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Abstract 26 

In the context of inflammation, osteopontin (Opn) is known to promote effector 27 

responses facilitating a pro-inflammatory environment. However, its role during 28 

antigenic tolerance induction is unknown. Using a mouse model of asthma, we 29 

investigated the role of Opn during antigenic tolerance induction and its effects on 30 

associated regulatory cellular populations prior to disease initiation. Our experiments 31 

demonstrate that Opn drives protective antigenic tolerance by inducing accumulation 32 

of interferon (IFN)-β-producing plasmacytoid dendritic cells (pDCs), as well as 33 

regulatory T cells in mediastinal lymph nodes. We also show that recombinant Opn, 34 

and particularly its SLAYGLR motif, in the absence of TLR triggers, directly induces 35 

IFN-β expression in antigen-primed pDCs which renders them extra protective 36 

against induction of allergic airway disease upon transfer into recipient mice. Lastly, 37 

we show that blockade of Type I IFN receptor prevents antigenic tolerance induction 38 

against experimental allergic asthma. Overall, we unveil a new role for Opn in setting 39 

up a tolerogenic milieu boosting antigenic tolerance induction, and thus leading to 40 

prevention of allergic airway inflammation. Our results provide insight for future 41 

design of immunotherapies against allergic asthma. 42 

 43 

44 
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Introduction 45 

Mechanisms of central and peripheral tolerance are crucial for maintaining immune 46 

system homeostasis and preventing exaggerated immune responses to intrinsically 47 

harmless self or foreign antigens. Failure of this mechanism could lead to the 48 

development of chronic inflammation such as allergic asthma and autoimmune 49 

diseases.  50 

As the incidence of allergic disease has risen dramatically, much effort has been put 51 

in determining the control mechanisms of peripheral tolerance to allergens, trying to 52 

find a treatment or prevention strategy for allergic disease. Allergic asthma is a 53 

disease caused by aberrant T helper cell 2 (TH2) immune responses to inhaled 54 

allergens leading to eosinophilic airway inflammation, mucus hyper-secretion and 55 

variable airway obstruction (1). Regulatory T (Treg) cells are important suppressors 56 

of dysregulated TH2 responses to inhaled antigens, as constitutive or induced 57 

deficiency of these cells leads to severe asthmatic reactions(2, 3). Likewise, several 58 

groups have demonstrated that both conventional (c) as well as plasmacytoid (p) 59 

dendritic cells (DCs) are key regulators of TH2 responses in allergic airway 60 

inflammation (4-7). As in many processes of immunoregulation, cytokines like 61 

transforming growth factor-beta 1 (TGF-β1) and interleukin-10 (IL-10) are also 62 

important regulators of tolerance to inhaled antigens (3, 8, 9).  63 

Osteopontin (Opn) is a cytokine expressed by immune cells, such as activated T cells 64 

and DCs, as well as by non-immune cells including tumor cells and stromal cells (10-65 

12). In inflammatory conditions, Opn affects DC function (5, 13-18) and can drive 66 

TH1, TH2 and TH17 effector immune responses (5, 11, 13, 14, 19, 20). On the other 67 

hand, Opn is constitutively expressed by a great variety of cells under non-68 

inflammatory conditions (12, 21-23), but its physiological significance is largely 69 

unknown. For example, secreted Opn (sOpn) is expressed in the bone marrow (BM) 70 

and also upon inflammatory conditions mainly in the form of thrombin-cleaved 71 

fragments (24, 25). Opn fragments have binding motifs for several integrins: the 72 

SLAYGLR motif specifically interacts with integrins α4β1, α9β1 and α4β7, whereas 73 

the RGD motif interacts with the αvβ3, αvβ5, αvβ1 and α5β1 integrins (12, 26). In 74 

addition, the carboxy-terminal half of Opn interacts with certain CD44 variants (12, 75 
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27). Thrombin cleavage of Opn reveals the otherwise cryptic SLAYGLR domain and 76 

this modification is vital for its interaction with α9β1 integrin (28).  77 

 Recent reports show that Opn is expressed in Foxp3+ Treg cells (29, 30) suggesting 78 

its possible role in immune regulation. In the current report, we test whether Opn 79 

affects tolerance induction during intranasal administration of endotoxin-free antigen. 80 

Our results unveil a novel role for Opn as a tolerance enhancer against allergic airway 81 

disease, setting up an immunoregulatory milieu and potentiating CCR7-expressing 82 

pDC recruitment to the draining lymph nodes (dLNs). In addition, we reveal that, in 83 

the absence of PAMPs, sOpn, and specifically its integrin-binding SLAYGLR motif, 84 

induces low levels of IFN-β expression in antigen-primed pDCs. SLAYGLR-treated 85 

pDCs are highly efficient at suppressing allergic airway inflammation via type I IFN. 86 

Finally, we show that Type I interferons are crucial during antigenic tolerance 87 

induction against allergic airway disease.88 
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Materials and methods 89 

Mice. BALB/c, C57BL/6J (designated B6), ovalbumin (OVA)-specific T cell receptor 90 

transgenic C.Cg-Tg (DO11.10)10Dlo/J (designated DO11.10), C.129P2(B6)-IL-91 

10tm1Cgn/J (designated Il10–/–), B6(Cg)-Il10tm1.1Karp (designated Il10GFP), B6.129-92 

Ifnb1tm1Lky/J (designated IfnbEYFP), B6.129S2-Ifnar1tm1Agt/Mmjax (designated 93 

Ifnar1-/-), B6-Tg (C-type lectin domain family 4, member C, CLEC4C- heparin 94 

binding EGF like growth factor, HBEGF) 956Cln/J, designated plasmacytoid 95 

dendritic cell-specific type II C-type lectin (BDCA2)-diphtheria toxin receptor–(DTR) 96 

were purchased from the Jackson Laboratory (Bar Harbor, ME). C57BL/6-Tg Foxp3-97 

DTR/enhanced green fluorescent protein (EGFP), designated depletion of regulatory 98 

T cell (DEREG) mice were provided by Dr. Sparwasser. B6.129S6(Cg)- secreted 99 

phosphoprotein 1 (Spp1)tm1Blh/J, designated Spp1−/− mice were kindly provided by Dr. 100 

Lucy Liaw (Maine Medical Center Research Institute, Scarborough ME). All mice 101 

used in this study were 8- to10-wk old females. Mice were housed at the Animal 102 

