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Abstract Cognitive algorithms, integrated in intelligent systems, represent
an important innovation in designing interactive smart environments. More in
details, Cognitive Systems have important applications in anomaly detection
and management in advanced video surveillance. These algorithms mainly
address the problem of modelling interactions and behaviours among the main
entities in a scene.

A bio-inspired structure is here proposed, which is able to encode and syn-
thesize signals, not only for the description of single entities behaviours, but
also for modelling cause-effect relationships between user actions and changes
in environment configurations. Such models are stored within a memory (Au-
tobiographical Memory) during a learning phase. Here the system operates
an effective knowledge transfer from a human operator towards an automatic
systems called Cognitive Surveillance Node (CSN), which is part of a complex
cognitive JDL-based and bio-inspired architecture. After such a knowledge-
transfer phase, learned representations can be used, at different levels, either
to support human decisions, by detecting anomalous interaction models and
thus compensating for human shortcomings, or, in an automatic decision sce-
nario, to identify anomalous patterns and choose the best strategy to preserve
stability of the entire system. Results are presented in a video surveillance
scenario, where the CSN can observe two interacting entities consisting in a
simulated crowd and a human operator. These can interact within a visual
3D simulator, where crowd behaviour is modelled by means of Social Forces.
The way anomalies are detected and consequently handled is demonstrated,
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on synthetic and also on real video sequences, in both the user-support and
automatic modes.

Keywords Cognitive systems · Bio-inspired learning · Anomalous interac-
tions · Crowd monitoring · Self Organizing Map

1 Introduction

Several works have been devoted in the last decade to link traditional com-
puter vision tasks to high-level context aware functionalities such as scene
understanding, behaviour analysis, interaction classification or recognition of
possible threats or dangerous situations (Remagnino et al, 2007), (Trivedi et al,
2000), (Lipton et al, 2003), (Trivedi et al, 2007).

Among the several disciplines which are involved in the design of next
generation security and safety systems, cognitive sciences represent one of the
most promising in terms of capability of provoking improvements with respect
to state of the art. As a matter of fact, several recent studies have proposed the
application of smart functionalities to camera and sensor networks in order to
move from object recognition paradigm to event/situation recognition (Espina
and Velastin, 2005). Such a trend change has substantial implications for what
concerns the processing of signals, as it will be shown throughout this work.
The application of bio-inspired models to safety and security tasks represents
a relevant added value. In fact, such models enhance the capability not only
of detecting the presence of an intruder in a forbidden area or recognizing
the trajectory of an object in an urban scenario (e.g. a baggage in a station
or a car on the road) but also of interpreting the behaviour of the entity, or
properly selecting events of interest with respect to normal situations, or even
to automatically take decisions and perform actions on the environment.

The application of neurobiological sciences to the field of cognitive radar
and cognitive radios lately led to the rise of a new broad discipline which
was formalized in some works by S. Haykin (Haykin, 2011), (Haykin, 2012b),
(Haykin, 2012a) under the name of Cognitive Dynamic Systems, These works
eventually gather and synthesize some of the main intuition of the last decades
in this field. A working definition of Cognitive Dynamic Systems is given:

Cognitive dynamic systems build up rules of behaviour over time
through learning from continuous experiential interactions with the en-
vironment, and thereby deal with environmental uncertainties.

The underlying hidden assumption behind the formalization of this discipline
is that animal and human brains are the best cognitive systems on the market
and are thus to be emulated.

In this work, the features of a cognitive architecture, motivated by the work
of Damasio (Damasio, 2000) and based on the Joint Directors of Laboratories
model (JDL) (Hall and Llinas, 1997), are described. Damasio’s theories de-
scribe cognitive entities as complex systems capable of learning based on the
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experience of interactions between themselves and the external world. The
application of the proposed framework to crowd analysis is presented. A novel
fashion for signals to be organized and processed is also proposed. Such a fash-
ion is implicitly accounted for in previous works (Dore et al, 2011), (Dore et al,
2010a), (Chiappino et al, 2012) and (Chiappino et al, 2013d) and motivated
by the fact that it traces intelligent biological patterns.

In a video surveillance scenario, the proposed Cognitive Node (CN) can
be applied to the crowd analysis domain in order to identify patterns that
deviate from expected behaviour: an abnormal behaviour is defined as any
kind of deviation from central tendencies defined as normality condition. The
CN operating mode is made up of learning and detection phases. During the
learning period the CN stores the observed interactions between human op-
erator actions and the resulting crowd state changes. It is important to note
that the human actions acquired are devoted to avoid abnormal situation,
e.g. overcrowding or abnormal flow directions. The automatic system is able
to effectively learn representations of normal user-environment relationships
for standard crowd behaviour maintenance through the aforementioned data
structure and architecture. After such a knowledge acquisition phase, learned
representations can be used at two different levels: first, to support human de-
cisions by detecting anomalous crowd-operator interactions and compensating
for human shortcomings; secondly, in an automatic decision scenario, to au-
tonomously identify anomalous crowd-environment configurations and choose
the best strategy to preserve stability of the entire system (i.e. a proper security
level in the monitored area) by putting in action effective countermeasures.

Many video analysis algorithms have been developed in order to identify
crowd behaviours. For instance, in (Mehran et al, 2009) a method for crowd
behaviour analysis based on social forces and optical flow is proposed. More
recently, in (Solmaz et al, 2012) the authors present an innovative method
based on people flow estimation. A new abstract viscous fluid field is proposed
in (Su et al, 2012) for detecting crowd events. The main contribution of this
paper is to propose and develop an innovative cognitive video surveillance sys-
tem, which is able to detect anomalies by learning behavioural models from
observations of crowd evolution and consequent human operator (re)actions.
The system acquires the crowding states, by video analysis techniques, and
it receives from the user his countermeasures, in order to maintain stability
and to avoid abnormal situations. This knowledge (i.e. models of normal in-
teractions) is transferred from a human operator to the system, providing it
with crowding dynamic models augmented by user actions. A simulated crowd
monitoring environment have been used for training and testing.

The issue of modelling and simulating crowds will not be discussed in de-
tails for the sake of brevity, although it represents a central matter in applying
the theory which will be presented. A comprehensive traction of such inter-
connected fields is given in (Chiappino et al, 2013a). We here point out just
a few concepts. First, the use of a simulator is necessary in order to gather
enough data for training and testing, as video sequences of the desired kind
are not available for training. A simple CN application on real video sequences
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is presented in order to show the capabilities of the system, which is however
trained with simulated data. Secondly, it is unrealistic to track every single
person in a high density crowded scene, especially if a single camera is avail-
able: the visual information gathered by the sensor is simply not enough to
accomplish such a task. This remark has led to consider global approaches to
crowd monitoring such as in (Moore et al, 2011) and (Morerio et al, 2012). At
last, the model employed in simulation combines technical and social aspects
following the current trend in literature. As shown for instance in (Mehran
et al, 2009), (Pellegrini et al, 2009), (Luber et al, 2010) and (Mazzon et al,
2013), a social force model describing interactions among the individual mem-
bers of a group of people has been proposed to detect abnormal events in crowd
videos. Here people are treated as interacting particles subject to internal and
external physical forces which determine their motion and global behaviour.
Such a point of view is also widely employed in this work.

The remaining of this work is organised as follows. Sections 2 and 3 present
the proposed bio-inspired models for cognition and knowledge representation
respectively. The applications of such models to crowd monitoring are pre-
sented in section 4. Section 5 describes the proposed approach for anomaly
detections, while results are given in section 6. Conclusions are drawn in sec-
tion 7.

2 A bio-inspired cognitive model for Cognitive Surveillance
Systems

The proposed approach to Intelligent Video Surveillance (IVS) has been imple-
mented according to a bio-inspired model of human reasoning and conscious-
ness grounded on the work of the neuro-physiologist A. Damasio (Damasio,
2000).

As already mentioned, Damasio’s theories describe cognitive entities as
complex systems capable of incremental learning based on the experience of re-
lationships between themselves and the external world. Two specific brain de-
vices can be defined to formalize the aforementioned concept: Damasio names
them proto-self and core-self. Such devices are specifically devoted to moni-
tor and manage the internal status of an entity (proto-self) and the external
world (core-self). Thus, crucial aspects in modelling a cognitive entity follow-
ing Damasio’s model are first of all the capability of accessing entities’ internal
status and secondly the analysis of the surrounding environment. Relevant in-
formation comes from the relationships between the two. This approach can be
mapped into a sensing framework by dividing the sensors into endo-sensors (or
proto-sensors) and eso-sensors (or core-sensors) as they monitor, respectively,
the internal or external state of the interacting entities.

