777 research outputs found

    The image of the German Democratic Republic in the British press 1972-1989

    Get PDF
    Despite growing interest in British-East German relations in recent years, little academic attention has thus far been paid to the British perception of the German Democratic Republic (GDR) during its existence. This thesis therefore aims to broaden this still rudimentary academic discourse by exploring the image of the second German state in the British quality press between 1972 and 1989. As an active contributor to the shaping of the GDR’s image in Britain, the press has thus far been predominantly ignored by academic scholars. Using discourse analysis, it will be demonstrated that the substantial level of British press coverage was able to present a more detailed picture of the GDR, and with it, a more multifaceted image of the country than was detectable in other discourses of the time. In particular, the inclusion of several newspapers with differing political biases helps to show the range of opinions which existed in British society. This study investigates the five main subject areas that received the most attention from the press: identity, foreign policy, opposition, the Wall and sport. In order to offer a comprehensive picture of the press discourse, this thesis additionally investigates the working conditions of British journalists in the GDR. For this purpose, qualitative interviews with nine journalists who reported for British quality newspapers and the news agency Reuters have been conducted

    MyD88 signalling in myeloid cells is sufficient to prevent chronic mycobacterial infection

    Get PDF
    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis that is responsible for almost 1.5 million deaths per year. Sensing of mycobacteria by the host's immune system relies on different families of receptors present on innate immune cells. Amongst them, several members of the TLR family are involved in the activation of immune cells by mycobacteria, yet the in vivo contribution of individual TLRs to the protective immune response remains controversial. On the contrary, MyD88, the adaptor molecule for most TLRs, plays a non-redundant role in the protection against tuberculosis and mice with a complete germline deletion of MyD88 succumb very early to infection. MyD88 is expressed in both immune and non-immune cells, but it is not clear whether control of mycobacteria requires ubiquitous or cell-type specific MyD88 expression. Therefore, using novel conditional switch-on mouse models, we aimed to investigate the importance of MyD88 signalling in DCs and macrophages for the induction of protective effector mechanisms against mycobacterial infection. We conclude that specific reactivation of MyD88 signalling in CD11c- or lysozyme M-expressing myeloid cells during Mycobacterium bovis Bacille Calmette-Guerin infection is sufficient to restore systemic and local inflammatory cytokine production and to control pathogen burden.Fil: Berod, Luciana. Helmholtz Centre for Infection Research; Alemania. Medical School Hanover; AlemaniaFil: Stüve, Philipp. Medical School Hanover; Alemania. Helmholtz Centre for Infection Research; AlemaniaFil: Swallow, Maxine. Medical School Hanover; Alemania. Helmholtz Centre for Infection Research; AlemaniaFil: Arnold Schrauf, Catharina. Medical School Hanover; Alemania. Helmholtz Centre for Infection Research; AlemaniaFil: Kruse, Friederike. Medical School Hanover; Alemania. Helmholtz Centre for Infection Research; AlemaniaFil: Gentilini, Maria Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Centre for Infection Research; Alemania. Medical School Hanover; AlemaniaFil: Freitag, Jenny. Medical School Hanover; Alemania. Helmholtz Centre for Infection Research; AlemaniaFil: Holzmann, Bernhard. Universitat Technical Zu Munich; Alemania. Helmholtz Centre for Infection Research; AlemaniaFil: Sparwasser, Tim. Medical School Hanover; Alemania. Helmholtz Centre for Infection Research; Alemani

    Osteopontin Promotes Protective Antigenic Tolerance against Experimental Allergic Airway Disease

    Get PDF
    In the context of inflammation, osteopontin (Opn) is known to promote effector responses, facilitating a proinflammatory environment; however, its role during antigenic tolerance induction is unknown. Using a mouse model of asthma, we investigated the role of Opn during antigenic tolerance induction and its effects on associated regulatory cellular populations prior to disease initiation. Our experiments demonstrate that Opn drives protective antigenic tolerance by inducing accumulation of IFN-β–producing plasmacytoid dendritic cells, as well as regulatory T cells, in mediastinal lymph nodes. We also show that, in the absence of TLR triggers, recombinant Opn, and particularly its SLAYGLR motif, directly induces IFN-β expression in Ag-primed plasmacytoid dendritic cells, which renders them extra protective against induction of allergic airway disease upon transfer into recipient mice. Lastly, we show that blockade of type I IFNR prevents antigenic tolerance induction against experimental allergic asthma. Overall, we unveil a new role for Opn in setting up a tolerogenic milieu boosting antigenic tolerance induction, thus leading to prevention of allergic airway inflammation. Our results provide insight for the future design of immunotherapies against allergic asthma

