manage, process, segment, and
analyze petabytes of image data exceeding historical manual capacities. Algorithms
that learn from data raise new challenges for regulatory bodies. Partially autonomous
behavior and adaptive modifications and a lack of transparency in deriving evidence
from complex data pose considerable problems. Controlling new technologies requires
new controlling techniques and ongoing regulatory research. All stakeholders must
participate in the quest to find a fair balance between innovation and regulation. The
regulatory approach to artificial intelligence must be risk-based and resilient. A focus
on unknown emerging risks demands continuous surveillance and clinical evaluation
during the total product life cycle. Since learning algorithms are data-driven, high-quality
data is fundamental for good machine learning practice. Mining, processing, validation,
governance, and data control must account for bias, error, inappropriate use, drifts,
and shifts, particularly in real-world data. Regulators worldwide are tackling twenty-first
century challenges raised by “learning” medical devices. Ethical concerns and regulatory
approaches are presented. The paper concludes with a discussion on the future of
responsible artificial intelligence.

Keywords: machine learning (ML), regulation, innovation, software as a medical device (SaMD), safety and risk,
total product life cycle (TPLC)

INTRODUCTION

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) are often used
interchangeably. This pars pro toto usage of terms is rooted in the growing importance of DL in
ML and ML in AI. DL is a subset of ML, and the latter is a subset of AI. AI is used as a term for
artificial systems that perceive and process input data and achieve specific goals. In changing data
ecosystems and application contexts, adaptive learning or even problem-solving may be essential
functions of such systems (1, 2). The popular concept of characterizing AI as an emulation of human
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cognitive performance or “strong AI” may be a general ethical
concern in the future but does not apply to current cardiovascular
imaging applications.

ML/DL maps data patterns on output without intermediate
hypothesis modeling. A strength of this approach is the ability
to discover an unknown pattern in the data and derive
models without requiring a priori assumptions about frequently
poorly understood underlying features. The algorithms are
trained and tuned on a sufficiently large set of representative
data and evaluated on a separate hold-out test set of data.
Training is iterative and guided by a cost function. The cost
function may be based on the difference between (partially)
known (labeled) ground truth and algorithmic estimate called
supervised learning (semi-supervised learning), on intrinsic
data patterns termed unsupervised learning, or on incentives
called reinforcement learning. Competing cost functions may
be employed as adversarial learning, e.g., for recognizing fake
images. A comprehensive survey on ML methods cannot be
integrated into this paper because the field is an evolving
science with many ramifications ranging from statistical learning
to neuromorphic computing (3). A concise overview of ML
methods used in cardiovascular imaging may be found in recent
papers (4, 5).

“A deep-learning architecture is a multilayer stack of simple
modules, all (or most) of which are subject to learning, and
many of which compute non-linear input-output mappings”
(6). Supervised or semi-supervised DL was successfully used in
image segmentation and classification. Convolutional neural nets
(CNN) are a specialized kind of neural network particularly
suited for processing data with a known grid-like topology
(6). Neural nets are hierarchically stacked layers of modules
that are partially or fully connected. The first layer is the
input vector, e.g., a vectorized pixel matrix of the image to be
analyzed. The hidden layers extract features on different scales.
The last layer is the output vector representing the result of
classification or segmentation. The input of a module is the
sum of weighted outputs of the modules of previous layers
activated by a non-linear function. Convolutional layers may
be seen as additional self-learning filters critical in imaging
applications. Spatial pooling reduces spatial resolution and
controls the size of the layers. Residual connections skip layers
and thereby stabilize very deep nets with more than 150 layers.
An appropriate cost function guides learning optimal weights for
connections and filters. Details and research on more technical
issues, e.g., optimization of learning and avoiding overfitting,
may be accessed as HTML MIT Press book.1 We refer to a
recent paper for more detail on cardiovascular imaging (7). DL
by CNN requires enormous computing resources. The calculus
is simple algebra, however, and can be massively parallelized.
Thus, advances in computing hardware, particularly graphic
processing units and parallel computing resources, enabled these
approaches. Big data are the fuel of DL. The ImageNet challenge
and other annual competitions2 sped up the evolution of DL.
A worldwide open-source community further promoted the

1https://www.deeplearningbook.org accessed 27.4.2022.
2https://www.image-net.org/challenges/LSVRC/ and https://cocodataset.org/
#home and http://host.robots.ox.ac.uk/pascal/VOC/ accessed 27.4.2022.

rise of DL. User-friendly software environments, e.g., Caffe,3

Tensorflow,4 Theano,5 PyTorch,6 Lasagne,7 and Keras8 enable
scientists worldwide to explore DL.

As opposed to large amounts of available images, e.g., on
ImageNet, moderate or small sets of cardiovascular images are
often confined to local picture archiving systems (PACS) due
to data protection laws and privacy concerns. Attempts to
pool medical images struggle with interoperability issues and
legal constraints. There are different approaches to solve the
problem of limited health data comprising data augmentation,
construction of representative artificial images, deidentification
of data sets, various models of federated learning, and secure
pooling using blockchain ledger technologies. The problem of
small data sets may also be approached by tweaking the nets,
pre-training on non-medical images, and fine-tuning on health
images. Last but not least medical PACS systems are evolving
into big data repositories in our digital ecosystem. According to
Badano et al., artificial intelligence and cardiovascular imaging
are a win-win combination (8).

AI in cardiovascular imaging is a medical device. Patients and
physicians expect approved or certified medical devices to be safe
and effective9 (9). They also desire to profit from innovations in
medicine due to novel technologies. However, assessing safety
and efficacy consumes time and may result in a roadblock to
fast and agile innovation. Competent authorities must manage
to provide responsible regulation without quenching innovation.
This is a growing challenge in software as a medical device
(SaMD) or part of a medical device. Software is increasingly
crucial for efficacy in novel state-of-the-art medical devices. Yet,
the software may be complex and even change by “learning”
[machine learning medical devices (MLMD)10]. As it is more
difficult to aim at a moving target than a fixed one, regulating
learning frequently changing or even autonomous medical
devices is more demanding than regulating medical devices in the
past that were rarely ever changed. Whereas, external supporting
evidence was manually gathered data in the past, we currently
wrangle with a flood of digital data. This big data comprises
archived data collected with other medical purposes, e.g., medical
images in PACS systems. MLMD thrives on the ingestion of such
big data. Consequently, regulation has to deal with a garbage-
in-garbage-out risk of data sources tapped by MLMD devices.
Bias, errors, drifts, and shifts in data may entail unanticipated
and unintended output. Suppose data is mapped on the output
by complex non-linear and implicit feature extraction, e.g., in
neural networks. In that case, a check against the hypothesis as
in classical science is lacking. Thus, judging the validity of the

3https://caffe.berkeleyvision.org/ accessed 26.4.22.
4https://www.tensorflow.org/ accessed 26.4.22.
5https://pypi.org/project/Theano/ accessed 26.4.22.
6https://pytorch.org/ accessed 26.4.22.
7https://lasagne.readthedocs.io/en/latest/ accessed 26.4.22.
8https://keras.io/ accessed 21.6.22.
9FDA-cleared AI devices lack critical information on performance, equity.
https://medcitynews.com/2021/04/fda-cleared-ai-devices-lack-critical-
information-on-performance-equity/?rf=1 accessed 10.1.22.
10https://www.imdrf.org/sites/default/files/2022-05/IMDRF%20AIMD%20WG%
20Final%20Document%20N67.pdf (accessed June 21, 2022).
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outcome may be challenging, and explainable AI becomes an
issue. New technologies need new ways of regulation.

The remainder is a sketch of current cardiovascular MLMD
imaging, ethical concerns, current state-of-art, and emerging
regulatory changes. In the first subsection, the use of MLMD
in cardiovascular imaging is briefly exposed. Ethical and legal
concerns and specific risks of MLMD are discussed in the second
subsection. The third subsection presents the basics of SaMD and
MLMD regulation, relevant standards, some existing regulatory
environments and a comparison of the EU and the USA with
examples that entail a reflection on autonomy. The discussion
starts with a short summary and addresses the future of MLMD
cardiovascular imaging, digital data, and evolving regulation.