Applying these concepts to the video analysis domain, interacting entities
can be represented either by a guard monitoring a smart environment or by
a subject driving an intelligent vehicle as well as a guard and an intruder
interacting in some monitored area, while considering a crowd management
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scenario, eso-sensors can monitor the crowd, while endo-sensors can provide
information about system parameters, as it will be clearer in the following.

Referring to the sample proposed framework, four main blocks have been
identified as representative of a cognitive-based sensing architecture as the
control centre, the CN, the (intelligent) sensing nodes and the mobile termi-
nal and/or actuators. The tasks which can be accomplished by each block
are shown in Fig. 1, establishing a preliminary bridge between the concepts
introduced by Damasio and the effective implementation of the system.

The core of the proposed architecture is the already mentioned CN, which
can be described as a module that is able to receive data from sensors of
all kinds, to process them, defining different configurations as interactions
between proto and core states. Such a bio-inspired knowledge representation
permits to asses potentially dangerous or anomalous events and situations and
possibly to interact with the environment itself.

2.1 Cognitive Cycle for single and multiple entities representation

Within the proposed scheme, the representation of each entity has to be struc-
tured in a multi-level hierarchical way. As a whole, the closed processing loop
realized by the CN in case of a given interaction between an observed object
and the system can be represented by means of the so-called Cognitive Cycle
(CC - see Fig. 1) which is based on four fundamental logical blocks:

– Sensing: the system has to continuously acquire knowledge about interact-
ing objects and their own internal status.

– Analysis: the collected raw knowledge is processed in order to obtain a pre-
cise and concise representation of occurring events and causal interactions.

– Decision: the precise information provided by the analysis phase is pro-
cessed and a decision strategy is selected according to the goal of the sys-
tem.

– Action: the system fulfils the configuration computed during the decision
phase as a direct action over the environment or as a message provided to
some actuator.

The proposed model for cognition has many analogies with the one adopted
by Haykin in its formalization of Cognitive Dynamic Systems (Haykin, 2012b)
and referred to as the Fuster’s Paradigm: Joaquin Fuster proposes in fact the
concept of cognit and an abstract model for cognition, based on five funda-
mental building blocks, namely perception, memory, attention, intelligence and
language (Fuster, 2005). Perception represents the information gain block, and
corresponds to the sensing block of the CC; similarly, intelligence matches the
analysis logical block and also, according to the Fuster’s paradigm, includes
the decision-making stage. Memory is associated, within the CC, to a learning
phase which is continuous and basically involves all the stages of the cognitive
cycle: this will be explained more in details in sections 3.3 and 4. The attention
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Fig. 1 Cognitive Cycle (single object representation)

block is meant to optimize the information flow within the Dynamic Cogni-
tive System: this aspect goes beyond the purposes of this work. Eventually,
the language block is intended to provide efficient communication on a person
to person basis but it is not considered here (and not even by Haykin in his
works).

The CC, by experiencing interactions between the CN and the external
object, provides different configurations also called cause-effect relationships.
Starting from these relations it is possible to define object representations
based on theirs dispositional capabilities, i.e. the objects can be disposed (or
not) to change in some way. More formally, an observed object x is disposed
to D in different C-cases (i.e. situations), where D defines the dispositional
propriety of x by a set of C configurations (i.e. cause-effect relationships),
called dispositional statements (Bird, 2012).

A set of dispositional proprieties gives a dispositional embodied description
of an object, and it includes reactions it generates in the cognitive system,
i.e. possible actions that the system can plan and perform when a situation
involving that object is observed or predicted. According to this statement,
it is possible to refer to the representation model depicted in Fig. 1 as to an
Embodied Cognitive Cycle (ECC). The cognitive cycle can be seen as a way of
representing generic observed objects within the CN by means of a multi-level
representation involving both the bottom-up analysis chain and the top-down
decision chain (see Fig. 2). With respect to security and safety domains, in
which the ECC is here applied, the above mentioned dispositional proprieties
are associated to a precise objective: to maintain stability of the equilibrium
between the object and the environment (i.e. maintenance of the proper level
of security and/or safety). Anomaly is a deviation from the normality and it
can be considered as a violation of a certain dispositional propriety.

As a consequence, each entity is provided with a ’security/safety oriented
ECC (S/S-ECC)’ which is representative of the entity itself within the CN.
Moreover, the mapping of the S/S-ECC onto the CN chain shown in Fig. 2
can be viewed as the result of the interaction between two entities, each one
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Fig. 2 Cognitive Node-based object representation: Bottom-up analysis and top-down de-
cision chain.

described as a cognitive cycle too. In particular, if the external object (eso)
and the internal autonomous system (endo) are represented as a couple of
Interacting Virtual Cognitive Cycles (IVCC), the IVCCs can be matched with
the CN structure (i.e. the bottom-up and the top-down chains) by associating
parts of the knowledge related with the different ECC phases to the multilevel
structure processing parts of the CN (Fig. 2).

More in detail, the representation model of the ECC (top left corner of
Fig. 3) is centered on the cognitive system that can be considered by itself as
a cognitive entity. Therefore, it is possible to map the proposed representation
as in the top right corner of Fig. 3, where two IVCCs, the one representing the
entity (or object - IV CCO) and the other representing the cognitive system
(IV CCS), interact in a given environment. In this model, the sensing and
action blocks of the IV CCS correspond to the sensing and action blocks of
the ECC (see bottom right corner of the figure). However, in the IV CCS ,
such blocks assume a parallel virtual representation of the physical sensing
and action observed corresponding respectively to the Intelligent Sensing Node
and the Actuator blocks in the general framework.

The analysis phase of the IV CCS (Analysis− IV CCS) can be considered
as including a virtual representation of the four stages characterizing the state
of the interacting object. Sensing phase can be mapped in the event detection
sub-block of the An−IV CCS (EDSystem) as well as the object event detection
(EDObject). Similarly, the system situation assessment sub-block (SASystem)
includes a virtual representation of the object situation assessment (SAObject).
Finally, as shown in the bottom left corner of Fig. 3, the prediction, decision
and action parts of the object can be considered as knowledge that allows
the cognitive system to predict the future behaviour of the interacting object
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Fig. 3 Embodied Cognitive Cycle, Interactive Virtual Cognitive Cycles and Cognitive Node
matching representation

itself (the interacting objects are here the system and the one observed external
object). Prediction, decision and action can be included in the prediction sub-
block of the system (PSystem).

The proposed interpretation of the matching among the embodied cogni-
tive model, the interactive virtual cycles representing the entities acting in the
environment (including the system) and the CN, allows considering the CN
as a universal machine for processing ECCs with respect to a large variety of
application domains. In general, each ECC starts with ISN (intelligent Sensor
Node) data, including an interacting entity (eso-sensor) and a system reflexive
observation (endo-sensor). The observed data are considered from two dif-
ferent perspectives (the object’s and the system’s) by creating a description
of the current state of the entities using knowledge learned in previous ex-
periences. Such process happens at event detection and situation assessment
sub-blocks. Then, a prediction of future actions taken by the IV CCO, con-
textualized with the self-prediction of future planned actions of the system,
occur at the prediction sub-block. The use of the knowledge of the IV CCO
ends at this stage. Finally, the IV CCS is completed by adjusting plans of
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the system in the representation of its decision and action phases that are, as
stated above, a parallel virtualization of the ECC. In addition, it is relevant
to briefly point out that a similar decomposition can be adopted in the case
when two interactive entities are observed. The description of the interacting
subjects can be modelled observing that the two entities can form a single
meta-entity to which is associated a meta cognitive cycle interacting with the
autonomous system. The meta-entity (ME) can simply be considered as a
composition of the two cognitive cycles associated to the initial entity couple.
The advantage of the proposed representation, involving the description of
an Embodied Cognitive Cycle by means of an IVCC couple is that the same
mechanism used to represent the interaction of a ME with the autonomous
system can be also used to represent the interaction between two observed
entities forming an observed meta-entity, as proposed in (Dore and Regazzoni,
2009). Dynamic Bayesian Networks (DBNs) can be used to represent cognitive
cycles and IVCCs based on a structure called Autobiographical Memory (AM)
(Dore et al, 2010b) (Dore et al, 2010b). DBNs provide a tool for describing
embodied objects within the CN in a way that can allow incremental learning
from experience (Murphy, 2002). Section 3 is devoted to the demonstration of
such a claim.