    The Bcl10–Malt1 complex segregates FcɛRI-mediated nuclear factor κB activation and cytokine production from mast cell degranulation

    Get PDF
    Mast cells are pivotal effector cells in IgE-mediated allergic inflammatory diseases. Central for mast cell activation are signals from the IgE receptor FcɛRI, which induce cell degranulation with the release of preformed mediators and de novo synthesis of proinflammatory leukotrienes and cytokines. How these individual mast cell responses are differentially controlled is still unresolved. We identify B cell lymphoma 10 (Bcl10) and mucosa-associated lymphoid tissue 1 (Malt1) as novel key regulators of mast cell signaling. Mice deficient for either protein display severely impaired IgE-dependent late phase anaphylactic reactions. Mast cells from these animals neither activate nuclear factor κB (NF-κB) nor produce tumor necrosis factor α or interleukin 6 upon FcɛRI ligation even though proximal signaling, degranulation, and leukotriene secretion are normal. Thus, Bcl10 and Malt1 are essential positive mediators of FcɛRI-dependent mast cell activation that selectively uncouple NF-κB–induced proinflammatory cytokine production from degranulation and leukotriene synthesis

    A Novel Bacterial Artificial Chromosome-Transgenic Podoplanin–Cre Mouse Targets Lymphoid Organ Stromal Cells in vivo

    Get PDF
    Stromal cells provide the structural foundation of secondary lymphoid organs (SLOs), and regulate leukocyte access and cell migration within the different compartments of spleen and lymph nodes (LNs). Furthermore, several stromal cell subsets have been implied in shaping of T cell responses through direct presentation of antigen. Despite significant gain of knowledge on the biology of different SLO-resident stromal cell subsets, their molecular and functional characterization has remained incomplete. To address this need, we have generated a bacterial artificial chromosome-transgenic mouse model that utilizes the podoplanin (pdpn) promoter to express the Cre-recombinase exclusively in stromal cells of SLOs. The characterization of the Pdpn–Cre mouse revealed transgene expression in subsets of fibroblastic reticular cells and lymphatic endothelial cells in LNs. Furthermore, the transgene facilitated the identification of a novel splenic perivascular stromal cell subpopulation that forms web-like structures around central arterioles. Assessment of the in vivo antigen expression in the genetically tagged stromal cells in Pdpn–Cre mice revealed activation of both MHC I and II-restricted TCR transgenic T cells. Taken together, stromal pdpn–Cre expression is well-suited to characterize the phenotype and to dissect the function of lymphoid organ stromal cells

    Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease

    Get PDF
    The scurfy mutant mouse strain suffers from a fatal lymphoproliferative disease leading to early death within 3–4 wk of age. A frame-shift mutation of the forkhead box transcription factor Foxp3 has been identified as the molecular cause of this multiorgan autoimmune disease. Foxp3 is a central control element in the development and function of regulatory T cells (T reg cells), which are necessary for the maintenance of self-tolerance. However, it is unclear whether dysfunction or a lack of T reg cells is etiologically involved in scurfy pathogenesis and its human correlate, the IPEX syndrome. We describe the generation of bacterial artificial chromosome–transgenic mice termed “depletion of regulatory T cell” (DEREG) mice expressing a diphtheria toxin (DT) receptor–enhanced green fluorescent protein fusion protein under the control of the foxp3 gene locus, allowing selective and efficient depletion of Foxp3+ T reg cells by DT injection. Ablation of Foxp3+ T reg cells in newborn DEREG mice led to the development of scurfy-like symptoms with splenomegaly, lymphadenopathy, insulitis, and severe skin inflammation. Thus, these data provide experimental evidence that the absence of Foxp3+ T reg cells is indeed sufficient to induce a scurfy-like phenotype. Furthermore, DEREG mice will allow a more precise definition of the function of Foxp3+ T reg cells in immune reactions in vivo

    Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection

    Get PDF
    The inflammatory response to lung infections must be tightly regulated, enabling pathogen elimination while maintaining crucial gas exchange. Using recently described “depletion of regulatory T cell” (DEREG) mice, we found that selective depletion of regulatory T cells (Tregs) during acute respiratory syncytial virus (RSV) infection enhanced viral clearance but increased weight loss, local cytokine and chemokine release, and T-cell activation and cellular influx into the lungs. Conversely, inflammation was decreased when Treg numbers and activity were boosted using interleukin-2 immune complexes. Unexpectedly, lung (but not draining lymph node) Tregs from RSV-infected mice expressed granzyme B (GzmB), and bone marrow chimeric mice with selective loss of GzmB in the Treg compartment displayed markedly enhanced cellular infiltration into the lung after infection. A crucial role for GzmB-expressing Tregs has not hitherto been described in the lung or during acute infections, but may explain the inability of children with perforin/GzmB defects to regulate immune responses to infection. The effects of RSV infection in mice with defective immune regulation closely parallel the observed effects of RSV in children with bronchiolitis, suggesting that the pathogenesis of bronchiolitis may involve an inability to regulate virus-induced inflammation