REAL-WORLD AND REGULATORY
PERSPECTIVES

Current State of Artificial Intelligence
and Machine Learning in Cardiovascular
Imaging
The scope of this section is to describe the broad range of
actual and potential applications and provide suitable references
for readers that are not familiar with all applications “of AI
in CV Medicine.” A detailed review of applications of MLMD
in cardiovascular imaging is covered by many recent papers
(10–17).

There is a wide range of applications comprising image
acquisition (18, 19), pre-processing, segmentation, automated
measurements, quality control, image retrieval, matching real-
time acquired images with previous images (20), fully automated
quantitative assessment (21), and even diagnostic guidance11

and diagnosis. MLMD may enable personalized treatment
based on cardiovascular imaging phenotypes and prognostic
stratification. Essential issues are automatic screening of
unread studies for potential emergency findings requiring
urgent reporting and emergency treatment. Meanwhile, medical
devices that provide fully automated quantitative assessments
of images are commercially available for different modalities as
echocardiography (22, 23), cardiac magnetic resonance imaging
(CMR), computed tomography (CCT) (24, 25), nuclear cardiac
imaging (25, 26) and multimodality imaging (17, 25).

Radiomics is a recent sophisticated feature exploiting
approach initially conceived as an image biomarker approach
in personalized cancer treatment that is a rising star in
cardiovascular imaging and precision medicine. Radiomics in
computed tomography comprises intensity-based, texture-based,
shape-based, model-based, and transform-based metrics (27, 28).
The Radiological Society of North America (RSNA) initiated
a Quantitative Imaging Biomarkers Alliance (QIBA),12 and the

11FDA Authorizes Marketing of First Cardiac Ultrasound Software That Uses
Artificial Intelligence to Guide User. https://www.fda.gov/news-events/press-
announcements/fda-authorizes-marketing-first-cardiac-ultrasound-software-
uses-artificial-intelligence-guide-user accessed 12.1.22.
12Radiological Society of North America (RSNA) Quantitative Imaging
Biomarkers Alliance (QIBA) https://www.rsna.org/research/quantitative-
imaging-biomarkers-alliance accessed 12.1.22.

European Society of Radiology (ESR) merged the activities of
the former ESR Subcommittee on Imaging Biomarkers, the ESR
Working Group on Personalized Medicine, and ESR-EORTC
Working Group into the European Imaging Biomarkers Alliance
(EIBALL).13 Methods in radiomics are still a research area,
however. Radiomic features are sensitive to image acquisition
settings, reconstruction algorithms, and image processing. Strict
adherence to standardized image acquisition and reconstruction
protocols, including standardization, harmonization, and feature
reduction techniques, is recommended. Major pitfalls are class
imbalance, overfitting, and sometimes underfitting. Nuclear
medicine is expected to profit from this research tool in
clinical decision-making and discovering novel molecular
pathways (28).

As the clinical evaluation of MLMD entails clinical
investigations, appropriate amendments to reporting guidelines
should be accounted for Liu et . (29), Cruz et . (30). Developing
appropriate study protocol extensions for MLMD is ongoing
(31, 32).

Within the last 5 years, more than 1,814 full texts on MLMD
in cardiovascular imaging were published. A literature search
algorithm allowing regular updates for cardiovascular care is
provided by Quer et al. (33).14

Specific Risks by Artificial Intelligence
and Machine Learning-Ethical and Legal
Concerns
The promises of MLMD come with new risks due to unexpected
behavior and specific weaknesses of the method. Input attacks,
e.g., are surreptitious cyber-attacks by manipulating input data.
Hidden bias is deeply rooted in data. Limitations and flaws
of human judgment, prejudices, and fashions leave traces in
data. Moreover, even corrupted data may betray sensitive
information like race, eluding awareness of clinical experts
(34). And last not least, spurious data correlations may lead
to mismatch (35), famous in MLMD as “Clever Hans” (36).
Model predictions must be evaluated with confidence limits
of uncertainty in mind (37). Other MLMD-specific problems
are potentially unpredictable behavior, lack of transparency
and under-specification, and problems during deployment and
use of AI systems. Under-specification is common in modern
machine learning pipelines and causes real-world performance
impairments and failure of generalization. Sensitivity analyses,
stress- tests regarding requirements, and the development of
application-specific regularization schemes may help to control
this issue (38).

Health, and cardiac imaging, in particular, is a sensitive
and safety-critical domain. MLMD should be accurate, robust,
trustworthy, transparent, explainable, understandable, and

13European Society of Radiology (ESR) European Imaging Biomarkers Alliance
(EIBALL) https://www.myesr.org/research/european-imaging-biomarkers-
alliance-eiball accessed 12.1.22.
14This algorithm may be adapted to cardiovascular imaging as it is open
source under the GNU General Public License on GitHub https://github.com/
ArnaoutLabUCSF/cardioML/tree/master/JACC_2021 accessed 12.1.22.
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resilient. There may be tradeoffs between goals that depend on
stakeholders and context (39).

The Wellcome report on “ethical, social, and political
challenges of artificial intelligence in health”15 addresses several
scenarios of medical socio-technical application contexts
including MLMD-agents such as process optimization,
preclinical research, clinical pathways, and patient-facing
and population-level applications. The report identified the most
critical challenges across use-cases: There was concern about
the impact of AI on human relationships, data management,
governance, and existing health inequalities. Further questions
regarded issues around transparency and explainability of
algorithms in health settings, software-generated as opposed
to human decisions, patients’ and public expectations from AI
and related technology, best practices of regulation, eventually
forbidden use of new information, the trustworthiness of
algorithms, and last not least problems arising from the private-
public collaboration. In conclusion, there are three major
areas of concern, consent, fairness, and rights. If there is some
autonomy in AI’s decision that might not be fully understood,
what means consent to use this service? Distributive fairness is
conventionally governed by three principles (responsibilities,
capabilities, and needs). Yet, the application of these fuzzy
concepts strongly depends on interpretation. Moreover, MLMD
is a rapidly changing technology. New approaches to specify and
warrant fairness in these novel socio-technical contexts should
be considered. An issue regarding rights spins around the point
of whether there is a right to human delivery of healthcare. In
the European Union, citizens have the right not to be subject to
automatic decisions solely without any human intervention and
to get an explanation of a decision’s logic.16

At the population level, there seem to be three main
expectations: the final responsibility of human physicians for
diagnosis and treatment, explainable MLMD decision-support,
and testing of the system for discrimination (40). The European
Commission set up a High-Level Expert Group on Artificial
Intelligence17 that elaborated ethics guidelines for trustworthy
AI (41) based on a human-centric approach. AI is not an
end in itself but a tool that has to serve people with the
ultimate aim of increasing human wellbeing. Trustworthy AI
should be lawful, ethical, and robust. The guideline focuses on
ethics and robustness. AI should be developed, deployed, and
used based on four principles: respect for human autonomy,
harm prevention, fairness, and explicability. Particular attention
should be paid to potential tensions between these principles
and the impact on vulnerable groups, e.g., children or disabled
persons. The vision of benefits should not impair the scrutiny
of pending risks and adequate mitigation. In chapter II,
guidance is detailed. AI should be developed, deployed, and
used meeting “seven key requirements for Trustworthy AI:

15https://wellcome.org/sites/default/files/ai-in-health-ethical-social-political-
challenges.pdf accessed 11.02.2022.
16Article 4 (4) and Article 22 and Recitals (70) and (71) of the GDPR.
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
32016R0679&from=EN#d1e2793-1-1 accessed 12.02.2022.
17https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai accessed
11.02.2022.