2.2 The Cognitive Node

The general architecture of the Cognitive Node is depicted in Fig. 4. Intelligent
sensors are able to acquire raw data from physical sensors and to generate fea-
ture vectors corresponding to the entities to be observed by the CN. Acquired
feature vectors must be fused spatially and temporally in the first stages of
the node, if they are coming from different intelligent sensors.

As briefly introduced in the previous section, the CN is internally subdi-
vided into two main parts, namely the analysis and the decision blocks. These
two stages are linked together by the cognitive refinement block, whose role
will be shortly explained. Analysis blocks are responsible for organizing sensors
information and finding interesting or notable configurations of the observed
entities at different levels. Those levels can communicate directly with the hu-
man operator through network interfaces in the upper part of Fig. 4. This is
basically what can be done by a standard signal processing system being able
to alert a supervisor whenever a specific anomalous interaction behaviour is
detected. A prediction module is able to use the stored experience of the node
through the internal AM for estimating a possible evolution of the observed
environment. All the processed data and predictions generated by the analysis
steps are used as input of the cognitive refinement block. This module can be
seen as a surrogate of the human operator: during the configuration of the
system it is able to learn how to distinguish between different levels of poten-
tially dangerous situations. This process can be done by manually labelling
different zones of the observed data or by implementing a specific algorithm
for the particular cognitive application. In the on-line phase, the CN works
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Fig. 4 Cognitive Node Architecture

in two different ways: for operator support and in automatic mode. In both
cases the cognitive refinement module is able to detect if a predicted condi-
tion starts to drift away from the standard observed interaction, thus getting
the overall system closer to a warning situation. Specifically, in the human
support case, the switch, depicted in Fig. 4, is opened. The CN, by means of
the cognitive refinement block, can detect anomalies as possible discrepancies
from standard operator-crowd interactions. During the automatic mode, the
switch is closed and the information contained into the cognitive refinement
is employed to identify specific crowd-environment situations. The communi-
cation link towards the operator permits a direct warning about anomalous
situations relative to crowd normal behaviours. Decision modules of the CN
are responsible for selecting the best actions to be automatically performed by
the system for avoiding a dangerous situation. Those actions can be performed
on the fully cooperative parts of the observed system; all the decisions taken
by the CN are made with the precise intent of maintaining the environment
in a controllable, alarm-free state. If all the actions of the node are unable to
keep the system in a standard state and the measured warning level continues
to increase, the node itself can decide to stop the cognitive cycle and to give
command of the controllable parts of the system back to the human operator,
who is always given the possibility to decide on his own and completely bypass
the automatic system or to be acknowledged of each single action that the CN
is processing (Interfaces, Fig. 4).

As a final remark, we would like to point out that, as well as the proposed
perception-action cycle for crowd monitoring, robot control mechanisms also
are often motivated by biology. However, there are some conceptual differ-
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ences between the two approaches. Robot control strategies, such as Rein-
forcement Learning, allow for optimizing actions by evaluating their rewards.
The presented mechanism, based on Damasio’s concept of Autobiographical
Self, during an off-line phase, acquires and mathematically models interac-
tion information by observations of two entities operator and crowd (i.e. proto
and core). During the on-line phase, the cognitive system uses the previously
stored knowledge for actively interacting with the external world. In the case
of operator-crowd, a prediction mechanism drives the system actions, select-
ing the possible countermeasure according to learned rules during the training.
The proposed algorithm is a general framework for acquiring and building up
the rule sets in different context.

3 Information extraction and probabilistic model for knowledge
representation

Interactions between two entities can be described in terms of mathematical
relationships. Such a mathematical description must obviously rest on a feature
extraction phase, which is addressed to get relevant information about the
entities.

This section is devoted to the analysis of the main features that allow to
design a probabilistic model able to learn interactions. After information is
extracted, Dynamic Bayesian Networks (DBNs) can be used to represent cog-
nitive cycles and IVCCs (Dore et al, 2010b), as already mentioned in section
2.1, based on the AM algorithm, thus providing a tool for describing em-
bodied objects within the CN in a way that can allow incremental learning
from experience. It was already pointed out that also interactions between the
operator and the system can be represented as an IVCC. In that case, the
operator-system interaction can be differently used as an internal reference for
the CN as the operator can be seen as a teaching entity addressing most effec-
tive actions towards the goal of maintaining security/safety levels during the
learning phase. This learning phase represents an effective knowledge transfer
from human operator towards an automatic system.

A proposed framework for information extraction is composed of two main
blocks: Data Fusion (DF) and Event Detection (ED). DF involves source sep-
aration and feature extraction: these two phases permit to recognize the same
entities monitored by different heterogeneous sensors. The ED block extracts
information related to changing in the signals acquired by sensors. Events will
be eventually defined, in order to develop a specific probabilistic models able
to describe different kinds of the relationships permitting to detect anomalous
interactions.

3.1 Data fusion

Many different approaches can be used for designing architectures embedded
on system, which are able to collect heterogeneous environmental information.
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According to the functionalities provided by the systems, data fusion mech-
anisms should be considered as logical tasks which can be subdivided in a
multi-modal architecture. An interesting method of the data fusion model is
the JDL model (Hall and Llinas, 1997).

The JDL model includes five levels of processing, that represent the descrip-
tion of increasing level of abstraction (Dore et al, 2009). In our description,
information on two distinct entities are fused and aligned at different levels.

The data fusion module is able to receive data from intelligent sensors on
the field, and to fuse them from a temporal and spatial point of view. If one
considers a set of S intelligent sensors, each k ∈ S sends to the CN a vector of
features x(k, tk) = {x1, x2, . . . , xNk

} where k = {1, 2, . . . , S} at time instant
tk. Intelligent sensors send feature vectors asynchronously to the CN, that
must be able to register them temporally and spatially before sending data to
upper level processing modules.

From a temporal point of view, the data fusion module collects and stores
into an internal buffer all newest measurements xk,t∗k from intelligent sensors
k = {1, 2, . . . , S}. The time instant t∗k represents the last time when the feature
vectors are acquired from each sensor that are received. Data acquisition time
can vary from sensor to sensor.

As soon as a new feature vector is acquired from sensor k, the data fusion
module can compute an extended feature vector by combining all measure-
ments from all considered intelligent sensors ϕ(t̂) = f(x1,t∗1

,x2,t∗2
, . . . ,xS,t∗S ),

where t̂ ≥ {t∗1, t∗2, . . . , t∗S}.
Thus the generation rate of the data fusion module can be estimated by

considering the minimum time interval between two sequential measurements
of the higher frequency sensor. If ∆tnk = (tnk−t

n−1
k ) is the time interval between

arrival times of feature vectors x(k, tn) and x(k, tn−1) for sensor k, the actual
data rate of the fusion block can be estimated by computing mink(∆tnk ).

The analytic expression of the fusion function ϕ(t̂), depends on the phys-
ical relationship between measured quantities and cannot be studied with a
generic approach. In the following scenarios, feature vectors are mainly gen-
erated by (real, but possibly simulated) video analytics algorithms that are
able to process images acquired from video-surveillance cameras and extract
scene descriptors (i.e., trajectories of moving objects, crowd densities within a
certain environment, human activity related features, etc.).

In any case one can suppose that the fused feature vectors produced as
output of this module have the following form:

x(t) = {xC ,xP } = {xC1 ,xC2 , . . . ,xCn ,xP1 ,xP2 , . . . ,xPm} , (1)

where n and m represent feature numbers of the core and proto state vec-
tors, xC and xP respectively (i.e. the dimensionality of the vectors). Equation
1 expresses a general form for the global feature vector that is the result of
the data fusion module. Vector xC identifies features related to so-called core
objects, i.e., entities that are detected within the considered environment but
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that are not part of the internal state of the system itself. Vector xP identi-
fies proto object features that are specific for entities that can be completely
controlled by the CN.

3.2 Event detection

The data fusion phase permits to obtain a high dimensionality core and proto
multi-dimensional space, where each point represents a state vector of features
at a specific time instant: xP (t) and xC(t). Using this representation it is
possible to interpret the changes of state vectors as movements, trajectories,
in a multi-dimensional space. Furthermore, as the dynamic evolution of one
entity depends on the other entity, relationships between such trajectories
describe interactions.