Facility of the Biomedical Research Foundation of the Academy of Athens (BRFAA) 103 

and at the University Hospital Gent (Gent, Belgium). Use of mice in this study was 104 

reviewed and approved by the Bioethics Committee of BRFAA, the Veterinarian 105 

Office of Attica and the Animal Ethics Committee of Gent University. All procedures 106 

were in accordance with the US National Institutes of Health Statement of 107 

Compliance (Assurance) with Standards for Humane Care and Use of Laboratory 108 

Animals (A5736–01) and with the European Union Directive 86/609/EEC for the 109 

protection of animals used for experimental purposes.  110 

In vivo experimental protocols. For tolerance induction, mice received 200 μg of 111 

endograde OVA (Hyglos GmbH) (i.n.) in the presence of either 2.5 μg recombinant 112 

Opn protein (rOpn) (R&D Systems) or 72 ng synthetic secreted Opn134-153 fragments 113 

(IVPTVDVPNGRGDSLAYGLR, frOpn) or PBS for control. The RGD domain (Arg-114 

Gly-Asp) of frOpn1 is scrambled to RAA (Arg-Ala-Ala). The SLAYGLR (Ser-Leu-115 

Ala-Tyr-Gly-Leu-Arg) of frOpn2 is scrambled to LRAGLRS (Leu-Arg-Ala-Gly-Leu-116 

Arg-Ser). The frOpn3 has both the RGD and SLAYGLR scrambled to RAA and 117 

LRAGLRS, respectively (Caslo Laboratory ApS). Opn oligopeptide fragments have 118 

been previously described(31). Myelin oligodendrocyte glycoprotein peptide 119 

(MOG)35–55 peptide (MEVGWYRSPFSRVVHLYRNGK) (Caslo Laboratory ApS) 120 



6 

 

was also used for tolerance induction (250 μg/mouse i.n.). Mice were euthanized 36-121 

40 hrs later and analyzed. In certain experiments, tolerance was induced prior to 122 

allergic airway disease induction: mice received 200 μg of endograde OVA (i.n.) on 123 

days -2, -1 and 0 in the presence of either 2.5 μg of rOpn or 72 ng of frOpn1-3 124 

synthetic fragments (i.n.). Control mice received PBS. Allergic airway disease 125 

(asthma) was subsequently induced: on day 10, mice were immunized with chicken 126 

OVA Grade V (Sigma-Aldrich) (50 μg) in 0.2 ml aluminium hydroxide (alum) 127 

(Serva) followed by 3 challenges with 5% aerosolized OVA between days 16-18 as 128 

described(5, 15). Mice were euthanized 2 d after the last aerosol (on day 20). DEREG 129 

mice received 1μg of diphtheria toxin (DT, Sigma-Aldrich) 35 or PBS, i.p. on days -3 130 

and -2 (6 hrs prior to i.n. OVA administration). For DT control group, non Tg 131 

littermates were administered DT. For pDC depletion, mice received 225 μg of 120G8 132 

pDC-depleting Ab (IgG2a-Dendritics, Lyon, France) (32) or Ig an isotype control Ab 133 

i.p., daily, on days -6, -5, -4 and -3. As in Fig. 4A, on days -2, -1 and 0, mice received 134 

i.n. 200 μg of OVA endograde along with 2.5 μg of rOpn and euthanized 7 days later. 135 

For pDC depletion in BDCA2-DTR mice 120 ng/mouse of DT was administered i.p. 136 

on days -4 and -3 in the 7-day tolerance induction protocol (as in Fig. 4A) (33). 137 

Efficient pDC depletion from dLNs in both approaches was determined by FACS 138 

analysis as ≥95% (data not shown). For neutralization of IFNAR1 mice received 20 139 

μg i.p. of a polyclonal affinity-purified neutralizing Ab to mouse IFNAR1 (clone 140 

MAR1-5A3) (eBioscience) or goat IgG isotype control (R&D Systems) 2 hrs before 141 

tolerance induction. After IFNAR1 neutralization and tolerance, for allergy induction 142 

mice were immunized with chicken OVA on day 15, and OVA challenges were 143 

performed between days 21-23. 144 

Penh. Lung function was measured in mice 24 hrs after the final OVA challenge (day 145 

19) by whole body plethysmography (Buxco Technologies) in order to calculate 146 

enhanced pause (Penh). Responses to inhaled methacholine (Sigma Aldrich) at 147 

concentrations of 3–100 mg/ml were measured for 1 min, as previously described(5). 148 

Analysis of Bronchoalveolar lavage (BAL) and lung histology. BAL harvesting 149 

and analysis was performed as previously described (34, 35). For histological 150 

analysis, paraffin-embedded (4μm) lung sections were stained with haematoxylin & 151 

eosin (H&E) and quantified as previously described (34). Goblet cells were quantified 152 

on Periodic-Acid-Schiff (PAS)-stained lung sections (5). A semi-quantitative scoring 153 
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system was used to grade the size of lung infiltrated as previously described (36). 154 

Goblet cells were counted on PAS stained sections using an arbitrary scoring system 155 

as previously described(36). 156 

pDC generation from BM, cultures and adoptive transfer. For pDC generation, 157 

bone marrow (BM) cells were isolated and cultured with rhFlt3L as described(37). On 158 

day 11, 7AAD-CD3-CD19-CD11c+B220+PDCA1+Siglec-H+ pDCs were sorted using 159 

FACS ARIAIII to a purity ≥98% after enrichment with CD11c microbead kit 160 

(Miltenyi Biotec). Sorted pDCs from BM-cultures cultured were conditioned for 16 161 

hrs with 100 μg/ml of endograde OVA or LoToxTM Dermatophagoides pteronyssinus 162 

allergen 1 (Derp1) (Indoor Biotechnologies) in the presence of 250 ng/ml rOpn or 163 

18.2 ng/ml frOpn1 or frOpn3 or PBS. After the culture with OVA, pDCs were washed 164 

and analysed or transferred intravenously (i.v.) via the tail vein (106/mouse). Allergic 165 

asthma was induced in mice 7 days later. Mice were euthanized 2 d after the last OVA 166 

challenge (Fig. 7B, 10A). 167 

Cell culture, proliferation and cytokine analysis. Isolated dLN cells (2x105 to 106) 168 

were cultured with 125 μg/ml OVA (Sigma-Aldrich) for 48 h. We performed 169 

proliferation assays with thymidine incorporation, as previously described(38). For 170 

certain experiments, proliferation of cells was measured as % of Edu+ cells by FACS, 171 

using a Molecular Probes kit. For cytokine measurements, we used ELISA kits for IL-172 

5 and IFN-γ (BD Biosciences); IL-4, IL-13 (R&D Systems) and IFN-β (BioLegend).  173 

Flow cytometry. Freshly isolated live (7AAD–, BD Biosciences) dLN cells and in 174 

vitro BM-derived cells were stained with combinations of fluorochrome-conjugated 175 