(1) human agency and oversight, (2) technical robustness and
safety, (3) privacy and data governance, (4) transparency, (5)
diversity, non-discrimination and fairness, (6) environmental
and societal wellbeing, and (7) accountability.” Technical and
non-technical methods should achieve the implementation
of these requirements. Technical approaches include specific
architecture, ethics, and the rule of law by design, explanation
tools, rigorous testing and validation that should include
adversarial/penetration testing, and quality of service indicators.
Non-technical methods comprise regulation, codes of conduct,
standardization, certification, governance, education, ethical
mindset, stakeholder participation, diversity, and inclusive design
teams. The guideline recommends fostering research, innovation,
dissemination of information, and education on ethics in
AI. Communication with stakeholders regarding capabilities,
limitations, and expectations of AI applications should be clear,
proactive, and transparent. AI systems should be traceable and
auditable. All stakeholders18 should be involved throughout the
total lifecycle of the product. Fundamental tensions between
different principles and requirements need continuous attention.
Chapter III provides a preliminary checklist for assessing
trustworthy AI for tailoring and continuous improvement. The
current final version of the “Assessment List for Trustworthy
Artificial Intelligence (ALTAI) for self-assessment”19 is available
as PDF or web-based tool.

The term meaningful human (MHC) control originated
from the debate on autonomous weapons and the danger of
accountability gaps. What is MHC? In real-world environments
comprising humans and technology, particularly in the
increasingly complex healthcare environment, MLMD is
embedded in a human agent team (HAT) (42). A HAT is a
pit crew where human generalists, specialists, and technical
agents collaborate in specific contexts on common tasks.
Assessments of MHC comprises “experienced MHC” and
behavioral alignment with ethical guidelines and moral values.
In a HAT, an accurate mental model of the MLMD agents is
indispensable (42). A team’s mental model is a shared framework
that provides unambiguous roles of technical and human agents,
mutual trust, and exchange of information. It comprises a team
model, a team interaction model, an equipment model, and
a task model. The necessary explanations of technical agents
that support human-agent collaboration in such a context are
provided by eXplainable Artificial Intelligence (XAI). However,
explanations may depend on teams, contexts, and tasks (43,
44). Thus, an actionable implementation of XAI can be based
on a mental models approach (44). Explainability20 is a fuzzy
concept that is often conflated with interpretability, causability,
or understandability. In technical philosophy, an explanation

18“Audience and Scope These guidelines are addressed to all AI stakeholders
designing, developing, deploying, implementing, using or being affected by AI,
including but not limited to companies, organizations, researchers, public services,
government agencies, institutions, civil society organizations, individuals, workers
and consumers.” https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.
html accessed 27.04.2022.
19https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-
artificial-intelligence-altai-self-assessment accessed 12.2.2022.
20Explicability as an ethical principle of trustworthy AI comprises accountable use
and is not identical to explainability in the technical context of XAI 45. (78).
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is a mapping of something to be explained on an explanation.
Interpretation may transform a poorly understood explanation
into a more understandable one. Approaches to interpretation
may be total or partial, global or local, approximative or
isomorphic (45). Explainability in XAI technically identifies
features and mechanisms that decide the performance and the
outcome of an MLMD system. Whereas, interpretability may be
understood as a broader concept. Thus a recent review titled:
“Explainable AI: A Review of Machine Learning Interpretability
Methods” (46). This thorough review of the art of interpretation
provides six comprehensive tables of published methods based
on a taxonomy of methods and an appendix with repository
links. The term causability addresses the causal-mechanistic
understandability or evidence of an explanation for experts in
a specific context. Understanding comprises perceiving and
reasoning based on a model of reality. Levels of causability are
association, investigational intervention, and counterfactual
reasoning. Causability should be integrated analogous to
usability21 as an essential requirement in MLMD applications.
The quality of explanations must be developed as a critical safety
measure in HATs comprising MLMD (47).22

Safe and effective implementation of ethical considerations
into devices and their use may be achieved by embedding ethical
values in the total product life-cycle. Targets in development
are intended use, requirements, design, and architecture (48,
49). Various approaches comprise integrating ethics in structures
and processes in development (50), embedding micro-ethics and
virtues into data science (51) and enforcing ethical safety and
trust by improving regulation (52). The rest of the paper will
be confined to depicting existing regulatory frameworks and
recommendations for future regulation.

Existing Regulatory Frameworks
The scope of regulation is to make sure that only effective and safe
medical devices are on the market. Thus, patients and providers
may rely on a competent authority or regulating body’s approval
or certification of a device.

Effectiveness is evaluated by validation of the intended
use of the device. Safety, including safe use, is the outcome
of risk management. Regulatory bodies continuously react to
manifest serious incidents and may proactively adapt regulation
to evolving risks due to novel technologies and anticipated
risks. There may be some tension, however, between responsible
regulation and innovation.

The International Medical Device Regulators Forum
(IMRDF)23 was established in October 2011 by regulatory bodies
worldwide and focuses on approaches for rapidly evolving
technologies in medical devices and “on developing a total
product lifecycle approach (TPLC) to regulating medical devices
while enabling timely access to safe access and effective devices
for the patients.” A harmonized approach to the management of
MLMD is a strategic priority.24

21The quality of use and usability are essential requirements for medical devices.
22See discussion on autonomous devices.
23https://www.imdrf.org/ accessed 14.2.21.
24https://www.imdrf.org/sites/default/files/docs/imdrf/final/procedural/imdrf-
proc-n39-strategic-plan-200925.pdf accessed 14.2.21.

The current regulatory policy will be presented by first
describing common principles, then pertinent standards
reflecting the technical state-of-the-art, and finally special issues
in different legislations.

General Features of Medical Device Regulation
There are some common features in most regulations for medical
devices worldwide:

1. The rigor of regulation is based on the hazard and potential
severity of harm. The Global Harmonization Task Force
(GHTF)25 2006 published a risk classification approach for
medical devices comprising four classes,26 adopted in an
adapted version in most legislations. The classification is
based on the intended use. Low-risk devices may be exempt
from regulation. High-risk devices generally need proof of
quality, scrutiny and oversight, and evaluation by clinical
trials. Classes B (low-moderate risk class II a in EU) and C
(moderate-high risk class II b in EU) are combined as an
intermediate risk class in the United States.

2. Software, which drives a device or influences the use of a
device, falls within the same class as the device.

3. Stand-alone software with an intended use supporting a
medical purpose is regulated as Software as a Medical
Device (SaMD) and considered or explicitly defined as
active27 device.

4. Many countries aligned their SaMD regulatory approaches
with guidance from the IMRDF.28 The guideline entitled
““Software as a Medical Device”: Possible Framework for
Risk Categorization and Corresponding Considerations”29

classifies risk based on the

a. Significance of the information provided by the SaMD
to the healthcare decision, and

b. State of the healthcare situation or condition (see
Table 1).

The use of an MLMD application in a safe context may support
a lower risk classification!

5. If there exists a substantially equivalent device (EU) or
predicate device (US) demonstrating comparable safety
and performance provides access to the market.

6. The product quality of complex medical devices as
software and MLMD devices in particular is challenging
to ascertain. Therefore, the quality of organizations,

25The GHTF was replaced by the International Medical Device Regulators Forum
(IMDRF) in 2011. GHTF Documents are available on the IMDRF web-site.
26https://www.imdrf.org/sites/default/files/docs/ghtf/final/sg1/technical-docs/
ghtf-sg1-n15-2006-guidance-classification-060627.pdf accessed 27.4.2022.
27“active device’ means any device, the operation of which depends on a source of
energy other than that generated by the human body for that purpose, or by gravity,
and which acts by changing the density of or converting that energy. Devices intended
to transmit energy, substances or other elements between an active device and the
patient, without any significant change, shall not be deemed to be active devices.
Software shall also be deemed to be an active device;” MDR art. 2 definition (4).
28https://www.imdrf.org/search?search=SaMD&facets_query=&f%5B0%5D=
content_type%3Atechnical_document accessed 14.2.21.
29https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-
tech-140918-samd-framework-risk-categorization-141013.pdf accessed
27.4.2022.
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TABLE 1 | Internationally recognized SaMD risk classification according to IMDRF.

State of healthcare Significance of information provided by SaMD to
healthcare decision

Treat or
diagnose

Drive clinical
management

Inform clinical
management

Critical IV III II

Serious III II I

Non-serious II I I

structure, and processes in development, deployment, and
application is audited adjunctive to rigorous testing.