    Structure-Activity Relationship and Mode-Of-Action Studies Highlight 1-(4-Biphenylylmethyl)-1H-imidazole-Derived Small Molecules as Potent CYP121 Inhibitors

    Get PDF
    CYP121 of Mycobacterium tuberculosis (Mtb) is an essential target for the development of novel potent drugs against tuberculosis (TB). Besides known antifungal azoles, further compounds of the azole class were recently identified as CYP121 inhibitors with antimycobacterial activity. Herein, we report the screening of a similarity-oriented library based on the former hit compound, the evaluation of affinity toward CYP121, and activity against M. bovis BCG. The results enabled a comprehensive SAR study, which was extended through the synthesis of promising compounds and led to the identification of favorable features for affinity and/or activity and hit compounds with 2.7-fold improved potency. Mode of action studies show that the hit compounds inhibit substrate conversion and highlighted CYP121 as the main antimycobacterial target of our compounds. Exemplified complex crystal structures of CYP121 with three inhibitors reveal a common binding site. Engaging in both hydrophobic interactions as well as hydrogen bonding to the sixth iron ligand, our compounds block a solvent channel leading to the active site heme. Additionally, we report the first CYP inhibitors that are able to reduce the intracellular replication of M. bovis BCG in macrophages, emphasizing their potential as future drug candidates against TB.Fil: Walter, Isabell. Helmholtz Institute for Pharmaceutical Research Saarland; AlemaniaFil: Adam, Sebastian. Universitat Saarland; AlemaniaFil: Gentilini, Maria Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina. Twincore; AlemaniaFil: Kany, Andreas M.. Helmholtz Institute for Pharmaceutical Research Saarland; AlemaniaFil: Brengel, Christian. Helmholtz Institute for Pharmaceutical Research Saarland; AlemaniaFil: Thomann, Andreas. Helmholtz Institute for Pharmaceutical Research Saarland; AlemaniaFil: Sparwasser, Tim. Twincore; AlemaniaFil: Köhnke, Jesko. Universitat Saarland; AlemaniaFil: Hartmann, Rolf W.. Universitat Saarland; Alemania. Helmholtz Institute for Pharmaceutical Research Saarland; Alemani

    Effects of DDA, CpG-ODN, and plasmid-encoded chicken IFN-γ on protective immunity by a DNA vaccine against IBDV in chickens

    Get PDF
    This study examined the adjuvant effects of dimethyl dioctadecyl ammonium bromide (DDA), CpG oligodeoxynucleotides (CpG-ODN), and chicken interferon-γ (ChIFN-γ) on a DNA vaccine (pcDNA-VP243) against the infectious bursal disease virus (IBDV). A plasmid encoding chicken IFN-ã was constructed. Twice at 2-week intervals, two-week-old chickens were injected intramuscularly and intraperitoneally with either a DNA vaccine alone or a DNA vaccine together with the respective adjuvants. On week 2 after the second immunization, the chickens were orally challenged with the highly virulent IBDV. The groups that received the DNA vaccines plus either DDA or CpG-ODN showed significantly lower survival rates than the group that received the DNA vaccine alone. However, the survival rates for the DNA vaccine alone and for the DNA vaccine plus ChIFN-γ were similar. The chickens had no detectable antibodies to the IBDV before the challenge but all the surviving chickens in all groups except for the normal control group showed the induction of antibodies to the IBDV at day 10 after the challenge. As judged by the lymphocyte proliferation assays using the a WST-8 solution performed on the peripheral blood and splenic lymphocytes, the stimulation indices (SI) of the peripheral blood lymphocytes in all groups except for the normal control group were similar immediately before the challenge. At 10 days post-challenge, the SI for DNA vaccine plus either CpG-ODN or ChIFN-γ was similar to that of the DNA vaccine control group. For splenic lymphocytes, the SI in the DNA vaccine plus CpG-ODN and DNA vaccine plus ChIFN-γ groups were higher than for the DNA vaccine control. These results suggest that DDA actually compromises the protection against the IBDV by DNA vaccine, and CpG-ODN and IFN-γ had no significant effect
    corecore