Abs to CD4-Pacific Blue or -PE/Cy5 (clone GK 1.5), CD3-PE/Cy7 or -PE/Cy5 or -PE 176 

or-FITC (17A2), CD11c-PE/Cy7 or -FITC or Orange 605 (N418), CD11b-PE/Cy7 or 177 

-FITC (M1/70), B220-PE or -BV 510 (RA3-6B2), CCR7-PE (4B12), Siglec-H-178 

Pacific Blue or -FITC (551), PDCA-1-PE or -FITC (927), CD19-PE/Cy7 or -PE/Cy5 179 

(6D5), CD25-PE (PC61.5) (BioLegend) and T1ST2 (DIH9) (-FITC, MD Biosciences 180 

or -PE BioLegend). For intra-nuclear staining of Foxp3, permeabilization kit and 181 

antibody (-Pacific Blue or -PE/CyC5, clone FJK-16s) were used (eBioscience). The 182 

flow cytometric measurements were performed using Attune Acoustic Focusing 183 

Cytometer (Applied Biosystems) and FACS ARIAIII (BD). FACS sorting of pDCs 184 
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was performed using FACS ARIAIII. Data analysis was performed by Flow-Jo 185 

Software (Tree Star).  186 

Chemotaxis assay. Sorted pDCs from LNs and spleen of BALB/c mice, were treated 187 

with rOpn (500 ng/ml) for 18-20 h and assayed for migration in response to 188 

chemokines CCL19 or CCL21 (200 ng/mL) (R&D Systems). The lower chambers of 189 

Transwell plates (QCMTM 5.0-μm chemotaxis assay 24-well-Colorimetric, Millipore) 190 

were filled with 500 μl serum-free medium in the presence or absence of chemokines. 191 

DCs (105 cells per 200 μl) resuspended in serum-free medium were deposited in the 192 

upper chambers of the Transwell plates and allowed to migrate for 4 h at 37°C in 5% 193 

CO2. For each experiment pooled total cells from spleen, inguinal and mesenteric 194 

lymph nodes of mice (n=8) were used and pDCs were isolated by sorting. 195 

Suppression assay, Treg cell induction in vitro. BM-derived pDCs pre-treated with 196 

±OVA and ±rOpn were cultured with naive DO11.10 CD4+ T cells for 3 d at a 1:5 197 

ratio. T cells were harvested and cultured without OVA in the presence of 1 ng/ml 198 

recombinant mouse IL-2 (R&D) for additional 7 d. Suppressive activity was assayed 199 

on 105 freshly purified CFSE (Invitrogen) labelled DO11.10 CD4+ T cells stimulated 200 

with 104 irradiated BALB/c splenocytes, with 1 μg/ml OVA323-339 peptide (Caslo 201 

Laboratory ApS), in the presence or absence of 105 DC-stimulated T cells. CFSE 202 

uptake was assayed 7 d later (Fig. 7A). 203 

Quantitative RT-PCR analysis. Total RNA was extracted from cells isolated from 204 

dLNs with anti-mPDCA-1 and CD11c MicroBeads (Miltenyi Biotec) and further 205 

purified with FACS sorting. cDNA synthesis described(31). Primers were designed 206 

using the Primer3 program and are depicted in Supplemental Table 1 (MWG 207 

Eurofins). Hypoxanthine-guanine phosphoribosyl transferase (Hprt), Foxp3, Il-10, 208 

Il27p28 and Spp1 primers were previously described (31). Real-time PCR was 209 

performed and analyzed as previously described (31). The reference gene used for 210 

real-time PCR analysis is Hprt. 211 

Statistical Analysis. Data were analyzed using Prism 7 Software (GraphPad). The 212 

two-tailed Student’s t-test was used for statistical analyses of two-group comparisons. 213 

Multigroup comparisons were performed by a two-way analysis of variance 214 

(ANOVA) followed by the Bonferroni correction for the multiplicity of tests. All 215 

results are presented as mean ± standard error of the mean (SEM). In all experiments, 216 
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statistical significance was defined as: *P≤0.0332; **P≤0.0021; ***P≤0.0002, 217 

****P< 0.0001.218 
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Results 219 

Opn boosts antigenic tolerance leading to increased protection from allergic 220 

airway disease 221 

To address whether Opn plays a role in tolerance induction, mice received i.n. 222 

endotoxin-free chicken OVA together with endotoxin-free rOpn or PBS for control, 223 

and protection against disease was assessed by utilizing a well-established model of 224 

allergic asthma (39) (Fig. 1A). OVA-tolerized mice showed a significant decrease in 225 

BAL, total cells and eosinophils, as well as lung tissue inflammatory scores and 226 

mucus secretion (Fig. 1B-C), compared to non-tolerized mice. In addition, enhanced 227 

pause (Penh) in OVA-tolerized mice was significantly reduced (Fig. 1D). 228 

Importantly, in OVA/rOpn-tolerized mice, numbers of eosinophils in BAL (Fig. 1B), 229 

airway hyperresponsiveness (AHR) (Fig. 1D), lung leukocytic infiltration and mucus 230 

secretion (Fig. 1C) were further reduced compared to OVA-tolerized mice. 231 

Furthermore, OVA/rOpn tolerization resulted in significantly reduced levels of IL-4, 232 

IL-13 and IFN-γ in the BAL, as well as in reduction of OVA-specific responses in 233 

mediastinal lymph node (mLN) cell cultures, and in TH cell proliferation compared to 234 

OVA-tolerization (Fig. 1E-G). Studies from our group and others have shown that 235 

there are high levels of IFN-γ production in allergic airway disease (5, 15, 40-42). The 236 

above findings indicated that administration of Opn along with OVA promotes 237 

enhanced tolerance, conferring significant protection from disease development. 238 

We next investigated whether Opn deficiency had any effect on tolerance induction. 239 

Tolerance induction in Spp1–/– mice was not as effective as in Spp1+/+, since we noted 240 

no significant change in neither number of eosinophils nor total cell numbers in BAL 241 

(Fig. 2A). In accordance, tolerogenic i.n. OVA administration in Spp1–/– mice could 242 

not efficiently dampen the inflammation and mucus secretion in the lung, whereas it 243 

was very efficient in Spp1+/+ mice (Fig. 2B). TH2 cytokine production by OVA–244 

stimulated mLN cells was also lower in OVA-tolerized Spp1–/– compared to PBS-245 

treated Spp1-/- mice (Fig. 2C). OVA–stimulated mLN cells from OVA-tolerized 246 

Spp1+/+ mice produced approximately 50% lower levels of TH2 cytokines, compared 247 

to cells from PBS-treated Spp1+/+ mice. Whereas, OVA-tolerized Spp1–/– mice had a 248 

lower reduction in cytokine levels compared to Spp1+/+ (Fig. 2C). The reduction in 249 