A Self Organizing Map (Kohonen, 1990) (SOM) unsupervised classifier is
employed in this work at two different logic levels: first, to detect events in
term of relevant state changing, secondly to represent complex relationships
between the entities in a low-dimensional space. The latter logic level will be
discussed in detail through the next sections. The SOM operates a dimension-
ality reduction, by mapping the multidimensional proto or core state vectors
(xP (t) and xC(t)) onto a lower M -dimensional space, where M is the dimen-
sion of the Kohonen’s neuron layer (from here on we consider M = 2 without
loss of generality). Input vectors are clustered according to their similarities,
after the neural network is trained.

The choice of SOMs to perform feature reduction and clustering is mo-
tivated by their capabilities to reproduce in a plausible mathematical way
the global behaviour of the winner-takes-all and lateral inhibition mechanism
shown by distributed bio-inspired decision mechanisms. Besides, a SOM allows
for the establishment of a representation of reality based on analogies: similar
(though not necessarily identical!) input vectors are likely to be mapped by
the Kohonen’s map to the same neuron (in a non-injective way). Similarity is,
in our case, measured by simple euclidean distance between vectors; however
more complicated metrics can be employed to this end.

More in details, neural networks such as SOM, Neural Gas (NG) (Martinetz
and Schulten, 1991) and Growing Neural Gas (GNG) algorithms (Fritzke,
1995) are inspired by Hebbians theory and permit the adaptation of neurons
during the learning process. The Neural Gas represents a very interesting and
powerful tool for vector quantization and data compression techniques. NG de-
rives from SOM and it improves the input data topology preservation through
an adaptive method based on neighbourhood relationships learning between
the weight vector (associated to neuronal unit) and each external stimuli (as-
sociated to input vector). In this paper we have supposed that the global
environment is divided in different rooms, each one controlled by cameras. A
camera-embedded people counter is able to provide an estimation of number
of people. The considered state vectors xC are multidimensional and we are
interested in reducing it to a 2-D space. However in other applications, where
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it is highly desirable to conserve the topology, we have explored the possibil-
ity of automatically determining the set of regions to monitor according to
environmental topology. In this case the input information can be the people
trajectories and an we use the Instantaneous Topological Map (ITM) for learn-
ing structured input data manifold (Chiappino et al, 2013b). SOMs present
a fixed number of neuronal units, while for GNG the number of neurons is
automatically decided during the training phase. The study of the dimension
of the reduced space is very important for us, because it is correlated to def-
inition of the events. Fixing the dimension of the SOM layer it is possible
to maintain limited the total number of possible events. A common learning
problem, in designing models, is to acquire all possible configurations, i.e. all
possible events. To this end, in this stage of our study, a fixed number of neu-
rons is better than a self-adaptable topology. The Growing Hierarchical SOMs
(GH-SOMs) represent another interesting tools (Rauber et al, 2002). They can
increase the number of neurons and layers by means of distance measurements
between neuronal weights and input data. These mechanisms of adapting layer
sizes permit accuracy on original data reconstructions. On the other hand, we
are interested in studying the optimum number of units for balancing the
learning efficiency, the knowledge representation and the prediction capabil-
ities of the AM. These facts will become clearer in section 4.1. A technique
for the definition of contextual knowledge was prosed in (Marchesotti et al,
2005). By using a single 2-D SOM, an event classifications was obtained by
fusing of the heterogeneous vectors, shown in Equation 1. But in this case
the relationships between the entities are “fused” in the neurons. According
to Damasios theory, by means of different SOMs, for separately mapping core
and proto vectors, it is possible to detect relevant transitions between SOM
neurons, i.e. the events. Such distinct core and proto events are basic units
of the AM, which represents a bio-inspired fusing method for modelling the
dependences between two entities (Chiappino et al, 2013c).

The clustering process, applied to internal and external data, allows one
to obtain a mapping of proto and core vectors xP (t) and xC(t) in 2-D vectors,
corresponding to the positions of the neurons in the SOM-map, that we call
respectively proto Super-states SxP and core Super-states SxC . Each cluster
of Super-states, deriving from the SOM classifiers, is then associated with a
semantic label related to the contextual situation:

SxiP 7→ liP , i = 1, . . . , NP

SxjC 7→ ljC , j = 1, . . . , NC
(2)

where the notation SxiP and SxjC indicates that the Super-state belongs, re-
spectively, to the i-th proto label and to the j-th core label; NP and NC are,
respectively, the maximum number of the proto and core Super-states labels.
Then, the result of this process is the building of a 2D map divided in regions
labelled with a meaningful identifier related to the ongoing situation. It must
be noted that changes of state vectors xP (t) and xC(t) do not necessary imply
a change of Super-state labels SxiP 7→ liP and SxjC 7→ ljC . This means that
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(a) (b)

Fig. 5 Examples of temporal proximity trajectories among fired neurons in 2-D SOM-
map (5 × 5) for different core state vector sequences. The trajectories are non-linear and
discontinuous.

there are some modifications which are irrelevant from the point of view of
the chosen semantic representation of the situation. On the other hand, when
the Super-state labels SxiP and SxjC change in subsequent time instants, a
contextual situation modification, i.e. an event occurs. It is then possible to
define proto (εP ) and core (εC) events. Actually, even null events (i.e. null
changes in Super states) can be defined. In fact, these could be relevant while
considering very slowly changing systems and dynamics or whenever lengthy
immobility could become relevant.

A Kohonen’s layer consists of a 2-D matrix of neurons, identified by an
hexagonal location. The network is constructed based on competitive learning:
all the output neurons that win the competition are subsequently activated
by input state vectors. Two SOM-nodes are considered as near if they are
consecutively active at two successive time instants. It is possible to connect all
fired neurons describing a temporal proximity trajectory among neurons. Not
necessarily different input state sequences describe different trajectories in the
Super-state space. By sequentially analysing the dynamic evolution of Super-
states, proto and core events can be detected and visualized by trajectories
into 2-D SOM-map.

The output of the SOM algorithm is in fact a list of clusters (or zones)
within the Kohonen’s layer, that describe a trajectory. Two trajectories for
two different core state sequences are presented in Fig. 5. The ED module also
considers dynamical aspects of the evolution of clustered features: transition
probabilities between different Super-states (i.e. zones) are computed, in such
a way that the outcome of the training process can be ideally compared to a
DBN. Instead of considering sequences of Super-states to describe the evolu-
tion of each entity, it is possible to consider proto and core event series, which
can be modelled by two Event based DBNs (E-DBNs) (Patnaik et al, 2009)
as explained in the next section.
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3.3 Autobiographical memory

According to Damasio’s theory, the sequences of proto (internal) and core
(external) events can be organized into two kinds of triplets in order to ac-
count for interactions between entities: {ε−P , εC , ε

+
P } (passive interaction) and

{ε−C , εP , ε
+
C}, (active interaction), to represent the causal relationships, in terms

of initial situation (first event), cause (second event) and consequent effect on
the examined entity (third event) 1.

The resulting information becomes an approximation of what Damasio
himself calls the Autobiographical Memory where these triplets, which encode
possible interactions between entities, are memorized. The basic idea behind
the algorithms is to estimate the frequency of occurrence of the effects caused
by a certain external event in order to derive two probability distributions:

p(ε+P |εC , ε
−
P ), (3)

p(ε+C |εP , ε
−
C), (4)

representing the causality of observed events in the interaction. The sequence
of events is represented by a statistical graphical model in order to introduce
a mathematical description of the proposed interaction model. This choice is
motivated by the fact that the interaction pattern is composed by a temporal
sequence of interdependent events and then it can be seen as a stochastic
process. Therefore, an approach for modelling sequences of events that relies
on a probabilistic model results particularly appropriate.

The interaction patterns are modelled by a Coupled Event based DBN (CE-
DBN) in order to have a representation able to statistically encode the relevant
data variability. The proposed CE-DBN graph, shown in Fig. 6, aims at de-
scribing interactions taking into account the neuro-physiologically motivated
model of the Autobiographical Model. The conditional probability densities
(CPD) p(εPt |εPt−1) and p(εCt |εCt−1) encode the motion pattern of the objects in
the environment regardless the presence of other objects. Note that each triplet
can be seen as one dispositional statement (configuration) with an associated
conditional probability, Equations 3 and 4. The AM provides a dispositional
description, a set of dispositional proprieties, for proto and core entities.

