214 research outputs found

    FILLING STATION

    Get PDF

    Pharmacologic inhibition of PI3K p110δ in mutant Shp2E76K-expressing mice

    Get PDF
    Juvenile myelomonocytic leukemia is a childhood malignancy that lacks effective chemotherapies and thus has poor patient outcomes. PI3K p110δ has been found to promote hyperproliferation of cells expressing mutant Shp2. In this study, we tested the efficacy of a PI3Kδ inhibitor in mice expressing the Shp2 gain-of-function mutation, E76K. We found that in vivo treatment of mice led to significantly decreased splenomegaly, reduced frequency of bone marrow progenitor cells, and increased terminally differentiated peripheral blood myeloid cells. The survival of drug-treated mice was significantly prolonged compared to vehicle-treated controls, although mice from both groups ultimately succumbed to a similar myeloid cell expansion. PI3Kδ inhibitors are currently used to treat patients with relapsed lymphoid malignancies, such as chronic lymphocytic leukemia. The current findings provide evidence for using PI3Kδ inhibitors as a treatment strategy for JMML and potentially other myeloid diseases

    Rapid development of myeloproliferative neoplasm in mice with Ptpn11D61Y mutation and haploinsufficient for Dnmt3a

    Get PDF
    PTPN11 gain-of-function mutation is the most common mutation found in patients with juvenile myelomonocytic leukemia and DNMT3A loss occurs in over 20% of acute myeloid leukemia patients. We studied the combined effect of both Ptpn11 gain-of-function mutation (D61Y) and Dnmt3a haploinsufficiency on mouse hematopoiesis, the presence of which has been described in both juvenile myelomonocytic leukemia and acute myeloid leukemia patients. Double mutant mice rapidly become moribund relative to any of the other genotypes, which is associated with enlargement of the spleen and an increase in white blood cell counts. An increase in the mature myeloid cell compartment as reflected by the presence of Gr1+Mac1+ cells was also observed in double mutant mice relative to any other group. Consistent with these observations, a significant increase in the absolute number of granulocyte macrophage progenitors (GMPs) was seen in double mutant mice. A decrease in the lymphoid compartment including both T and B cells was noted in the double mutant mice. Another significant difference was the presence of extramedullary erythropoiesis with increased erythroid progenitors in the spleens of Dnmt3a+/-;D61Y mice relative to other groups. Taken together, our results suggest that the combined haploinsufficiency of Dnmt3a and presence of an activated Shp2 changes the composition of multiple hematopoietic lineages in mice relative to the individual heterozygosity of these genes
    corecore