24 research outputs found

    Markov and Neural Network Models for Prediction of Structural Deterioration of Stormwater Pipe Assets

    Get PDF
    Storm-water pipe networks in Australia are designed to convey water from rainfall and surface runoff. They do not transport sewerage. Their structural deterioration is progressive with aging and will eventually cause pipe collapse with consequences of service interruption. Predicting structural condition of pipes provides vital information for asset management to prevent unexpected failures and to extend service life. This study focused on predicting the structural condition of storm-water pipes with two objectives. The first objective is the prediction of structural condition changes of the whole network of storm-water pipes by a Markov model at different times during their service life. This information can be used for planning annual budget and estimating the useful life of pipe assets. The second objective is the prediction of structural condition of any particular pipe by a neural network model. This knowledge is valuable in identifying pipes that are in poor condition for repair actions. A case study with closed circuit television inspection snapshot data was used to demonstrate the applicability of these two models

    An assessment of sub-standard water pressure in South African potable distribution systems

    Get PDF
    Sub-standard residual water pressures in urban water distribution systems (WDS) are a prevalent phenomenon in developing countries – South Africa being no exception. The phenomenon of sub-standard pressure is poorly understood, with intermittent supply ultimately resulting when there is no residual pressure left in the system. This research addressed the prevalence and extent of sub-standard pressures by using hydraulic models of potable WDS for 71 South African towns, located in 17 different South African municipalities geographically spread over the country. The hydraulic models included 539,388 modelled nodes, which were analysed to determine the number of nodes with sub-standard pressure heads during peak hour flow conditions. The results show that the residual pressure head was <24 m at 16.5% of the model nodes under peak hour flow conditions, with 6.7% of the nodes having pressure heads <12 m. In contrast, the results also report relatively high pressures in certain parts of the systems, far in excess of the minimum requirement, underlining the need for better pressure management at both high and low ranges. It was also noted that the South African design criterion is relatively stringent compared with some other countries and could potentially be relaxed in future

    The effect of indirect GHG emissions costs on the optimal water and energy supply systems

    No full text
    This study investigates the effect of indirect greenhouse gas (GHG) emissions on the optimal long-term planning and short-term operational scheduling of a desalination- based water supply system. The system was driven by grid-electricity and surplus output from residential rooftop photovoltaics to deliver water and energy to urban areas. The interactive two-level mixed integer linear programming model took into account demands, system configurations, resources capacities and electricity tariffs as well as GHG emission factor associated with the source of grid electricity. Both system and carbon abatement costs were considered in the formulation of the objective function. The optimal decisions for Perth (Australia) resulted in AUD 47,449,276 higher discounted total cost but 51,301.3 tCO2eq less GHG emissions over 15 years planning horizon compared to when only system costs were minimised. Finally, the predominant effect of the indirect GHG emissions costs over system costs on the optimal solutions indicated their high sensitivity towards the source of purchased grid electricity

    Urban water mass balance analysis

    No full text
    Planning for “water-sensitive” cities has become a priority for sustainable urban development in Australia. There has been little quantification of the term, however. Furthermore, the water balance of most cities is not well known. Following prolonged drought, there has also been a growing need to make Australian cities more water self-reliant: to source water from within. This article formalizes a systematic mass-balance framework to quantify all anthropogenic and natural flows into and out of the urban environment. Quantitative performance indicators are derived, including (1) degree of system centralization; (2) overall balance; potential of (3) rainfall, (4) stormwater, and (5) wastewater to offset current demand; and (6) water cycle rate. Using the method, we evaluate Sydney, Melbourne, South East Queensland and Perth using reported and modeled data. The approach makes visible large flows of water that have previously been unaccounted and ignored. It also highlights significant intercity variation. In 2004–2005, the cities varied 54% to 100% in their supply centralization, 257% to 397% in the ratio of rainfall and water use, 47% to 104% in their potential stormwater recycling potential, and 26% to 86% in wastewater recycling potential. The approach provides a practical, water-focused application of the urban metabolism framework. It demonstrates how the principles of mass balance can help foster robust water accounting, monitoring, and management. More important, it contributes to the design and quantitative assessment of water-sensitive cities of the future

    Preliminary development of a sewerage infrastructure buffer assessment tool for engineering risk and strategic land use planning

    Get PDF
    Urban expansion continues to encroach on once isolated sewerage infrastructure. In this context,legislation and guidelines provide limited direction to the amenity allocation of appropriate buffer distances for land use planners and infrastructure providers. Topography, wind speed and direction,temperature, humidity, existing land uses and vegetation profiles are some of the factors that require investigation in analytically determining a basis for buffer separations. This paper discusses the compilation and analysis of six years of Logan sewerage odour complaint data. Graphically,relationships between the complaints, topographical features and meteorological data are presented. Application of a buffer sizing process could assist planners and infrastructure designers alike, whilst automatically providing extra green spaces. Establishing a justifiable criterion for buffer zone allocations can only assist in promoting manageable growth for healthier and more sustainable communities
    corecore