The dispositional proprieties describe a precise objective: to maintain sta-
bility of the equilibrium between the object and the environment (i.e. main-
tenance of the proper level of security and/or safety). Anomaly can be seen
as a deviation from the normality and it can be considered as a violation of a
certain dispositional propriety. The interactions between the two objects are

1 An active interaction (represented by a triplet) is defined when an internal modification
(proto event) is the cause of external environmental change, i.e. the third event in the triplet
is a core event. Vice versa the passive triplet is defined when an external environmental
change (core event) provokes an internal modification, i.e. the third event in the triplet is a
proto event.
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Fig. 6 Coupled Event based Dynamic Bayesian Network model representing interactions
within an AM

described by the CPDs:

p(εPt |εCt−∆tC ), (5)

p(εCt |εPt−∆tP ). (6)

In particular, Equation 5 describes the probability that the events εC , occurred
at time t −∆tC and performed by the object associated to the core context,
has caused the event εP in the proto context. Reversed interpretation in terms
of causal events should be given to p(εCt |εPt−∆tP ).

Fig. 7 Graphical representation of the mapping into AM 3-D space of passive triplet
{ε−P , εC , ε

+
P }. The symbols lx

P/C
represent the contextual SOM-label associated to each clus-

ter. In this example the proto or core events are represented by: lx
P/C

99K ly
P/C

, where x 6= y.

The transitions into Proto and Core-Map are dashed for representing the non-linearity and
discontinuity of the trajectories.

Considering the definition of the core consciousness, the causal relation-
ships between the two entities are encoded in two conditional probability den-
sities (CPDs):

p(εPt |εCt−∆tC , ε
P
t−∆tP ) (7)

p(εCt |εPt−∆tP , ε
C
t−∆tC ) (8)
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As a matter of fact, the probability densities in Equations 7-8 consider both
the interaction (i.e. Eq. 5 or Eq. 6) and the initial situation (i.e. εPt−∆tP or

εCt−∆tC ).

4 Autobiographical Memory domain applications: Surveillance and
Crowd Management scenarios

In the previous section a probabilistic model based on CE-DBN was sketched in
order to describe multiple entity interactions. The knowledge thus represented
inside the proposed CN can be employed in many different domains: surveil-
lance scenarios and crowd analysis-management are just two limited examples.
Generally, in surveillance scenarios the goal of the system is the analysis of
interactions and recognition of specific behaviour between two or more people
(external entities). On the other hand, in the crowd analysis domain, the focus
of the system can be shifted toward the analysis and classifications interac-
tions that occur between the crowd and a human operator who is in charge
of maintaining a proper security level within the monitored area (for this pur-
pose, the crowd can be seen as a unique macro-entity). The two entities can
be represented as a couple of IV CCs, as proposed in section 2.2, namely an
IV CCO and an IV CCs respectively.

In this section two aspects will be discussed, namely the probabilistic model
learning phase and the detection phase for surveillance and crowd scenarios.
During the (off-line) learning phase the CN observes both entities, i.e. the
human operator and the crowd, storing their interactions within the AM. As
for the (on-line) detection phase, it will be shown how different definitions of
the probabilistic model are needed.

The system is designed to support a human operator in crowd management
during the on-line phase. This task is accomplished by recognizing specific
operator-crowd abnormal interactions. Typically, in people flow redirection
problems, an abnormal interaction can be detected whenever the user puts in
action wrong countermeasures to avoid the panic or overcrowding situations.
In this case the CN ought to drive the operator to choose correct actions by
either simply signalling the anomaly or by suggesting actions to be performed
based on its learned experience.

4.1 Learning phase: interaction representations

During an off-line phase, the CN is able to learn and store into the AM a set of
triplets (i.e. interactions) for different situations: {ε−P , εC , ε

+
P } (passive triplet)

and {ε−C , εP , ε
+
C} (active triplet). The crowd configurations are captured by

core sensors, while the operator actions are mapped into proto sensors. Each
triplet represents a point of a 3-D space. In Fig. 7 an example of 3-D space
mapping of a passive triplet is depicted. This representation allows to sketch
the set of triplets stored into an AM. We point out that the ordering of the
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events along the E−P , EC and E+P axes is not relevant as what is really significant
is only the number of occurrences of a certain triplet. However, each generic
triplet of events can be associated to an influence model, i.e. a specific AM
can model the dynamic evolutions of interactions for a specific context. It is
possible to define a switching variable θ as influence parameter (Pan et al,
2012).

Each triplet is associated to a probability, derived from an estimate of two
conditional probability densities: p(ε+P |εC , ε

−
P , θ) and p(ε+C |εP , ε

−
C , θ) (cfr. 7 and

8), which are proportional to the number of votes that the particular triplet
received, i.e. the number of occurrences observed during the AM training phase
that represents a specific interaction (i.e. an influence model). Fig. 8 shows an
example of conditional relationship for a passive triplet: ε+P given the two
previous events εC ε−P and the interaction model θ.

A temporal histogram is associated to each AM element (i.e. to each
triplet), in order to store the temporal information related to events of the
triplets. For example, taking into consideration a passive triplet {ε−P , εC , ε

+
P },with

given events, the histogram permits to evaluate the probability that a specific
proto event ε+P takes place τCP+ seconds after the core event εC . The his-
togram bin dimension must be selected by performing a trade off between the
precision of the temporal prediction that it is required by the application and
the number of training samples available.

Fig. 8 Example of CE-DBNs for passive triplet, e.g. {ε−P , εC , ε
+
P }, with a parameter θ tied

across proto-core-proto transitions.

4.2 Detection phase: surveillance scenarios

After a learning phase, the CN, by using the AM, has the capability of recogniz-
ing the interactions while they take place, in an on-line timing. In (Dore et al,
2010b) the exploitation of an AM for the detection of different kinds of interac-
tions between two people was proposed. For this reason, a cumulative measure
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is computed exploiting the information encoded in the proposed Coupled E-
DBN model. To accomplish this task, for each interaction i : i = 1, . . . , NI ,
where NI is the number of considered interactions, a set of couple of trajecto-
ries (core and proto) are used to train the model (θi), originating a trajectory
into a 3-D space (as shown in Fig. 7). To detect the type of cause-effect relation-

ship between entities, for each triplet (εP,Ct , εC,P
t−∆tC,P , ε

P,C
t−∆tP,C ) the following

measure is computed:

lit = lit−∆tC,P + p(εP,Ct , εC,P
t−∆tC,P , ε

P,C
t−∆tP,C |θi), (9)

where lit−∆tC,P is the measure computed at the time in which the previous

event has been observed and with p(εP,Ct , εC,P
t−∆tC,P , ε

P,C
t−∆tP,C |θi) the probability

that the observed triplet belongs to the i-th interaction model is indicated.
For each triplet of events, the best matching influence model is chosen as
i∗ = arg maxi li with i = 1, . . . , NI . The high level of criticality of the detection
phase entails that, if mismatching between the observed data and learned
knowledge is detected, the system can call the attention of the operator. In
this case the learning phase starts up again.

4.3 Detection phase: Crowd management scenarios

In human-to-human interactions, at each state change of one entity typically
corresponds a state change of the other. In this case it is possible to affirm that
the entities have the same (or at least a similar) dynamic. On the contrary, in
crowd scenarios, the dynamics of the entities are extremely different, namely
the crowd changes its status more frequently than the operator. Generally the
number of people, in a room or in a zone, can change without any operator
actions. In all the cases in which the dynamics between entities show signifi-
cant differences, the AM can be considered as a sparse collection of triplets.
In order to design a robust classification algorithm for abnormal interaction
recognitions, an approach to encode a statistical sparse model using the Self
Organizing Map is needed. The following section is dedicated to this scope.

