26 research outputs found

    Computational Design and Optimisation of Pin Fin Heat Sinks with Rectangular Perforations

    Get PDF
    The benefits of using pin heat sinks (PHSs) with single, rectangular slotted or notched pin perforations, are explored computationally, using a conjugate heat transfer model. Results show that the heat transfer increases monotonically while the pressure drop decreases monotonically as the size of the rectangular perforation increases. Performance comparisons with PHSs with multiple circular perforations show favourable heat transfer and pressure drop characteristics. However, the reduced manufacturing complexity of rectangular notched pins in particular provide strong motivation for their use in practical applications. Detailed parameterisation and optimisation studies into the benefits of single rectangular notch perforations demonstrate the scope for improving heat transfer and reducing mechanical fan power consumption yet further by careful design of pin density and pin perforations in PHSs

    Lie symmetry analysis and numerical solutions for thermo-solutal chemicallyreacting radiative micropolar flow from an inclined porous surface

    Get PDF
    Steady, laminar, incompressible thermo-solutal natural convection flow of micropolar fluid from an inclined perforated surface with convective boundary conditions is studied. Thermal radiative flux and chemical reaction effects are included to represent phenomena encountered in high-temperature materials synthesis operations. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A Lie scaling group transformation is implemented to derive a self-similar form of the partial differential conservation equations. The resulting coupled nonlinear boundary value problem is solved with Runge-Kutta fourth order numerical quadrature (shooting technique). Validation of solutions with an optimized Adomian decomposition method algorithm is included. Verification of the accuracy of shooting is also conducted as a particular case of non-reactive micropolar flow from a vertical permeable surface. The evolution of velocity, angular velocity (micro-rotation component), temperature and concentration are examined for a variety of parameters including coupling number, plate inclination angle, suction/injection parameter, radiation-conduction parameter, Biot number and reaction parameter. Numerical results for steady state skin friction coefficient, couple stress coefficient, Nusselt number and Sherwood number are tabulated and discussed. Interesting features of the hydrodynamic, heat and mass transfer characteristics are examined
    corecore