IFN-γ levels was similar among groups (Fig. 2C). Finally, OVA tolerization of Spp1–250 
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/– mice showed less decrease in the percentages of CD3+ T proliferating cells in 251 

cultures of mLN cells, compared to those from Spp1+/+ OVA-treated mice (Fig. 2D). 252 

The above results strongly support that in the presence of Opn, tolerance induction is 253 

more effective.  254 

Opn administration along with antigen increases accumulation of tolerogenic 255 

pDCs 256 

Migratory non-lymphoid tissue DCs transporting antigens to LNs are involved in 257 

promoting tolerance to self-antigens at steady state. As pDCs constitute a tolerogenic 258 

DC subset(43-47) and Opn has a dual role in the recruitment of DC subsets(5), we 259 

analyzed pDC numbers in the dLNs of OVA-tolerized mice and PBS-treated controls 260 

(Fig. 3A). Numbers of dLN pDCs were increased in OVA-treated group compared to 261 

the PBS control group (Fig. 3B). Mice treated with OVA/rOpn had increased 262 

percentages and significantly higher total numbers of pDCs in the dLNs at 36-40 hrs 263 

following treatment compared to OVA treatment (Fig. 3B). On the other hand, cDC 264 

numbers in the dLNs of OVA/rOpn mice were significantly reduced and percentages 265 

were lower compared to OVA treatment alone (Fig. 3B). Therefore, administration of 266 

Opn during tolerance induction affects the balance of DC subsets in the dLNs by 267 

increasing the numbers of pDCs and reducing the numbers of cDCs. 268 

The importance of Opn for DC subset recruitment in tolerance was also demonstrated 269 

using Opn deficient mice. Antigenic tolerance induction in Spp1–/– mice resulted in 270 

significant reduction in pDC numbers in their dLNs, compared to Spp1+/+ mice 271 

(Supplemental Fig. 1). At the same time, cDC numbers were significantly increased 272 

in the dLNs of Spp1–/– mice (Supplemental Fig. 1). Conclusively, these results show 273 

that tolerogenic administration of OVA in an Opn efficient microenvironment 274 

enhances pDC accumulation in the dLNs. 275 

Administration of Opn during tolerance induction regulates CCR7 expression 276 

affecting DC subset homing to dLNs 277 

To explore the reason for the increased numbers of pDCs in the dLNs of Opn treated 278 

mice, we investigated the effect of Opn on CCR7+ pDCs. CCR7 is a chemokine 279 

receptor responsible for homing of DCs to dLNs (48-50). We quantified CCR7+ DC 280 

subsets in peripheral blood, 36 hrs following OVA/rOpn tolerogenic administration 281 



12 

 

(Fig. 3A). Percentages of CCR7+ pDCs per total pDC numbers were significantly 282 

elevated in peripheral blood of mice treated with rOpn during tolerance induction 283 

compared to PBS treated mice (Fig. 3C). Percentages of CCR7+ cDC per total cDC 284 

numbers originating from peripheral blood of mice that had been administered 285 

OVA/rOpn were significantly decreased, compared to OVA-administered ones (Fig. 286 

3C). Our results demonstrate that Opn leads to enhanced migratory CCR7+ pDC 287 

percentages per total pDCs in the blood.  288 

We also found that OVA/rOpn-administered mice had significantly higher levels of 289 

Ccl19 and Ccl21 (encoding CCL19 and CCL21 chemokines that bind to CCR7) 290 

expression in their dLNs compared to OVA-administered mice (Fig. 3D), possibly 291 

attracting the increased numbers of CCR7+ pDCs to dLNs. Indeed, in vitro 292 

transmigration assays showed that sorted pDCs from naïve mice, pre-treated with 293 

rOpn had a 2-fold increase in CCL19-induced chemotaxis compared to PBS-treated 294 

pDCs (Fig. 3E). The above findings demonstrate that during tolerance induction, Opn 295 

can differentially regulate percentages of CCR7+ DC subsets, therefore affecting their 296 

chemotactic migration to the dLNs in favor of pDCs. Moreover, the observed 297 

increased gene expression of the CCR7 ligands, CCL19 and CCL21, provide an extra 298 

explanation for the rOpn-mediated migration of pDCs to the dLNs.  299 

Opn enhances pDC-dependent Foxp3+ Treg cell accumulation and promotes an 300 

immunoregulatory milieu in the dLNs 301 

As antigen administration for tolerance induction leads to generation of Treg cells 302 

(51), we investigated whether Opn had an effect early on this process. We 303 

administered i.n. OVA along either rOpn (OVA/rOpn) or PBS in mice for three 304 

consecutive days. One week later, mice were analyzed (Fig. 4A). OVA/rOpn treated 305 

mice showed almost a 2-fold increase in the percentages, as well as in total numbers 306 

of CD4+Foxp3+ Treg cells in the dLNs, compared to OVA-treated mice (Fig. 4B). 307 

Increased numbers of Foxp3+ Treg cells in OVA/rOpn tolerized mice, were 308 

accompanied by significantly enhanced Foxp3 expression in dLN cells (Fig. 4C). In 309 

addition, OVA/rOpn treatment also induced significant increase in the expression 310 

levels of immunoregulatory molecules such as Il10, Ido, Tgfb1, Fgl2 and Il27 in the 311 

dLNs compared to OVA treatment (Fig. 4C). Conclusively, Opn administration along 312 
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with antigen promotes Foxp3+ Treg cell accumulation resulting in a highly tolerogenic 313 

microenvironment in the dLN. 314 

To directly test whether increased numbers of Foxp3+ Treg cells mediate the observed 315 

rOpn-promotion of tolerance, we depleted Foxp3+ Treg cells prior to tolerance 316 

induction using DEREG mice (52) (Fig. 5A). Induction of tolerance with rOpn could 317 

not protect Treg-depleted mice which exhibited increased allergic responses as 318 

demonstrated by increased eosinophilia and lymphocytosis in the BAL, increased T 319 

cell proliferation, lung inflammation with mucus production and OVA specific 320 

cytokine responses, compared to Treg efficient mice (Fig. 5B-E).  321 

To address whether the Opn-mediated increase in pDC numbers was responsible for 322 

the observed accumulation of Foxp3+ Treg cells, we depleted pDCs by administering 323 

120G8 pDC-depleting antibody(32) prior to induction of tolerance and examined the 324 

accumulation of Foxp3+ Treg cells in the dLNs. This depletion led to a significant 325 

reduction in CD4+Foxp3+ Treg cell numbers versus OVA/rOpn administration in non-326 

pDC-depleted mice (Fig. 6A), resulting in exacerbated allergic airway disease (Fig. 327 

