875 research outputs found

    Locally nearly spherical surfaces are almost-positively cc-curved

    Full text link
    The cc-curvature of a complete surface with Gauss curvature close to 1 in C2C^2 norm is almost-positive (in the sense of Kim--McCann). Our proof goes by a careful case by case analysis combined with perturbation arguments from the constant curvature case, keeping track of an estimate on the closeness curvature condition

    Ethno-polar et ethno-pillard, ou les voleurs de temps

    Get PDF

    Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds

    Get PDF
    In this paper, data from spaceborne radar, lidar and infrared radiometers on the “A-Train” of satellites are combined in a variational algorithm to retrieve ice cloud properties. The method allows a seamless retrieval between regions where both radar and lidar are sensitive to the regions where one detects the cloud. We first implement a cloud phase identification method, including identification of supercooled water layers using the lidar signal and temperature to discriminate ice from liquid. We also include rigorous calculation of errors assigned in the variational scheme. We estimate the impact of the microphysical assumptions on the algorithm when radiances are not assimilated by evaluating the impact of the change in the area-diameter and the density-diameter relationships in the retrieval of cloud properties. We show that changes to these assumptions affect the radar-only and lidar-only retrieval more than the radar-lidar retrieval, although the lidar-only extinction retrieval is only weakly affected. We also show that making use of the molecular lidar signal beyond the cloud as a constraint on optical depth, when ice clouds are sufficiently thin to allow the lidar signal to penetrate them entirely, improves the retrieved extinction. When infrared radiances are available, they provide an extra constraint and allow the extinction-to-backscatter ratio to vary linearly with height instead of being constant, which improves the vertical distribution of retrieved cloud properties
    corecore