7. Conflict of interest is an issue in regulatory oversight
worldwide. In the United States, a government agency,
the Food and Drug Administration (FDA), is in charge
of auditing manufacturers. In the EU, private accredited
organizations, called notified bodies (NBs), are auditing
manufacturers placing devices with higher risk classes than
I on the market. To avoid conflict of interest, regulations on
accreditation and surveillance of NBs have been increased
(see details chapter IV MDR30). NBs must not provide
consulting services to their clients but may respond to
specific questions. The FDA offers the Q-submission
service31 and the 510(k) Third Party Review Program.32

8. Regulation is continuously evolving by amending existing
and creating new guidance. New technologies such as
MLMD may be addressed by horizontal legislation as
intended in the EU by the Artificial Intelligence Act33

or vertical integration as proposed by the FDA in
the “Proposed Regulatory Framework for Modifications
to Machine Learning Medical Devices (MLMD)-Based
Software as a Medical Device.34

9. Worldwide continuously learning (and thereby changing)
MLMD may not be cleared as medical devices currently!

10. At the moment additional regulatory requirements for
MLMD solutions comprise competent staffing, disclosure
of data and data management, training and validation
protocol with performance metrics and validation results.
Specific cybersecurity threats and adversarial attacks in
MLMD have to be addressed in the risk-management.
Software libraries used for training and testing that are
not part of the final device must be validated according
to general quality management computer validation
requirements (ISO13485). Library code integrated into the
final MLMD as a “predict function” has to be validated
as software of unknown provenience (IEC 62304) or
software of the shelf.35 Testing may be performed by

30https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2017:117:
FULL&from=EN accessed 22.2.2022.
31https://www.fda.gov/media/114034/download accessed 27.4.2022.
32https://www.fda.gov/media/85284/download accessed 27.4.2022.
33https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-
01aa75ed71a1.0001.02/DOC_1&format=PDF and https://eur-lex.europa.eu/
resource.html?uri~=~cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/
DOC_2&format~=~PDF accessed 22.2.2022.
34https://www.fda.gov/media/122535/download accessed 28. 2.2022.
35https://www.fda.gov/media/71794/download accessed 27.4.2022.

test oracles in specialized environments as pytest.36 Test
coverage is an issue and object of research in complex
deep neural nets. Combinatorial testing as efficient black-
box approach is recommended. The National Institute of
Standards and Technology (NIST) in the United States
maintains a Computer Security Resource Center that
provides combinatorial testing facilities.37 The machine
learning community supports tasks, benchmarks, and
state-of-the-art methods.38

11. As MLMD depends on data, data legislation, data
protection and data governance intersect with medical
device regulation in this field (53). the Health Insurance
Portability and Accountability Act (HIPAA) in the
United States.39

12. The legal framework of regulation includes procedural
and technical requirements that need to be specified
in more detail and continuously adapted to state-of-
the-art technology. This task is performed by regional
and international organizations for standardization
(European Committee for Standardization (CEN),
European Committee for Electrotechnical Standardization
(CENELEC),40 American National Standards Institute
(ANSI),41 National Institute of Standards and
Technology (NIST),42 British Standards Institution
(BSI.),43 International Organization for Standardization
(ISO),44 Institute of Electrical and Electronics Engineers
(IEEE),45 . . .).

Pertinent Standards
Reference to standards is part of regulatory convergence. MLMD
are either stand-alone applications (software as medical device
SaMD) or embedded software as part of a medical device.
Development of SaMD or embedded software in a medical
device compliant with regulation is supported by international
standards:

1. On the organizational level

a. ISO 13485 Medical devices—Quality management
systems-Requirements for regulatory purposes46 and

b. ISO/IEC 2700147 Information technology—Security
techniques—Information security management
systems—Requirements

2. On the product level

36https://docs.pytest.org/en/7.1.x/ accessed 27.4.2022.
37https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
accessed 27.4.2022.
38https://paperswithcode.com/ accessed 27.4.2022.
39https://www.cdc.gov/phlp/publications/topic/hipaa.html accessed 14.2.2022.
40https://www.cencenelec.eu/ accessed 27.4.2022.
41https://ansi.org/ accessed 27.4.2022.
42https://www.nist.gov/ accessed 27.4.2022.
43https://www.bsigroup.com/ accessed 27.4.2022.
44https://www.iso.org/home.html accessed 27.4.2022.
45https://www.ieee.org/ accessed 27.4.2022.
46https://www.iso.org/standard/59752.html accessed 14.2.2022.
47https://www.iso.org/standard/54534.html accessed 14.2.2022.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 July 2022 | Volume 9 | Article 890809

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2017:117:FULL&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2017:117:FULL&from=EN
https://www.fda.gov/media/114034/download
https://www.fda.gov/media/85284/download
https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri~=~cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_2&format~=~PDF
https://eur-lex.europa.eu/resource.html?uri~=~cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_2&format~=~PDF
https://eur-lex.europa.eu/resource.html?uri~=~cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_2&format~=~PDF
https://www.fda.gov/media/122535/download
https://www.fda.gov/media/71794/download
https://docs.pytest.org/en/7.1.x/
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://paperswithcode.com/
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.cencenelec.eu/
https://ansi.org/
https://www.nist.gov/
https://www.bsigroup.com/
https://www.iso.org/home.html
https://www.ieee.org/
https://www.iso.org/standard/59752.html
https://www.iso.org/standard/54534.html
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-890809 July 18, 2022 Time: 13:14 # 7

Wellnhofer MLMD Cardiovascular Imaging and Regulation

a. (IEC 82304-1 Health software—Part 1: General
requirements for product safety48 for stand-alone
software49) and

b. IEC 60601-1 Medical Electrical Equipment—General
requirements for basic safety and essential performance—
Collateral Standard: Requirements for medical electrical
equipment and medical electrical systems used in the
emergency medical services environment50 for embedded
software

c. ISO 14971 Medical devices—Application of risk
management to medical devices.51

d. IEC 62366-1 Medical devices—Application of usability
engineering to medical devices.52

e. ISO 14155 Clinical investigation of medical devices for
human subjects—Good clinical practice.53

3. On the software development level

a. IEC 62304 Medical device software—Software life cycle
processes.54

b. IEC 81001-5-1 Health software and health IT systems
safety, effectiveness and security—Part 5-1: Security—
Activities in the product life cycle.55

There is a rapidly evolving landscape of standards for MLMD.
The following is a selection:

1. The ITU/WHO Focus Group on artificial intelligence
for health (FG-AI4H) cooperates with the World Health
Organization (WHO) to establish standards to assess AI
applications in the health sector.56 FG-AI4H develops
guideline documents on ethical and regulatory considerations
(best practices specification), specifications regarding
requirements, software lifecycle, data, AI training best
practices, evaluation, and scale-up/adoption,57 and provides
recommendations and tools for auditing and quality
controls (37).

2. The joint recommendations regarding machine learning
in medical devices of the British Standards Institution
(BSI) and the Association for the Advancement of Medical
Instrumentation (AAMI) supplement existing regulatory
requirements for software as a medical device.58

3. The standard ISO/IEC TR 24028 Information technology—
Artificial intelligence—Overview of trustworthiness in

48https://www.iso.org/standard/59543.html accessed 14.2.2022.
49Covers SaMD and health software that is no medical device. The new version
was not accepted.
50https://www.iso.org/standard/78215.html accessed 14.2.2022.
51https://www.iso.org/standard/72704.html accessed 14.2.2022.
52https://www.iso.org/standard/63179.html accessed 14.2.2022.
53https://www.iso.org/standard/71690.html accessed 14.2.2022.
54https://www.iso.org/standard/38421.html accessed 14.2.2022.
55https://www.iso.org/standard/76097.html accessed 14.2.2022.
56https://www.itu.int/en/ITU-T/focusgroups/ai4h/Pages/default.aspx accessed
14.2.2022.
57https://www.itu.int/en/ITU-T/focusgroups/ai4h/Documents/FG-AI4H_
Whitepaper.pdf accessed 22.2.2022.
58https://www.bsigroup.com/globalassets/localfiles/en-gb/about-bsi/nsb/
innovation/mhra-ai-paper-2019.pdf accessed 14.2.2022.

artificial intelligence59 has a scope on trustworthy AI.
Requirements to manage AI-specific security, safety, and
privacy risks and general requirements for management
of weaknesses, threats, and other challenges are proposed
based on an analysis of other standards, particularly general
risk-management (ISO 31000) and the ISO/IEC 250xx
standards series. A strategy is proposed to control bias,
manage cybersecurity risks, and provide maximum reliability,
resilience, and robustness. Further issues are malfunctions of
hardware, improvement of functional security, optimal testing
for verification, and appropriate assessment in validation.