5 Proposed approach for abnormal interaction detection in crowd
monitoring domain

The proposed cognitive video surveillance system has two main purposes. The
first and most important one is to detect the interaction anomalies between
operator and crowd. The second is to substitute or to help the user during
the crowd management, recognizing anomaly interactions with crowd. The
presented cognitive system accomplishes both these goals by learning a spe-
cific behavioural model for operator-crowd interactions, in which the crowd
is correctly controlled by a user. This model describe normal conditions of
crowding management. CN can detect anomalous operator-crowd interactions
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as deviation from normality situation. In automatic operating mode, the sys-
tem substitutes the operator and interacts directly with the crowd. When
crowd reaction patterns are not conform to expected behaviour an anomalous
configuration (i.e. interaction) is detected. The method used for interaction
modelling and above mentioned anomalous detections is here presented. An
interaction behaviour cannot be completely represented by a triplet alone:
a set of triplets must be analysed in order to individuate a model. A com-
mon learning problem can be formalized as follows: the generic sequence of
triplets Trj = {ε−P,C , εC,P , ε

+
P,C}, j = 1, . . . , NT , where NT is the number

of triplets in that specific sequence, can belong to different observed mod-
els θi, i = 1, . . . , NI (NI is the number of operator-crowd interaction mod-
els). Fig. 9 shows triplet encoding by means of a mapping function f(.). For
sparse collected data, i.e. sparse triplets, the mapping function defined as
f(ε−P,C , εC,P , ε

+
P,C) = p(ε+P,C |εC,P , ε

−
P,C , θi) is not potentially useful in order

to distinguish triplet associations with specific kinds of operator-crowd inter-
action models.

Fig. 9 Model learning problem: triplet recovering from model. Trj represents jth generic
triplet, θi is ith interaction model.

A different transform function, f̂(ε−P,C , εC,P , ε
+
P,C), is defined for triplet

mapping into 2-D space to decrease miss-classification errors. A specific di-
mensionality reduction method can be employed to encode the AM. In this
way, it is possible to obtain a probabilistic model for rare-interaction detec-
tions, in order to describe high-complexity relationships between entities by
means of simpler formulas (Rish and Grabarnik, 2009). The mapping function

f̂(.) must meet the following requirements: maximum information preserva-
tion of the operator-crowd interactions and correct reconstruction of original
data optimizing the classification accuracy.

5.1 Dimensional reduction and preservation of the information

A large number of methods have been addressed for dimensional reduction:
they are typically classified in linear and non-linear methods. This section
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addresses a fundamental issue rising in reduction problems: interaction infor-
mation contained in primary data must be preserved. Two well-known feature
reduction techniques, namely Principal Component Analysis (PCA) (linear
method) (Shlens, 2005) and Self Organizing Map (non-linear method) are
compared.

In Table 1, a comparison between PCA and SOM is presented, where binary
formats are varied for output vectors encoding. The binary format is expressed
by [wl, fl], where wl represents word-length and fl is the fraction-length. In
particular Table 1 presents the error measures, calculated as average Euclidean
distance, between original data D and reconstructed data D̂. It is possible to
note that, by increasing the number of bits, the SOM behaves better than
PCA.

Table 1 SOM and PCA comparison

Binary Format SOM-map PCA err SOM err
[3, 1] 8× 8 0.1857 1.4430
[5, 1] 32× 32 0.1954 0.0938
[5, 2] 32× 32 0.0846 0.0938
[6, 2] 64× 64 0.0803 2.8175 · 10−7

5.2 Self Organizing Map: classification evaluation

Taking into account a SOM layer formed by K neurons, its dimensions are
adapted in order to find the best matching couple (l, w) such that l×w = K.
The number of core (or proto) Super-states is then K and the total number of
possible core (or proto) events isK2, taking null-events as relevant as explained
in (Chiappino et al, 2013e). The parameter K must be tuned: in fact, by
decreasing the SOM-map size, many different input state vectors can fall into
the same cluster: this fact generates a rougher classification but ensures that
only relevant events are likely to be selected. On the other hand, by employing
high-dimensional Kohonen’s layers, the classification is improved, whereas the
total number of irrelevant events increases.

The dimension of the layer is a relevant parameter in our system. A small
layer allows the system to summarize its knowledge in a few concepts, which
is positive, although classification of situations may result too rough in some
cases. On the other hand, very large layers result in a very sparsely populated
Superstate space, meaning that the system would need massive training in
order to observe, and later recognize, any possible situation. At the moment
such a parameter was empirically tuned.

We define a data set D as follows:

D = {D(t) : t ∈ 0, . . . , T} , (10)

where D(t) ∈ RN is a vector D(t) = [d1(t), . . . , dN (t)]′ in which each
component di(t) will represent, in our application (section 6), the number of
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Table 2 Classification evaluation for different SOM-layer

SOM-map H(D) H(D|C) IM (D,C)
2× 2 6.3750 0.7249 5.6501
4× 4 6.3750 0.1291 6.2459
5× 5 6.3750 0.0384 6.3366
7× 7 6.3750 0 6.3750

people in the ith room at instant t. The clustering process performed by the
SOM is defined by means of a transformation function fn(D) : D → S with
S = {Sk(t) : t ∈ 0, . . . , T}, k = 1, . . . ,K is the index of the neuron and T
maximum training time. The vectors Sk(t) ∈ RM , with M < N (M = 2 in
our case), represent the coordinates into the SOM Map of the neurons fired
at the time t. Each element of the data set can be determined as: D(t) =
Ck(t) + nk(t), where Ck(t) ∈ RN is the vector of weights for the kth neuron
which is associated with Sk(t). nk(t) can be considered as a Gaussian noise
Nk(0, Σk). The covariance matrix Σk is computed in each kth SOM node
considering all the training vectors which have activated the kth neuron. It is
possible to define a conditional probability density function p(D|Ck) as follows:

p(D|Ck) = [p(Ck) wk(t)]−1exp− {
T∑
t=0

Ω(t)′Σ−1k Ω}, (11)

where p(Ck) is the probability neuron activation and it is computed as
the number of samples in the node over the total number of training samples.
Ω(t) = D(t)− Ck+ and wk = [(2π)N |2(det(Σk))0.5].

A possible criterion to evaluate a SOM, given a data setD, relies on Average
Mutual Information (AMI) IM (D,C), (Finn, 1993), defined by Equation 12:

IM (D,C) = H(D)−H(D|C), (12)

where H(D) is the data set entropy, while the conditional entropy of the

normal multivariate distribution of p(D|C) =
∑K
k=1 p(D|Ck) is defined as

H(D|C) := 0.5 ln[(2πe)N |Σ|], (13)

where Σ is the covariance matrix of normal multivariate p.d.f. p(D|C). To
investigate the capabilities of the Self Organizing Maps we set up a test: an
artificial data set D for training was constructed consisting of 143 vectors,
with sampling time equal to 4[s], provided by our crowding simulator. Each
vector is formed by N = 6 components and contains the number of people in
each room.

Table 2 lists entropies for different size of the SOM layer. Over 7 × 7 the
quality of the classification have not significant improvements from AMI point
of view. However, we are not concerned with an extremely precise description
of the core state space (we do not want to maximize IM (D,C) at all costs). We
certainly need a sufficient amount of information to be preserved, but at the
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same time, as explained in this subsection, we need our system to be capable
of synthesizing knowledge by establishing analogies.

A representation of reality based on analogies is necessary in order to deal
with situations never seen during the training phase.

The SOM can be used for dividing a set of training data D into different
multivariate time series {Dk}Kk=1 where Dk = {D1,k, · · · , Dn,k} associated to

the k − th neuron, such as Dk ∪ Dj = ∅ with k 6= j and
⋃K
k=1Dk = D.