6B). We observed similar effects of rOpn on Treg cellularity in LNs after in vivo 328 

depletion of pDCs in BDCA2-DTR transgenic mice (33) (Supplemental Fig. 2). Thus, 329 

Opn-mediated pDC accumulation is at least partially responsible for the higher 330 

numbers of Treg cells in dLNs. In addition, dLN cells from OVA/rOpn-treated pDC-331 

depleted mice were significantly less capable of suppressing OVA-specific T cell 332 

proliferation (Fig. 6C), compared to dLN cells from OVA/rOpn-treated non-pDC-333 

depleted mice, reaching even lower suppressive ability than that of OVA-treated 334 

pDC-depleted dLN cells. Thus, OVA/rOpn treatment increased numbers of pDCs 335 

favoring accumulation of Foxp3+ Treg cells that are crucial for tolerance maintenance. 336 

Opn treatment of pDCs increases their suppressive activity against allergic 337 

airway disease 338 

We tested the suppressive function of in vitro OVA/rOpn-treated BM-derived pDCs 339 

by co-culturing them with CD4+ T cells. T cells obtained from OVA/rOpn-treated 340 

pDC cultures significantly suppressed responses of DO11.10 T cells to OVA 341 

compared to T cells obtained from OVA-treated pDC cultures (Fig. 7A). 342 
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We also adoptively transferred BM-derived pDCs, pre-conditioned in vitro with OVA 343 

or OVA/rOpn, into recipient mice prior to induction of allergic airway inflammation 344 

(Fig. 7B). Control mice received PBS-treated pDCs. Total and eosinophil cell 345 

numbers, as well as lung tissue inflammatory scores and mucus secretion were lower 346 

in BAL of OVA/rOpn-treated pDC recipient mice compared to OVA-treated pDC 347 

recipient mice (Fig. 7B-C). Furthermore, OVA/rOpn-treated pDC recipients had 348 

significantly reduced OVA-specific responses compared to OVA-treated pDC 349 

recipients (Fig. 7D). Thus, OVA/rOpn treatment of pDCs rendered them more 350 

regulatory, indicating that Opn affects the intrinsic tolerogenic function of pDCs. 351 

Opn SLAYGLR motif is responsible for pDC recruitment and effective 352 

protection from allergic disease  353 

RNA expression analysis revealed that, upon stimulation, mLN pDCs elevate 354 

expression of integrins αvβ3, α4β1 and α9β1 (data not shown). As the SLAYGLR 355 

motif of Opn interacts with α4β1, α4β7 and α9β1 integrins (12), and the RGD motif 356 

interacts with the αvβ3 integrin (11, 12), we asked which Opn domain is responsible 357 

for the observed effects on pDCs during tolerance induction. Thus, the synthetic 358 

frOpn134-153, containing the RGD and the SLAYGLR integrin binding motifs either 359 

intact or scrambled (31), were used with OVA to induce tolerance in mice, allowing 360 

us to unveil the involvement of the different integrin-binding motifs of Opn in pDC 361 

recruitment (Fig. 8A). The frOpn134-153 represents the thrombin cleaved fragment of 362 

Opn that reveals the otherwise cryptic domain SLAYGLR (28). OVA/frOpn1, 363 

containing an intact SLAYGLR motif but a scrambled RGD motif, induced 364 

accumulation of higher numbers of pDCs in the LNs compared to OVA, and 365 

OVA/rOpn (Fig. 8A). Conversely, frOpn2, which contains an intact RGD, but a 366 

scrambled SLAYGLR motif induced a reduction in pDC cell numbers in dLNs 367 

compared to all other treatments (Fig. 8A). When both motifs were scrambled as in 368 

the case of frOpn3, the numbers and percentages of pDCs were not significantly 369 

altered compared to OVA (Fig. 8A, Supplemental Fig. 3Α). OVA/frOpn1 induced 370 

higher percentages of pDCs in the dLNs compared to OVA and OVA/frOpn3 371 

(Supplemental Fig. 3A). These data revealed that the Opn SLAYGLR motif is 372 

responsible for pDC accumulation into dLNs. These data also reveal that the RGD 373 

motif suppresses this accumulation. 374 
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To examine the in vivo tolerogenic potential of frOpn1 in allergic disease, mice were 375 

treated with OVA together with either frOpn1 or frOpn3 for control before the 376 

induction of allergic airway inflammation (Fig. 8B). OVA/frOpn1 was more 377 

successful than OVA/frOpn3 in promoting tolerance and thus protecting mice against 378 

allergic airway inflammation as demonstrated by lower Penh values (Fig. 8C). BAL 379 

eosinophilia, as well as inflammatory score and mucus staining were also dampened 380 

after OVA/frOpn1 treatment (Fig. 8D). In addition, treatment with OVA/frOpn1 led 381 

to reduced levels of OVA-specific responses (Fig. 8E) and numbers of T1ST2+CD4+ 382 

T cells in the dLNs (Fig. 8D). Collectively, this dataset indicates that the Opn 383 

SLAYGLR motif significantly boosts tolerance. 384 

Opn SLAYGLR motif induces IFN-β expression in pDCs 385 

We further asked whether OVA/frOpn1 treatment affects in vivo pDC immune profile 386 

36-40 hrs after tolerance induction (Fig. 3A). In vitro, OVA/frOpn1 conditioning of 387 

pDCs promoted a 2-fold increase in Ifnb mRNA expression at 16 hrs (Fig. 9A). The 388 

observed difference in Ifnb expression was also reflected in the amount of IFN-β 389 

secreted, that was 5-fold higher in OVA/frOpn1-conditioned pDCs compared to 390 

OVA/frOpn3 (Fig. 9B). House dust mite endotoxin-free Derp1 was also used to test 391 

whether the increased IFN-β response could be observed using another allergen. 392 

Indeed, Derp1/frOpn1 in vitro conditioning of pDCs resulted in higher Ifnb expression 393 

compared to Derp1/frOpn3 (Fig. 9C). We also measured higher levels of Ifnb 394 

expression in OVA/rOpn-conditioned pDCs compared to OVA/PBS (Supplemental 395 

Fig. 3B).  396 

As RNA expression analysis revealed that mLN pDCs from in vivo OVA/frOpn1 397 

treatment had elevated Ifnb (data not shown), we found that indeed Ifnb expression 398 

was upregulated in these cells (Fig. 9E). To confirm the changes in IFN-β expression 399 

in vivo, we used IFN-βEYFP reporter mice. OVA/frOpn1-tolerized mice had 400 

significantly increased numbers of IFN-βEYFP+ pDCs and higher IFN-β expression per 401 

pDC (MFI) compared to OVA/frOpn3 (Fig. 9D). To test whether this effect is 402 

relevant to the antigen used, we tolerized IFN-βEYFP mice with a self-antigen, the 403 