4. The Institute of Electrical and Electronics Engineers (IEEE)
Global Initiative on Ethics of Autonomous and Intelligent
Systems provides the P7000 standards series concerned with
ethically aligned design.60

Regulation is modified according to legislation. There
may be specific additional requirements, amendments, or
cross-references. The FDA maintains a list of recognized
standards.61 In Europe, the commission may require European
standardization organizations such as CEN or CENELEC to
harmonize an international standard. A European foreword
and Z-annexes containing cross-references to MDR are added.
Special consultants62 check legal conformity. Publication of the
harmonized standard in the official journal of the EU confers
a legal link to regulation. Conformity with the regulation is
presumed if accordance with the standard is demonstrated.63

Thus, though even harmonized standards remain voluntary,
demonstration of conformity may profit from compliance with
harmonized standards. The organizational standard, “Quality
management systems-Requirements for regulatory purposes
(ISO 13485)”, has been harmonized under MDR.64 This standard
is also widely recognized in other legislations, and a voluntary
certification may be advised.

Regulation in Europe
MLMD in the EU is regulated as medical device software
(MDSW) or software embedded in a medical device by
the Medical Device Regulation (MDR).65 As far as MLMD
applications use data, the General Data Protection Regulation
(GDPR)66 must be accounted for. The European Commission is
currently striving to shape Europe’s digital future. A reassessment
is planned in 5 years.67

59https://webstore.iec.ch/publication/67138 accessed 14.2.2022.
60https://standards.ieee.org/wp-content/uploads/import/documents/other/ead_
v2.pdf accessed 28.2.2022.
61https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm
accessed 28.4.2022.
62Harmonized Standards (HAS)-consultants.
63Article 8 MDR/IVDR.
64https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32022D0006&from=EN accessed 28.4.2022.
65https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2017:117:
FULL&from=EN accessed 22.2.2022.
66https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2016:119:
FULL&from=EN accessed 22.2.2022.
67https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
accessed 22.2.2022.
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The planned Artificial Intelligence Act68 is designed as
horizontal legislation. There is an intersection with the vertical
MDR, though.69 Mandatory requirements for high-risk AI
applications are intended. Due to the new classification rules 11
(Medical device software) and 22 (closed-loop systems) in Annex
VIII, MDR70 medical devices based on or integrating MLMD
are likely to be classified as II a or even higher. There is some
guidance71 on discretion referring to IMDRF policy.72 Thus, the
use of the MLMD application in a “safe” context may support a
lower risk classification. Yet many MLMD devices may end up as
high-risk devices that will be covered by mandatory regulation.
An impact analysis of the proposed Artificial Intelligence Act with
an annex including a stakeholder consultation is published on the
EU website.73

The CE-mark confirms conformity to the general safety and
performance requirements exposed in Annex I MDR and thereby
provides access to the European market. As previously discussed,
software and MLMD devices may belong to higher risk classes
due to the new rules for classification in MDR, Appendix VIII.
This implies that a Notified Body (NB) under MDR74 has to
audit the manufacturer and assess the technical file, including
the clinical evaluation report (CEAR). There will be a European
Database for Devices (EUDAMED) to ensure the traceability
of devices and the transparency of evidence.75 Postmarket
surveillance and clinical postmarket follow-up (PMCF) are
enforced as an early warning system. The MDCG 2019-16 Rev.176

is guidance on cybersecurity for medical devices that addresses
the requirements demanded by the MDR.

There are no specific, legally binding requirements for
MLMD in Europe at the moment, but notified bodies will

68https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-
01aa75ed71a1.0001.02/DOC_1&format=PDF and https://eur-lex.europa.eu/
resource.html?uri~=~cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/
DOC_2&format~=~PDF accessed 22.2.2022.
69https://portolano.it/en/blog/life-sciences/artificial-intelligence-and-medical-
devices-the-potential-impact-of-the-proposed-artificial-intelligence-regulation-
on-medical-device-software accessed 27.4.2022.
70Rule 11 of Annex VIII MDR. “Software intended to provide information which
is used to take decisions with diagnosis or therapeutic purposes is classified as class
IIa, except if such decisions have an impact that may cause: Death or an irreversible
deterioration of a person’s state of health, in which case it is in class III; or Serious
deterioration of a person’s state of health or a surgical intervention, in which case
it is classified as class IIb. Software intended to monitor physiological processes is
classified as class IIa, except if it is intended for monitoring of vital physiological
parameters, where the nature of variations of those parameters is such that it could
result in immediate danger to the patient, in which case it is classified as class IIb.
All other software are classified as class I.” Rule 22 of Annex VIII MDR: “Active
therapeutic devices with an integrated or incorporated diagnostic function which
significantly determines the patient management by the device, such as closed loop
systems or automated external defibrillators Class III.”
71https://ec.europa.eu/health/system/files/2020-09/md_mdcg_2019_11_
guidance_qualification_classification_software_en_0.pdf accessed 27.4.2022.
72https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-
tech-140918-samd-framework-risk-categorization-141013.pdf accessed
27.4.2022.
73https://digital-strategy.ec.europa.eu/en/library/impact-assessment-regulation-
artificial-intelligence accessed 22.2.2022.
74https://ec.europa.eu/growth/tools-databases/nando/index.cfm?fuseaction=
directive.notifiedbody&dir_id=34 accessed 22.2.2022.
75https://ec.europa.eu/tools/eudamed/#/screen/home accessed 22.2.2022.
76https://ec.europa.eu/health/system/files/2022-01/md_cybersecurity_en.pdf
accessed 22.2.2022.

check additional requirements according to “General Features
of Medical Device Regulation” section 10. Their questions
are reflected by the AI-guideline of the Johner Institute.77 As
dynamically learning and changing AI will not be certified
currently applications have to be locked for certification.
Outputs that have an impact on diagnosis or treatment should
be “explainable.” Otherwise, a conflict may arise with Art
22 and 35 of GDPR.

The NB may consult an expert panel (Clinical Evaluation
Consultation Procedure) in high-risk devices. The European
Society of Cardiology has established a regulatory affairs
committee (54). CORE-MD is a project of stakeholders that
seeks to improve research and evidence for high-risk medical
devices in cardiovascular, diabetic, and orthopedic medicine by
tapping real-world data, establishing registries, and advanced
methodology in statistics and trial design. Responsible innovation
comprises the evaluation of AI and stand-alone software as a
particular focus (55).