These sub-sequences of vectors can be modelled by local Vector Auto Re-
gressive (VAR) models (Pfaff, 2008). The number of generated VAR models
correspond to the number of neurons of the SOM. The local matching mea-
surement between the sequence of input data and the output of the local VAR
models specifies how much of the output variation has been represented by the
SOM. Considering a multivariate time series Dk, an auto regressive model of
order p, denoted as VAR(p), describes i− th vector Di,k as linear combination
of the previous state vectors:

Di,k = Φ0 + Φ1Di−1,k + Φ2Di−2,k + · · ·+ ΦpDi−p,k + εi, (14)

where Φ0, · · · , Φp are (N×N) parameter matrices and εi represents a (N×
1) white noise. By the multivariate time series Dk we have modelled a VAR(2)
as Di,k = Φ̂0 + Φ̂1Di−1,k + Φ̂2Di−2,k + εi, where Φ̂0, Φ̂1 and Φ̂2 are estimated
coefficient matrices which have stored in each SOM node. Each VAR model has
been used as linear predictor filter. A dataset Dc, different from D, has been
used for the classification phase. Also in this case the SOM divides the data

into different multivariate time series {Dc
k}Kk=1 where Dc

k =
{
Dc

1,k, · · · , Dc
n,k

}
associated to the k−th neuron, such asDc

k∪Dc
j = ∅ with k 6= j and

⋃K
k=1D

c
k =

Dc. We have compared one period ahead forecast sequences D̂k obtained by
VAR(2) model built over different SOM layer sizes with Dc

k. Fig. 10 shows an
example of curve trends for predicted vector sequences by VAR(2) model built
over different SOM layer sizes. A comparison between simulated data and the
predictor filter outputs is provided by FIT measurement:

FIT =

∑n
i=1 ‖Dc

i,k − D̂i,k‖∑n
i=1 ‖Dc

i,k −D
c

k‖
, (15)

where Dc
i,k ∈ Dc

k, D̂i,k is the output of the k − th VAR(2) model and

D
c

k = E{Dc
k}. The averages of the FIT between one period ahead forecast

obtained by VAR(2) models and simulated data (formed by 140 vectors) show
that a SOM with small layers are able to build analogies between the stored
data into the same neurons during the training phase and the classification
phase.

After a training phase of the chosen SOM, a mapping function f̂(Trj) to
project each triplet into 2-D SOM-map can be defined. The output of this
function is a list of zones, i.e. trajectories (which can be actually discontin-
uous), within the SOM-map. Dynamic aspects of the evolution of clustered
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Fig. 10 Example of graphical comparison between VAR(2) models and simulated data
which represent the number of the people within the zone 1. The averages of the matching
between VAR(2) model outputs and 140 simulated vectors (expressed in percentages) are
the following: SOM 4× 4 fit: 67.14%; SOM 5× 5 fit: 53.6%; SOM 7× 7 fit: 40.18%.

triplets are also considered: transition probabilities between different zones
are computed, in such a way that the outcome of the training process can be
ideally compared to an Hidden Markov Model (HMM) (Oliver and Pentland,
2000).

6 Results

The simulated monitored environment is shown in Fig. 11. The configuration
of doors, walls and rooms is however customizable and a wide range of scenar-
ios can be set for tests. A crowd enters a room of the simulator and is given the
motivation of moving toward the exit of the building. Births of new characters
occur during the simulation, modelled by a Poisson distribution (we hypoth-
esize a fixed average incoming rate: data coming from different simulations
are thus comparable). The human operator must act on door configuration in
order to direct crowd flows, thus preventing overcrowding

The use of a graphical engine (freely available at http://www.horde3d.

org/) has been introduced in order to make the simulation realistic in the AM
(section 4) training phase. Here a human operator acts on doors configuration
in order to prevent room overcrowding, based on the visual output, which need
to be as realistic as possible. Namely, the simulator has to output realistic data
both from the behavioural point of view, in order to effectively interact with
the human operator, and from the visual point of view, in order to grant an
effective interface by truly depicting reality. Reactions of an operator faced

http://www.horde3d.org/
http://www.horde3d.org/
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Fig. 11 The simulated monitored environment.

with an unrealistic visual output could be extremely different and strongly
depend on rendering quality. For this reason, characters are also animated to
simulate walk motion (at first glance a crowded environment with still people
could look less populated than it really is).

Crowd behaviour within the simulator is modeled based on Social Forces,
which were mentioned in section 1. This model assimilates each character on
the scene to a particle subject to 2D forces, and treats it consequently from
a strictly physical point of view. Its motion equations are derived from New-
tons law F = ma. The forces a character is driven by are substantially of
three kinds (Luber et al, 2010). An attractive motivational force Fmot pulls
characters toward some scheduled destination, while repulsive physical forces
Fphy and interaction forces Fint prevent from collision into physical objects
and take into account interactions within characters. An additional linear drag
(viscous resistance) Fres takes into account the fact that no character actually
persists in its state of constant speed but tends to stop its motion as motiva-
tion runs out. This force is in fact accounted for and included in Fmot. Such
forces are sketched in Fig. 12. Chaotic fluctuations are included, according to
the modified social force model proposed in (Soh et al, 2004). These fluctua-
tion account for random individual variations in behaviour and lead to crowd
motion self organization.

The three forces are estimated at each time instant for each character,
whose position is then updated according to the motion equation and nor-
malized according to the current fps rate supported by the graphical engine
(which strongly depends on the number of characters to be handled). As al-
ready mentioned, people incoming rate is modelled as a Poisson distribution.
Their death occurs as they get to their final scheduled destination. A human
operator interacts with the crowd by opening doors to let it flow, while trying
to minimize the time a door remains open. Although somehow simplified with
respect to more complex works, such as (Luber et al, 2010) (where additional
assumptions on trajectories’ regularity are made), the developed model results
in a good overall output, where people behave correctly and realistically.

The simulator also includes (simulated) sensors. These try to reproduce
(processed) sensor data coming from different cameras looking at different
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Fig. 12 Vectorial sum of forces FTOT and influence range of characters.

subsets (rooms) of the monitored scene. A virtual people estimation algorithm
outputs the number of people by simply adding some noise to the mere number
of people framed by the virtual camera, thus trying to mimic the output of real
image processing algorithms, such as (Kilambi et al, 2008). The state vector
of the system (which corresponds to the external object, eso) is (cfr. equation
10)

XCr(t) = {xCr1(t), xCr2(t), . . . , xCrN (t)} , (16)

with N = 6 in our case (six cameras, one for each room). xCrn(t) is the number
of people in room n. The people flow starts in a hall room, that corresponds
to xCr1 . A 7 × 7 2D SOM is then trained in order to cluster the state vector
space. The SOM Super States (better say, their variations) define events. The
internal (endo) state of the system (namely, the doors’ configuration) is simply
modelled by a binary vector storing the state of each door (true if open, false
if closed). Variations of such a vector define proto events.

An AM is then trained by a human operator who opens virtual gates in
order to let the crowd stream outside in case high occupancy states are reached
and, at the same time, to minimize the time gates remain open.

In our case, four kinds of simulated scenarios for different crowd behaviours
(see Table 3), have been taken into consideration, in order to memorize the
interactions between a human operator (proto-self) and the crowd (core-self)
as formalized in 2. For instance, the first crowd behaviour, identified by 1d,
has µ = σ2 = 1 for the Poisson probability mass function, weak interaction
force, and a relatively short interaction range.

After mapping the AM into a 2-D space, by means of a SOM, the operator’s
reactions to different crowd fluctuations, stored and encoded by f̂ , can be used
on-line to choose an optimal strategy, i.e. to emulate the actions of a human
operator, by predicting not only his behaviour but also crowd’s reaction to it.

A reference model θi for operator-crowd interactions is then designed (refer
to Fig. 9). We define a sequence of passive triplets (related to i = 1d crowd
behaviour, Table 3) as:
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Table 3 Different crowd behaviours in simulated scenarios

ID Num. persons/second Interaction range Interaction Forces
1d 1 1 m Low
2d 2 2 m Low
1p 1 1 m High
2p 2 2 m High

{Trk} = (Tr1, T r2, . . . , T rk, . . . , T rK), (17)

where Tr = {ε−P , εC , ε
+
P }. The mapping function f̂(Trk) = Sk defines a

corresponding sequence of Super states into the SOM-map as follows: {Sk} =
(S1, S2, . . . , Sk, . . . , SK). In the simulation, the maximum time between two
subsequent Super states (. . . , Sk, Sk+1, . . . ) is taken as 8[s]. After such a time
lapse, a new interaction (Super state) is considered. The kth Super state proba-
bility is a vector P whose elements are defined as: Pk = P (Sk); it corresponds
to the number of occurrences of Sk over {Sk} with k = 1, . . . ,K. The ele-
ments of the transition probability matrix M , are defined as: M(Sk, Sk+1) =
Pk+1|k = P (Sk+1|Sk).