MOG35-55, with frOpn1 or frOpn3. MOG35-55/frOpn1 administration in IFN-βEYFP 404 

mice resulted in significantly increased accumulation of IFN-βEYFP+ pDCs, as well as 405 

IFN-β expression per pDC (MFI) in LNs (Fig. 9F). However, the increase here was 406 
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modest compared to Opn/OVA, possibly because MOG is a peptide. These results 407 

suggest that under tolerogenic conditions, Opn SLAYGLR motif can boost Ifnb 408 

expression in pDCs through a mechanism independent of the antigen used. 409 

Opn/SLAYGLR-induced IFN-β in pDCs is protective against allergic disease 410 

pDCs were primed in vitro with endotoxin-free OVA and frOpn1 or frOpn3 and 411 

transferred into mice prior to induction of allergic airway inflammation (Fig. 10A). 412 

Recipient mice were Ifnar1+/+ or Ifnar1-/-. pDCs treated with frOpn1 were 413 

significantly more potent in protecting Ifnar1+/+ mice against allergic airway 414 

inflammation, as demonstrated by reduced lung airway inflammation, BAL 415 

eosinophilia and goblet cell hyperplasia compared to control and OVA group (Fig. 416 

10A). Similar enhanced protection was also observed when pDCs were treated with 417 

rOpn and adoptively transferred into Ifnar1+/+ mice (Fig. 7B-D). Actually, type I IFN 418 

produced by pDCs was crucial in maintaining this protective effect, as Ifnar1–/– 419 

recipient mice were not protected against allergic asthma (Fig. 10A). These results 420 

demonstrate that the integrin-binding SLAYGLR domain of Opn renders pDCs more 421 

regulatory through type I IFN production in the context of allergic airway 422 

inflammation. In fact, pDCs cannot preserve their regulatory function in recipients 423 

that lack expression of type I IFN receptor. Finally, neutralization of IFNAR1 during 424 

the OVA tolerance induction phase (Fig. 10B) resulted in reduced protection from 425 

allergic airway disease concomitant with increased eosinophilia in BAL (Fig. 10C) 426 

and increased OVA-specific responses (Fig. 10D). This indicates that type I IFN is 427 

absolutely necessary for effective antigenic tolerance induction in this context.428 
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Discussion 429 

In the current report, we unveil a new role for Opn, and particularly its SLAYGLR 430 

motif, in setting up a tolerogenic milieu driving antigenic tolerance induction, and 431 

thus leading to prevention from allergic airway inflammation.  432 

The respiratory mucosa is constantly being exposed to a myriad of non-pathogenic 433 

environmental antigens. To protect against the immunopathological consequences of 434 

this constant stimulus, a default low non-inflammatory TH2 mechanism and/or a T 435 

cell-mediated tolerance mechanism is activated (53). The mechanism underlying these 436 

processes is not fully understood. In the present study, we initially demonstrate that 437 

Opn induces tolerance by tilting the pDC/cDC balance in favor of the anti-438 

inflammatory pDCs, via differentially regulating their CCR7 expression. CCR7-439 

dependent homing of DCs into the dLNs is required for the induction of tolerance(50).  440 

Opn promotes Th2 effector responses when administered during the allergen 441 

sensitization phase (5). In contrast, we have previously shown that Opn inhibits Th2 442 

responses during allergen challenge and administration of rOpn during that phase is 443 

suppressive for experimental allergic asthma (5). Here, we explore the role of Opn 444 

during a different phase, which is when antigen is administered during tolerance 445 

induction, prior to sensitization. Thus, Opn is administered, prior to sensitization 446 

phase, along with the allergen (antigen) intranasally, in order to test its effects upon 447 

antigenic tolerance induction. Together, our results in this manuscript as well as in 448 

previous studies (5) show that administration of Opn during (a) antigenic tolerance 449 

induction, and (b) antigenic challenge, is protective and can thus be used as either a 450 

preventive, or a therapeutic agent against allergic airway disease. 451 

Regulatory cytokines such as Tgfb1, Il10, Fgl2, and molecules such as Ido (54) were 452 

substantially up-regulated in our Opn-driven tolerance model, creating an 453 

immunoregulatory microenvironment in the dLN. This tolerogenic milieu was 454 

accompanied by accumulation of Foxp3+ Treg cells, which are very important for 455 

induction of tolerance (51). Mice that had enhanced Treg cell numbers, due to rOpn 456 

administration, showed suppressed effector responses and were protected from 457 

allergic disease. When Foxp3+ Treg cells were depleted, Opn-mediated tolerance 458 

boosting was abolished. In light of its well-established pro-inflammatory function 459 

(10-12), it was unexpected that Opn could be an inducer of Treg cell accumulation in 460 
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vivo. In the absence of pDCs, rOpn administration was no longer capable to induce 461 

increased numbers of Foxp3+ Treg cells in the dLNs, demonstrating that rOpn affects 462 

Treg numbers mainly through its impact on pDCs. On the other hand, after tolerance 463 

induction without addition of Opn, Treg cell numbers do not appear to depend on 464 

pDCs, as pDC depletion did not reduce their numbers. These results show that rOpn 465 

conditions pDCs to enhance Treg cell accumulation. Functional flexibility and 466 

fostering of regulatory T cell responses are typical features of pDC involvement in 467 

tolerance (4, 46), as also revealed by our studies. 468 

Thrombin cleavage of Opn occurs during both homeostatic and inflammatory 469 

conditions (24, 25) and conformational changes after thrombin cleavage result in 470 

higher affinity binding to certain receptors (26). In fact, the cryptic SLAYGLR motif 471 

is revealed upon thrombin cleavage of Opn which is vital for its interaction with α9β1 472 

integrin (28). As the SLAYGLR motif of Opn protein interacts with α4β1, α4β7 and 473 

α9β1 integrins (12), and the RGD motif interacts with the αvβ3 integrin (11, 12), we 474 

used the synthetic frOpn134-153, containing both integrin binding motifs either intact or 475 

scrambled (31). Thrombin cleavage of Opn also produces a fragment containing the 476 

carboxy-terminal half of Opn, which interacts with certain CD44 variants (12, 27). In 477 

our settings, as well as in other settings (31, 55, 56), frOpn134-153 has a greater 478 

efficiency compared to full length Opn. It is thus possible that interaction of Opn with 479 

CD44 interferes with certain Opn effects, such as pDC recruitment. Future 480 

investigation will elucidate the role of Opn-CD44 interaction in tolerance induction. 481 