Regulation in the United States
In the United States, medical devices are regulated by the
CFR—Code of Federal Regulations Title 21 Part 800-1299.78

The Food and Drug Administration (FDA)’s Center for Devices
and Radiological Health (CDRH) is the competent authority in
charge of regulation. Regulation is based on risk class. “Most
Class I devices are exempt from Premarket Notification 510(k);
most Class II devices require Premarket Notification 510(k),
and most Class III devices require Premarket Approval.”79 The
FDA provides tailored access to the market by exemptions
for investigational devices (IDE) and humanitarian devices
(HDE), evaluation of automatic class III designations (De Novo
Requests), Clinical Laboratory Improvement Amendments, and
Breakthrough Devices.80

The Q-Submission Program81 provides an overview of the
mechanisms available to submitters to request feedback from or
a meeting with the Food and Drug Administration (FDA). The
FDA supports medical device innovators.82 The FDA initiated
a Software Precertification (Pre-Cert) Pilot Program as a future
regulatory model to provide “more streamlined and efficient
regulatory oversight of software-based medical devices developed
by manufacturers who have demonstrated a robust culture of
quality and organizational excellence and who are committed
to monitoring the real-world performance of their products
once they reach the U.S. market.” . . . “The FDA is partnering
with a Federally Funded Research and Development Center
(FFRDC), operated by The MITRE Corporation (MITRE),
to provide professional engineering and technical support to
simulate scenarios for the Software Pre-Cert Pilot Program,”

77https://github.com/johner-institut/ai-guideline accessed 1.5.2022.
78https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?
CFRPartFrom=800&CPartTo=1299 accessed 28. 2.2022.
79https://www.fda.gov/medical-devices/device-advice-comprehensive-
regulatory-assistance/overview-device-regulation accessed 28. 2.2022.
80https://www.fda.gov/regulatory-information/search-fda-guidance-documents/
breakthrough-devices-program accessed 1.5.2022.
81https://www.fda.gov/media/114034/download accessed 1.5.2022.
82https://www.fda.gov/about-fda/cdrh-innovation/activities-support-medical-
device-innovators#earlyworkshop accessed 1.5.2022.
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. . ..”The simulated scenarios will allow the agency to test
the interdependencies of the four components of the Pre-
Cert Pilot Program (Excellence Appraisal, Review Pathway
Determination, Streamlined Premarket Review Process, and
Real-World Performance).83”

There may still be no specific legally binding regulation for
MLMD, even in the United States. But the FDA is developing
concepts and has been engaged in research and communication
with stakeholders for several years.84 Regulation of AI intelligence
in medical imaging considers three criteria: patient safety
or device risk class, existence of a predicate algorithm
or evolutionary/revolutionary devices, and clinician input
(decision support, computer-aided detection, and computer-
aided diagnosis) (56).

The Food and Drug Administration (FDA) proposed
an advanced regulatory concept in the discussion paper,
“Proposed Regulatory Framework for Modifications to Artificial
Intelligence/Machine Learning (AI/ML)-Based Software as a
Medical Device (SaMD).”85 Two-dimensional risk classification
is adopted from IMRDF.86 Changes in AI software are classified
as changes in performance, input, or intended purpose. The total
product lifecycle regulatory approach (TPLC) as specified in the
Pre-Cert-Program is applied to the assessment of modifications.
Good machine learning practices (GMLP)87 are supposed to
assure process quality in data management, development, model
training and tuning, model validation, and monitoring. Based
on a premarket assessment of safety, performance, and clinical
benefit, the FDA may permit the model to be marketed
conditional on monitoring. The manufacturer is expected to pre-
specify expected changes (SPS) due to retraining and retuning.
Moreover, he has to provide an algorithm change protocol (ACP)
in advance, where methods for controlling anticipated risks
related to SPS are established.

The FDA published an update of its policy, the “Artificial
Intelligence/Machine Learning (AI/ML)-Based Software as a
Medical Device (SaMD) Action Plan.”88 The FDA strongly
advocates a multistakeholder approach with a particular focus
on the needs of patients and takes part in regulatory research
and harmonization of technical standards. Currently the FDA
will check additional state-of-art requirements according to
“General Features of Medical Device Regulation” section 10.
For high-risk devices outcome data on safety, performance,
and equity may be requested. Testing performance of MLMD
algorithms across different imaging devices, and different
provider and patient settings demands appropriate data sets.
Certify-AI is a service of the Data Science Institute of the

83https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-
health-software-precertification-pre-cert-program accessed 28. 2.202.
84https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-
intelligence-and-machine-learning-software-medical-device accessed 1.5.2022.
85https://www.fda.gov/media/122535/download accessed 1.5.2022.
86https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-
tech-140918-samd-framework-risk-categorization-141013.pdf accessed 1.5.2022.
87https://www.fda.gov/medical-devices/software-medical-device-samd/good-
machine-learning-practice-medical-device-development-guiding-principles?
utm_medium=email&utm_source=govdelivery accessed 28. 2.2022.
88https://www.fda.gov/media/145022/download accessed 1.5.2022.

American College of Radiology that allows developers of
health care AI to test independently and compliant with
regulatory expectations the algorithm performance ahead of
any regulatory review by the FDA or other governmental
agencies.89 Other useful services are provided by this
institute.90 A regulatory reference lab for testing MLMD
with undisclosed representative big data would provide
comparability, standardization and a minimum level of
generalization. Ongoing monitoring and updating of the data
would be required, however.

Other Legislations
In the United Kingdom, medical devices are regulated by
the Medical Devices (Amendment, etc.) (EU Exit) Regulations
2020.91 The Medicines and Healthcare products Regulatory
Agency (MHRA) is responsible for United Kingdom medical
devices. CE-marked devices will be accepted until 30 June 2023.
A United Kingdom-approved body must be used in cases where
third-party conformity assessment is required for the revived
UKCA marking. UKNI marking, conforming with EU and UK
legislation will be necessary for the future of Northern Ireland.92

Brexit opportunities provide an outlook for some independent
adaptation of the regulation of software and artificial intelligence
as a medical device.93 “Software and AI as a Medical Device
Change Programme”94 is an initiative to develop UK regulatory
guidance by the Medicines and Healthcare products Regulatory
Agency (MHRA).95

The promises and challenges of MLMD are global issues
entailing modernization of regulation everywhere, e.g., in Japan
(57), China,96 Korea,97 and Saudi Arabia.98

Comparison of Eu and United States With Examples
The current regulatory pathway in the EU and in the
United States is sketched in Figure 1.

Whereas, the United States maintains a centralized
regulation with many tailored ways of access to the market
the EU has reformed its decentralized CE-certification
approach implementing stricter direct law in EU, improved
oversight by competent authorities, and better coordination
by the Commission.

89https://www.acrdsi.org/DSI-Services/Certify-AI accessed 1.5.2022.
90https://www.acrdsi.org/DSI-Services accessed 1.5.2022.
91https://www.legislation.gov.uk/uksi/2020/1478/contents/made accessed 28.
2.2022.
92https://www.gov.uk/guidance/regulating-medical-devices-in-the-uk accessed
28. 2.2022.
93https://www.gov.uk/government/news/transforming-the-regulation-of-
software-and-artificial-intelligence-as-a-medical-device accessed 28. 2.2022.
94https://www.gov.uk/government/publications/software-and-ai-as-a-medical-
device-change-programme/software-and-ai-as-a-medical-device-change-
programme accessed 28. 2.2022.
95https://www.gov.uk/government/organisations/medicines-and-healthcare-
products-regulatory-agency accessed 28. 2.2022.
96https://chinameddevice.com/china-cfda-ai-software-guideline/ accessed 28.
2.2022.
97https://www.mfds.go.kr/eng/brd/m_40/view.do?seq=72623&srchFr=&srchTo=
&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&
company_cd=&company_nm=&page=1 accessed 28.2.2022.
98https://sfda.gov.sa/index.php/en/regulations/79702 accessed 28. 2.2022.
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FIGURE 1 | Comparison of access to the market in Europe as compared to the United States. MDCG Medical Device Coordination Group, CA Competent Authority,
NB Notified Body, MDR Medical Device Regulation, CE certificates issued by a notified body bear a number identifying the notified body, FDA US Food and Drug
Administration, CDRH FDA Center for Devices and Radiological Health.

In the past between 2015 and 2020 240 MLMD were CE
marked in Europe and 222 were approved by the FDA. Twenty
seven percent of all 462 MLMD were marketed in the EU and in
the United States. The 510(k) pathway was used for 92% of FDA
approvals, 7% used the de novo pathway and 1% were marketed
by the premarket approval pathway (58).99

The problem is that this comparison is history. In the
past, European regulation was based on the Council Directive
93/42/EEC and was more permissive than FDA. Now the recently
implemented MDR is supposed to be a much stricter legislation
in Europe, whereas the FDA has embraced the regulation of
new technologies. The United Kingdom pathway is currently
evolving from the European pathway and addresses a lot of
technical issues related to transition periods and the particular
requirements for Northern Ireland. Regulation of AI is evolving
all over the world. Thus, what was approved in the past may differ
from what will be approved in the future. In view of the current
deployment of a new medical device regulation in Europe and
the United Kingdom the impact on marketing MLMD devices
cannot be compared systematically at the moment.