Under endotoxin-free conditions, we demonstrated that the SLAYGLR domain of 482 

Opn (frOpn1) enhances IFN-β expression in pDCs exposed to protein or peptide 483 

antigen. Accordingly, we showed that adoptively transferred OVA/frOpn1-treated 484 

pDCs were more efficient at suppressing allergic airway inflammation in recipient 485 

mice. This regulatory function was indeed mediated by the observed upregulated 486 

production of IFN-β by pDCs, as Ifnar1–/– recipient mice were not protected against 487 

allergic asthma. During the course of allergic airway inflammation, pDCs as well as 488 

their type I IFN production are suppressive for disease (4, 57-59). Our studies reveal 489 

that pDCs expressing higher IFN-β levels due to exposure to Opn are important for 490 

protective tolerance prior to disease induction. Importantly, our experiments point to a 491 

crucial role of type I IFNs during the induction of efficient anti-allergic antigenic 492 
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tolerance. Accordingly, IFNAR signalling promotes Treg cell development and 493 

function under stress conditions (60). 494 

Opn administered during tolerance also resulted in a remarkable up-regulation of the 495 

ligands of CCR7, CCL19 and CCL21 in dLNs, reminiscent of that observed in 496 

tumors(61). Specifically, CCL21 high expression by melanoma in mice was 497 

associated with an immunotolerant microenvironment, which included the induction 498 

of lymphoid-like reticular stromal networks, an altered cytokine milieu, and most 499 

importantly the recruitment of regulatory leukocyte populations(61). High Opn 500 

expression is prevalent in many types of malignancy(62), and although Opn is 501 

considered pro-inflammatory, most of these tumors escape immune surveillance. 502 

Thus, it is possible that Opn and its mediated induction of CCL21 could also be 503 

involved in suppression of anti-tumor immunity. 504 

In this report, we demonstrate that the SLAYGLR motif of sOpn is enhancing 505 

regulatory mechanisms when administered together with endotoxin-free antigen in a 506 

tolerogenic context. In this respect, Opn has a unique effect on immunity, differing 507 

substantially from its effects in the presence of danger signals. The SLAYGLR motif 508 

of Opn interacts with integrins(12). Addressing which integrin mediates the 509 

tolerogenic effects of the SLAYGLR motif of Opn on Ag-loaded pDCs, and mainly 510 

the induction of IFN-β, will assist in the design of therapies targeting tolerance in 511 

allergy. Finally, our results point to novel effects of Opn on Foxp3+ Treg cells that 512 

remain to be explored.513 
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Figure legends 718 

Figure 1. Opn administration boosts antigenic tolerance leading to increased 719 

protection from allergic airway disease. (A) Experimental protocol utilized for 720 

endotoxin free-tolerance (OVA administration) induction followed by allergic asthma 721 

induction. Controls were mice pre-treated with PBS (no tolerance) and subsequent 722 

allergic airway disease induction (white bars). Controls for allergic airway disease 723 

were mice pre-treated and sensitized with PBS. (B) Total cell counts in (BAL) and 724 

eosinophils. (C) Representative photomicrograph of H&E and PAS stained lung 725 

sections and histological scores. Scale bar, 100 µm. (D) AHR responses depicted as 726 

(Penh) in day 19. (E) Levels of IL-4, IL-13 and IFN-γ in BAL and (F) in the 727 

supernatant of mLN cells stimulated ex-vivo with OVA. (G) [3H]-thymidine 728 

incorporation of mLN cells stimulated ex-vivo with OVA. Different wells of pooled 729 

mLN cells cultured in E, F, G. Values are expressed as mean ± standard error of the 730 

mean (SEM, n=8 mice per group), one representative of three independent 731 

experiments.  732 

Figure 2. Spp1–/– mice are more resistant to tolerance induction. Spp1–/– or Spp1+/+ 733 

mice received three doses of endotoxin-free OVA or PBS i.n. on days -2, -1 and 0 as 734 

in Fig. 1A. On day 10, mice were sensitized i.p. with OVA in alum and were 735 

subsequently challenged through the airways with aerosolized OVA between days 16-736 

18. Analysis was performed on day 20. (A) Differential eosinophil and total cell 737 

counts in BAL, (B) lung inflammation shown in H&E stained sections and mucus 738 

secretion shown in PAS stained sections from PBS and OVA-treated Spp1+/+ and 739 

Spp1–/– mice are shown. Scale bar, 100 µm. (C) Levels of IL-4, IL-5, IL-13 and IFN-γ 740 

in supernatants of OVA-stimulated dLN cells and (D) percentages of Edu+CD3+CD4+ 741 

T in OVA-stimulated dLN cells of both mice groups. Different wells of pooled mLN 742 

cells cultured in C and D. Values are expressed as mean ± SEM (n=6 mice per group), 743 

one representative of three independent experiments. 744 

Figure 3. Opn-induced accumulation of pDCs in the dLN and differential CCR7 745 

expression. (A) Treatment of mice with endotoxin free OVA (tolerance induction) 746 

together with endotoxin free rOpn, or PBS for B-D. Controls (without tolerance) were 747 

the PBS-treated mice (white bars). (B-D) 7AAD–CD3–CD19–CD11c+PDCA-1+CCR7+ 748 

pDCs and 7AAD–CD3–CD19–CD11c+CD11b+CCR7+ cDCs quantified in dLNs by 749 
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flow cytometry. (B) Representative percentages in flow cytometric plots and numbers 750 

of dLN pDCs (upper panel) and cDCs (lower panel). (C) Representative flow 751 

cytometric plots and percentages of peripheral blood CCR7+ pDCs and cDCs among 752 

total pDCs and cDCs respectively and (D) relative expression to Hprt of Ccl19 and 753 

Ccl21 in dLNs of tolerized mice. Values are expressed as mean ± SEM (n=10 mice 754 

per group and cDNAs were pooled from three separate experiments). (E) Sorted 755 

pDCs from LNs and spleens of naïve BALB/c mice were pulsed with vehicle or rOpn 756 

for 24 hrs and were then subjected to transmigrate in response to CCL19. Numbers of 757 

migrating PBS (white bars) or rOpn treated-pDCs (black bars) are depicted. Triplicate 758 

wells of pooled pDCs sorted from spleens and LNs (n=8). Values are expressed as 759 

mean ± SEM (n=5-8 mice per group), one representative of five independent 760 

experiments in A-C and from three in E.  761 

Figure 4. Opn administration with antigen promotes accumulation of Treg cells 762 

and immunoregulatory gene expression in dLNs. (A) Tolerance induction in mice 763 

received 3 doses of endotoxin free OVA along with rOpn or PBS. Controls (without 764 

tolerance) were PBS-treated mice (white bars). (B) Percentages and numbers of 765 