ChestLink is the first Class IIb MDR certified automation
of radiological imaging workflow by MLMD without any
involvement from a radiologist in Europe.100 “Prior to
certification, ChestLink has been operating in a supervised
reporting setting in multiple pilot locations for more than a year,
processing more than 500,000 real-world chest X-ray images.
Prior to autonomous operations, ChestLink deployments start
with a retrospective imaging audit. Retrospective analysis helps

99https://www.thelancet.com/cms/10.1016/S2589-7500(20)30292-2/attachment/
c8457399-f5ce-4a30-8d36-2a9c835fb86d/mmc1.pdf accessed 1.5.2022.
100https://grand-challenge.org/aiforradiology/product/oxipit-chestlink/ accessed
1.5.2022.

to identify what part of studies at the medical institution can
be successfully automated. The operations then move into a
supervised setting, where ChestLink reports are validated by the
Oxipit medical staff and radiologists at the medical institution.
Only after completing the initial stages, the application can
start to report autonomously. Fully autonomous ChestLink
operations in a clinical setting are expected to begin in early
2023”101!

MLMD devices cleared by the FDA are listed along with
further links on a special FDA website.102 Moreover, the data
science institute of the American College of Radiology provides
detailed and searchable information regarding FDA cleared AI
medical imaging products.103 Some examples were also presented
at the “Public Workshop—Evolving Role of Artificial Intelligence
in Radiological Imaging. 25–26 February 2020” organized by the
FDA.104

In 2020, the FDA authorized marketing of the first cardiac
ultrasound software that guides users by artificial intelligence105

by 510(k) premarket notification. The Caption Guidance
software is intended to assist medical professionals in the
acquisition of cardiac ultrasound images. The Caption Guidance
software is an accessory to compatible general purpose diagnostic
ultrasound systems and classified as class II device. A prospective,
multicenter diagnostic showed that novices without experience

101https://www.pr.com/press-release/858165 accessed 1.5.2022.
102https://www.fda.gov/medical-devices/software-medical-device-samd/
artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
accessed 1.5.2022.
103https://aicentral.acrdsi.org/ accessed 1.5.2022.
104https://www.fda.gov/medical-devices/workshops-conferences-medical-
devices/public-workshop-evolving-role-artificial-intelligence-radiological-
imaging-02252020-02262020 accessed 1.5.2022.
105https://aicentral.acrdsi.org/ProductDetails/173 accessed 1.5.2022.
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in ultrasonography using this device may obtain diagnostic
transthoracic echocardiographic studies (59). So far, most of
the devices approved by the FDA are designed to augment—
but not entirely automate—the process of reviewing images
and making diagnoses. IDx-DR is marketed as the first and
only FDA cleared AI diagnostic system to make a diagnosis
without physician input. IDX-DR is an autonomous AI-enabled
device that detects more than mild diabetic retinopathy.106

Regulatory pathway was a 510(k) Premarket Notification with the
predecessor as predicate device.107 This previous version was De
Novo-cleared by the FDA 2018 as ophthalmic retinal diagnostic
software device (class II).108 “IDx-DR is indicated for use by
healthcare providers (italics by the author) to automatically detect
more than mild diabetic retinopathy in adults diagnosed with
diabetes who have not been previously diagnosed with diabetic
retinopathy.109” A recent meta-analysis of studies found that
state-of-the-art, ML-based DR screening algorithms are ready for
clinical applications. However, a significant portion of the earlier
studies had methodology flaws and should be interpreted with
caution (60).

There are two issues with IDx-DR. First it is a screening
application, which may be used by non-specialist providers.
Complex interactions between algorithmic output and providers
may occur. Automation bias and the impact on medical-legal
risk and responsibility have to be addressed. MLMD screening
tools should be evaluated in large population-based, real-world
settings with longitudinal data collection and linkage to regional
registries. Last not least regulation needs to be adapted to exploit
the benefits of continuously improving MLMD (61).

The second issue is that IDx-DR is an MLMD solution that
automates a process in medical imaging on the most advanced
autonomy level (full automation) (62). A binary classification
of algorithms into assisting and autonomous ones does not
adequately capture the spectrum of MLMD autonomy. Five
levels of automation have been established in the automotive
industry, full automation being the most advanced and most rare
level.110 A model of graded autonomy should be based on central
determinants of autonomy-related risk. The latter comprise the
responsible agent monitoring and responding to medical events,
the availability of a bail out back-up decision solution, and
the specific context,111 where the algorithm is deployed. As
the real-world performance of MLMD in previously untested
clinical scenarios is unknown, any, in particular autonomous,
MLMD systems require closely supervised pilot testing and
controlling in real-world clinical settings (62) (->example
ChestLink). Autonomous models in medical imaging should use
multi−site heterogeneous data sets to ensure a minimum level

106https://www.digitaldiagnostics.com/products/eye-disease/idx-dr/ accessed
1.5.2022.
107https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=
K203629 accessed 1.5.2022.
108https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180001.pdf accessed
1.5.2022.
109https://www.accessdata.fda.gov/cdrh_docs/pdf20/K203629.pdf accessed
1.5.2022.
110https://www.sae.org/standards/content/j3016_202104 accessed 1.5.2022.
111medical domain, health-care system, and population. . .

of generalizability across diverse patient populations as well as
variable imaging equipment and imaging protocols. Additional
post−market surveillance is to ensure that algorithms function
as expected longitudinally.112 Autonomous MLMD should be
evaluated based on outcomes regarding safety, performance
and equity in preregistered prospective studies, not only by
comparison to standard of care (62).

Automation by MLMD might affect providers in unexpected
ways (62). For example, skills rarely practiced may be lost, or
training may change performance in the health-care providing
human-agent-team. Risk management has to consider early
warning systems and mitigation measures. The difficulty in
guessing unexpected behavior of autonomous systems differs
between deterministic models and black-box models. eXplainable
artificial intelligence is of limited value in this high-stake context
as interpretability (see section “Specific Risks by MLMD-Ethical
and Legal Concerns” last paragraph) is not reliable in decision
making for individual patients (63). For example, -a conventional
thresholding algorithm designed to automatically segment 4d
flow images of big vessels may be based on a model derived
from data. The model is represented by deterministic code in the
medical device software. Limitations of this model representing a
potential hazard may be accounted for in the risk management
process. Whereas in case of an autonomous MLMD model, -
even if it is based on the same data-, predictions of unexpected
behavior and corrective and preventive measures are much more
difficult due to a lack of mechanistic understanding in individual
cases. Moreover, advanced automation of MLMD is raising a
serious liability issue in case of medical errors (62).

Thus, the FDA distinguishes between autonomous radiology
AI as “software in which AI/ML is being used to automate
some portion of the radiological imaging workflow” and
“augmented intelligence” innovations currently on the market.
Collateral change or challenge to the standard of care and
introduction of new questions of safety and effectiveness into
an established radiological imaging workflow or even new
intended use including user and/or environment are considered
as potential side effects of automation of radiological imaging
workflow by MLMD.113 The American College of Radiology
and the RSNA made a comment on this issue discussed at the
“Public Workshop − Evolving Role of Artificial Intelligence in
Radiological Imaging” of the FDA. The professional associations
expressed concerns regarding autonomous AI lacking oversight
by expert physicians. Combining expert professional judgment
with MLMD algorithm is considered safer and more effective
than unsupervised automation. It is contested that IDx-
DR is an apt example demonstrating how autonomous
AI could work in medical imaging, as the output does
not recommend treatment but ophthalmologic referral. In
radiology the output may pose a much greater risk for patient
safety.114

112https://www.acr.org/-/media/ACR/NOINDEX/Advocacy/acr_rsna_
comments_fda-ai-evolvingrole-ws_6-30-2020.pdf accessed 1.5.2022.
113https://www.fda.gov/media/135702/download Slide 7 accessed 1.5.2022.
114https://www.acr.org/-/media/ACR/NOINDEX/Advocacy/acr_rsna_
comments_fda-ai-evolvingrole-ws_6-30-2020.pdf accessed 1.5.2022.
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SUMMARY AND REFLECTIONS ON THE
FUTURE OF REGULATION

In summary, cardiac imaging will be increasingly pervaded
by MLMD. It is a win-win combination (8) expected to
enhance medical research, diagnosis, and treatment’s overall
quality and efficiency and decrease radiation by sparse image
reconstruction techniques (64). Automation of time-consuming
human tasks, e.g., in image segmentation and screening, and
improvements in the efficiency of imaging pipelines should result
in a cost reduction.

Artificial intelligence and machine learning systems, e.g.,
the software controlling radiology devices, may directly
impact real-world human-agent teams. Concerns regard
ethics, law, including liability, data protection, medical device
regulation, and the robustness of applications in various
partly unforeseeable use scenarios. Problem areas are data
privacy, enhanced vulnerability to cyber-attacks, bias fed into
the model by prejudices deeply hidden in real-world training
data or by non-representative or inappropriate sampling,
lack of transparency and interpretability of the mapping of
input to output, the complexity of software, generalizability of
applications in various socio-technical ecosystems, potentially
uncontrolled autonomous behavior of technical systems,
and liability issues arising if an adverse event happens.
Liability issues are discussed in a commission report of the
European Union, where a risk-based revision of product liability
legislation is recommended (65). Current regulation is based
on regulation for software as a medical device. Additional
legal constraints are data protection law and emerging artificial
intelligence legislation.

Analysis of gaps in the current regulation of artificial
intelligence-based diagnostic imaging algorithms in Europe
and the United States yielded conflation of task and algorithm,
superficial treatment of diagnostic task definition, lack of
comparability, insufficient characterization of safety and
performance elements, lack of resources to validate performance
at every installation site, and inherent conflicts of interest
as issues (52). The authors suggested that a definition of a
task should include background information, a precise and
detailed description, elaborated labeling instructions and
prototypical examples, and counter-examples. Tasks should
be separated from algorithms and maintained by medical
societies or third parties with domain expertise. Performance
elements beyond accuracy should be specified as reliability,
applicability, deterministic non-distractible behavior, self-
awareness of limitations, fail-safe function, transparent
logic, confidence, ability to be monitored and audited,
and usability. To manage limited resources for validation
development of a simplified approach to validate and monitor
on-site installation, e.g., out-of-distribution screening (66) is
recommended (52).

Legislations worldwide are currently trying to adapt their
regulation in an innovation-friendly manner to reap the promises
of MLMD. There are two views on regulation, ex ante and ex
post. The ex ante precautionary principle approach anticipates
risks and imposes limits or bans on application development. The

permissionless innovation approach allows experimentation and
addresses emerging issues ex post. Both approaches compete with
time in the rapidly evolving technology field (53). The goal to
foster innovation favors the permissionless innovation approach.
However, due to ethical and legal concerns, anticipation and
mitigation of ex ante risks cannot be dismissed. Moreover,
continuous monitoring, a fast adaptation of regulation, and
resilient management of emerging issues will decide on a
successful balance between innovation and regulation. Last but
not least, the concept of risk and safety is at stake. Risk
in the regulation of medical devices is generally conceived
as a combination of the probability of occurrence and the
severity of an adverse event. This negative concept must be
differentiated from positive risk implying opportunity. The
scope of this broader concept of risk is making decisions
under uncertainty and supporting risk management.115 Certain
risks are inherent in intended use and performance. Though
a ship may be most “safe” in the harbor, the use implies the
risk of going to sea. Safety in the future will be delivered
in an integrated system in which humans, machines, and the
environment work together and demand a more proactive view
on risks.116

Whereas conventional approaches to technology regulation
focus on manufacturing, MLMD regulations have to consider
providers and patients applying MLMD in increasingly
complex healthcare environments. Assuring the quality of
structure and processes may go beyond the excellence of
manufacturers. Applying MLMD must be part of professional
medical discretion and patient education. Suppose MLMD
applications are not frozen at the entry into the market. In
that case, continuous learning will be associated with drifts
and shifts in system behavior that needs surveillance and may
require corrective and preventive actions. Thus, a total product
lifecycle approach (TLPC) and multi-stakeholder involvement
are essential features of any ethical or legal approach to
environments comprising MLMD agents and humans and any
technical risk-management framework concerning MLMD.
Regulatory outlets supporting continuous learning are an issue
in Europe (67).

Some existing approaches and options to embed the
MLMD lifecycle in a world of processes that provides control
and adaptive learning is presented in Figure 2. MLMD
is data greedy. Real-world data (RWD) is data derived
from real-life patient management. Processes associated with
health care provision leave digital traces that accumulate in
storage systems and networks. Digital health generates big
data. RWD comprises registries, electronic health records,
picture archives, insurance data, health apps, digital traces in
the internet of things (IoT), and social media. New data-
mining techniques, for instance, a combination of natural
language processing, NLP), machine learning, and robotic
process automation, enable the analysis of these sources of

115IEC 31010:2019 Risk management—Risk assessment techniques https://
webstore.iec.ch/publication/59809 accessed 28. 2.2022.
116https://storage-iecwebsite-prd-iec-ch.s3.eu-west-1.amazonaws.com/2020-11/
content/media/files/iec_wp_safety_in_the_future_en_lr_1.pdf accessed 28.2.2022.
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FIGURE 2 | Embedding the MLMD life-cycle in regulation—existing approaches and options.

information. Real-world evidence (RWE) is the information
extracted from RWD (68–70). Thus, data governance in MLMD
is a fundamental issue. A data-centric life cycle approach to
MLMD is advocated for ethical (71) and technical reasons
(72) and may be particularly helpful in health RWD that
generally lacks maintenance and validation and raises many
interoperability problems.

Regulatory science evaluates and develops the regulatory
landscape and its environment. Advancing regulatory science
is a crucial matter of concern for the FDA.117 The FDA has
a strategic plan to support regulatory science and cooperates
with academic science in the Centers of Excellence in Regulatory
Science and Innovation (CERSIs) on this goal.118 The FDA
maintains a science laboratory, the Office of Science and
Engineering Laboratories (OSEL).119 “Artificial Intelligence and
Machine Learning Program: Research on AI/ML-Based Medical
Devices” is an OSEL project.120 Regulatory science is an issue
worldwide promoted by dedicated organizations,121 CERSIs, and
other universities.122 Regulatory science initially emerged in the

117https://www.fda.gov/science-research/science-and-research-special-topics/
advancing-regulatory-science accessed 28. 2.2022.
118https://www.fda.gov/science-research/advancing-regulatory-science/centers-
excellence-regulatory-science-and-innovation-cersis accessed 28.2.2022.
119https://www.fda.gov/medical-devices/science-and-research-medical-devices/
medical-device-regulatory-science-research-programs-conducted-osel accessed
28.2.2022.
120https://www.fda.gov/medical-devices/medical-device-regulatory-science-
research-programs-conducted-osel/artificial-intelligence-and-machine-
learning-program-research-aiml-based-medical-devices accessed 28.2.2022.
121CIRS Centre for Innovation in Regulatory Science UK https://www.cirsci.org/,
Institute for regulatory science https://nars.org/ accessed 28.2.2022.
122Regulatory Affairs Office at Technical University Dresden https:
//digitalhealth.tu-dresden.de/infrastructure/regulatory-affairs-office/, Centre

pharma domain (73, 74). Regulatory science concerning medical
devices is a recent achievement expected to help modernize
regulation (75–77).

CONCLUSION

The emerging disruption in the socio-technical environment by
MLMD devices is driving the modernization of regulation. This
also applies to health management, where particular ethical assets
are at stake. A data-centric total product life-cycle approach,
including all stakeholders, continuous learning of all agents in
the human agent team, fast adaptation of regulation, and new,
more proactive risk management may be salient ingredients of
regulatory control of MLMD devices.
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