CD3+CD4+Foxp3+ T cells quantified in dLNs by flow cytometry at day 7. (C) 766 

Relative expression to Hprt of immunoregulatory genes in dLNs. cDNAs were pooled 767 

from three separate experiments. Values are expressed as mean ± SEM (n=6 mice per 768 

group), one representative of three independent experiments.  769 

Figure 5. Opn-induced tolerance is Treg cell-dependent. (A) Tolerance induction 770 

in diphtheria toxin (DT)-treated DEREG and control DEREG mice without DT 771 

injections. Controls (without tolerance) were DEREG mice pre-treated with PBS and 772 

subsequent allergy induction (white bars). (B) Eosinophil and total cell counts in 773 

BAL. (C) Numbers of Edu+CD3+CD4+ T cells per 25 x 104 OVA-stimulated dLN 774 

cells. (D) Lung inflammation and mucus secretion depicted in H&E (top) and PAS 775 

stained slides (bottom). Scale bar, 100 µm. (E) Levels of IL-5 and IL-13 in 776 

supernatants of OVA-stimulated dLN cells. Different wells of pooled mLN cells 777 

cultured in C and E. Values are expressed as mean ± SEM (n=6 mice per group), one 778 

representative of three independent experiments. 779 

Figure 6. Opn-induced tolerance increases pDC numbers favoring Treg cell 780 

accumulation. Mice received four doses of 120G8 pDC-depleting antibody or Ig 781 
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control i.p. on days -6, -5, -4 and -3, followed by tolerance induction for Treg cell 782 

generation with or without rOpn administration (for A). Also, allergic airway disease 783 

was subsequently induced on day 10 (for B and C). Control mice were pre-treated 784 

with PBS (in A) and sensitized with PBS (in B and C). (A) Representative 785 

percentages in flow cytometric plots and numbers of Treg cell (CD3+CD4+Foxp3+) 786 

accumulation in dLNs. (B) Eosinophil counts in BAL of allergic mice. (C) [3H]-787 

thymidine incorporation in OVA stimulated dLN cells. Quadruplicate wells of pooled 788 

mLN cells. Values are expressed as mean ± SEM (n=5 mice per group), one 789 

representative of three independent experiments. 790 

Figure 7. rOpn treatment of pDCs increases their suppressive activity against 791 

allergic airway disease. (A) [3H]-thymidine incorporation in co-cultures of DO11.10 792 

T cells pre-conditioned with OVA323-339 and rOpn treated pDCs with responder 793 

DO11.10 T cells Different wells of cultured cells. Values are expressed as mean ± 794 

SEM, one representative of three independent experiments. (B) Sorted pDCs pre-795 

conditioned in vitro with PBS or OVA or OVA/rOpn were adoptively transferred to 796 

recipient mice before the induction of allergic airway inflammation. Total and 797 

eosinophil cell count in BAL were evaluated (day 20). (C) Histological assessment of 798 

lung inflammation (H&E scoring) and lung mucus production (PAS score) and (D) 799 

levels of IL-4 and IL-13 in supernatants of OVA-stimulated mLN cells. Different 800 

wells of pooled mLN cells. Values are expressed as mean ± SEM (n=6-8 mice per 801 

group), one representative of three independent experiments. 802 

Figure 8. Opn SLAYGR motif boost tolerance by enhancing pDC recruitment to 803 

protect from allergy. (A) Numbers of dLN 7AAD–CD11c+B220+PDCA1+SiglecH+ 804 

pDCs after 40 hrs of tolerance induction with endograde-OVA i.n. along with rOpn or 805 

frOpn1, or frOpn2, or frOpn3, or PBS as in Fig. 3A. (B) OVA/frOpn-tolerance 806 

induction before allergic asthma for c-e. Control mice were pre-treated with PBS and 807 

allergy was subsequently induced (white bars). (C) AHR responses depicted as Penh 808 

in day 19. (D) Eosinophil cell count in BAL, histological assessment of lung 809 

inflammation (H&E scoring) and lung mucus production (PAS score) and numbers of 810 

T1ST2+CD4+ TH2 cells in mLNs. (E) Levels of IL-4, IL-5 and IL-13 in supernatants 811 

of OVA-stimulated mLN cells. Different wells of pooled mLN cells. Values are 812 

expressed as mean ± SEM (n=5, mice per group), one representative of three 813 

independent experiments.  814 
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Figure 9. Opn SLAYGR motif induces IFN-β production from pDCs. (A) 815 

Relative Ifnb expression to Hprt in pDCs conditioned in vitro with OVA/frOpn1 or 816 

frOpn3. (B) Levels of IFN-β in the supernatants of the same cultures. (C) Relative 817 

Ifnb expression to Hprt in pDCs in vitro conditioned with Derp1/frOpn1 compared to 818 

Derp1/frOpn3. (D) Representative percentages in flow cytometric plots and numbers 819 

of 7AAD–CD3–CD19–CD11c+PDCA-1+Siglec-H+IFN-βEYFP+ pDCs in dLNs of PBS-820 

treated or OVA-tolerized mice, and geometrical mean fluorescence intensity (gMFI) 821 

of IFN-β-expressing pDCs. (E) Relative Ifnb expression to Hprt in pDCs isolated 822 

from dLNs of PBS-treated or OVA/frOpn3- and OVA/frOpn1-tolerized mice. (F) 823 

Representative percentages in flow cytometric plots and numbers of total 7AAD–824 

CD3–CD19–CD11c+PDCA-1+Siglec-H+ IFN-βEYFP+, and gMFI of IFN-β-expressing 825 

pDCs in dLNs of mice treated with PBS or tolerized with MOG35-55/frOpn3 or 826 

MOG35-55/frOpn1. Mice were tolerized as in Fig. 3A. Values are expressed as mean ± 827 

SEM (n=6-8 mice per group), pooled data from three independent experiments.  828 

Figure 10. Opn/SLAYGLR induced IFN-β in pDCs renders them protective 829 

against allergic disease.  (A) Isolated Ifnar1+/+ pDCs were primed in vitro with OVA 830 

and frOpn1 or frOpn3 or with PBS and adoptively transferred to either Ifnar1+/+ or 831 

Ifnar–/– mice. Histological scores for airway inflammation and goblet cell hyperplasia 832 

in lung sections stained with H&E and PAS respectively and number of eosinophils 833 

present in BAL. (B) OVA-tolerance induction with blocking of IFNAR1 before 834 

allergic asthma (for C and D). Control mice were pre-treated with PBS and allergy 835 

was subsequently induced (white bars). (C) Numbers of eosinophils in BAL and (D) 836 

levels of IL-4 and IL-13 in supernatants of OVA-stimulated dLN cells. Different 837 

wells of pooled mLN cells. Values are expressed as mean ± SEM (n=4-5 in A and 838 

n=6 in B-D mice per group), one representative of three independent experiments. 839 