A test sequence of passive triplets {TrIDk } (one for each crowd behaviour

listed in Table 3) is simulated and processed by SIDk = f̂(TrIDk ) in order to
generate {SIDk } with k = 1, . . . ,K. A weighted average of transition proba-
bilities between subsequent Super states (. . . , SIDk , SIDk+1, . . . ) is computed as
follows:

P IDi (t) =
1

W

W∑
k=1

P IDk P IDk+1|k, (18)

where P IDk = P (SIDk |θi) and P IDk+1|k = M(SIDk , SIDk+1|θi), while W , called
moving evaluation windows, defines the number of test sequence triplets con-
sidered at each step t. We define the probability to reach k + 1th Super state
starting from the kth, as follows: P IDk 7→k+1 = P IDk P IDk+1|k. The recognition
of the interaction model is performed by taking the maximum probability:
(i∗, t) = arg maxi P

ID
i (t) with i = 1, . . . , NI and t = 1, . . . , T . The couple

(i∗, t) defines the kind of recognized operator-crowd interaction θi and also
the maximum time W · 8 + t · 8[s] in which the detection is performed.

Different average of transition probabilities curves, with W = 2, 5, 10, 15
and T = 10 steps, are evaluated. An example with W = 10 is shown in Fig. 13.
The four interaction behaviours (red curve) are compared with the reference
model (blue curve). Using only a few triplets (i.e. lower W values, e.g. W = 2
and W = 5) for each time step, some behaviour models result confused. The
separation distance between the curves increases when the evaluation window
values increase, e.g. with W = 10 and W = 15.

The Mean Square Error (MSE) is computed, in order to evaluate the
distances between the observed interaction behaviour curves and the refer-
ence behaviour model. The minimum MSE provides a similarity measure
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Fig. 13 Classification examples of interaction behaviour using evaluation window W=10.

between interaction behaviours. At each time step t = 1, . . . , T as follows:

MSE(t) =
1

W

∑W
k=1(P ∗k 7→k+1 − Pk 7→k+1)2, where Pk 7→k+1 and P ∗k 7→k+1 corre-

spond to probability values over {Sk} and {S∗k}, i.e. reference and observed
sequences. The anomalous interactions between an operator and the monitored
crowd could emerge after a normal behaviour, e.g., a careless user does not
open some doors. In this situation the CN, working in its on-line modality, is
able to recognize anomalous crowd management. Fig. 14 shows the normal be-
haviour, in the specific case of ID = 1d (blue curve) and compares it the with
observed operator-crowd interactions (red curve). Using an evaluation window
W = 10, two processes start to drift away at t = 6.4[s] . In a corresponding
manner MSE starts to grow up. The rule of detection is ∇MSE(t) > 0 for
t ∈ [tmin, tmax]. The system detects operator-crowd anomalous interactions
when the curve gradient is positive for an evaluation period tep = tmax− tmin.
In the on-line modality the CN when an anomalous interaction has been rec-
ognized, the system alerts the operator sending a message. Such a message can
contain the last detected abnormal passive triplet, e.g. first user action (proto
event), evolution of the crowd (core event) and consequent operator action
(proto event). In the case shown in Fig. 14, the anomalous situation is due to
wrong consequent user action, i.e. the operator does not open some doors and
the number of people increase.

6.1 Example of application on real video sequences

In order to give consistence to the proposed cognitive video surveillance sys-
tem, an experiment has been conducted on a available video sequences from
the ”Performance Evaluation of Tracking and Surveillance” (PETS) workshop
dataset (Ferryman and Crowley, 2009) for single camera (S3 High level, Time
14− 16, View 0001, sequence length is 223 frames, frame rate is ∼ 7[fps]).
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Fig. 14 Detection of anomalous operator-crowd interactions. The system detects an anoma-
lous interaction when the operator does not open two doors and the number of people in-
crease. This incorrect crowding management situation is shown in the figure and compared
with the correct situation.

The main target of this experiment is to demonstrate how the system is
able to recognize interaction between an operator and the crowd behaviour in
a video sequence. For this purpose the real environment has been partitioned
in three zones, which are supposed to be monitored by cameras, as shown
in Fig. 15 (a). In the simulated environment, the zones correspond to three
rooms, Fig. 15 (b). In the sequence, two crowd behaviours corresponding to
different people flows have been individuated. The fist flow direction when
the people go across the scene from zone 1 to zone 3 (i.e. from frame 0000
to frame 0107), while the second flow when the people move from zone 3 to
zone 1 (i.e. from frame 0108 to frame 0222). By using the simulator these two
different people behaviours have been reproduced: for the first flow the people
enter the scene in zone 1 and head out in zone 3, while for the second the
people enter in zone 3 and leave in zone 1 (second flow). In the simulator
a human operator can manage the crowd flow, from a room to another, by
acting on doors, d1 d2 d3 d4. The user opens the door when the people are
near to it. In order to reproduce the same interaction using the real video
sequences, it has been supposed to have the same configuration of the doors.
A people counting algorithm (Morerio et al, 2012) provides an estimate of the
total number of people in the zones present in video sequences, Fig. 15 (a).
In this virtual environment a people counting module is simulated in order to
count the people into a sub-area of the room (dashed circular areas, Fig. 15
(b)).

The test is composed by two parts: learning and detection (on-line). During
the learning phase, the cognitive system has learned two probabilistic models
from the simulation, i.e. two AMs, in order to describe two crowd behaviours.
The rules used to memorize such two models are specified as follows: if the
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(a)

(b)

Fig. 15 Example of real environment (a) and simulated scenario (b) used for the test,
the virtual rooms correspond to the zones. The red dashed line corresponds to people flow
direction from zone 1 to zone 3; the blue dashed line describes people movement from zone 3
to zone 1. Dashed circular areas qualitatively correspond to the parts of the rooms monitored
by cameras equipped with people counter module. d1− d4 are the doors.

operator sees the people moving from zone 1 to zone 3 must open only d1 d2
according to the people flow; the user has to act on d3 d4 if people flow is in
opposite direction. Four scenes for the two people flows have been simulated,
each scene is 60[s] long. The simulated people counters provide number of peo-
ple in each zone per second. During the second part the system works on real
video sequences. The CN recognizes the observed situations according to the
memorized knowledges. During autonomous phase, the CN, to the end to in-
teract directly with the crowd, must discriminate different crowd-environment
configurations. Fig. 16 presents four sample frames about different crowd be-
haviours: in case (a) the people flow moves leading red arrow (i.e. from zone
1 to zone 3), in case (b) the opposed people movement direction is presented
(i.e. from zone 3 to zone 1). In cases (c) and (d) the groups of the people have
different movement directions, namely people splitting and merging. In these
last two cases, the system does not find any correspondence between observed
scene and stored interaction models. In particular, the CN can consider the
scene (c) as anomalous crowd-environment interaction compared with (a) sit-
uation. The same consideration can be done for (d) and (b) situations. When
anomalous crowd-environment interactions are detected, the cognitive system
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sends an alarm message in order to inform the human operator. After this

(a) (b)

(c) (d)

Fig. 16 Sample frames for four different crowd-environment interactions. Different people
flows are presented: two opposite directions of movement (a) (b), people splitting (c), people
merging (d). (a) and (b) represent normal behaviours, while (c) and (d) represent two
abnormal behaviours.

phase, the CN is able to predict most likely future actions and when it will
be performed. During the operator support phase, the cognitive system indi-
viduates anomalies in terms of differences between predicted actions and user
actions.

The SOM-map dimensions produce different results in terms of knowledge
representation for crowd-environment interactions. In particular, small Koho-
nen’s layers increase SOM capability of creating analogies between different
input data. This effect becomes much relevant when the input data is cor-
rupted by noise. A test has been conducted employing two people counters,
namely PC1 and PC2, characterised by different accuracies, i.e. aPC1 = 80%,
aPC2 = 60%. The experiment can be divided in two parts. Firstly, we have
manually built the ground truth for the video sequence. We use this infor-
mation in order to generate the sequences of the super-states. Through three
different SOMs, i.e. SOM 16, SOM 25 and SOM 32, the original data have
been mapped into SOM-spaces. Secondly, by using of people counter [28], it
is possible to obtain the number of people (PC1) with estimated accuracy of
80% (aPC1 = 80%). Tuning a people counter parameter another set of num-
ber of people (PC2), with less accuracy, has been acquired (aPC2 = 60%). We
have manually corrupted the parameter for decreasing the accuracy of people
number estimation. The data provided by PC1 and PC2 are classified by us-
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ing the three different SOMs so that six different sequences of fired neurons
are obtained. The events (i.e. super states transitions), which correspond to
passages across the zones (i.e. Zone 1 7→ Zone 2, Zone 2 7→ Zone 3 and Zone
3 7→ Zone 2, Zone 2 7→ Zone 1), are compared with the events generated from
ground truth. When the system recognizes the same events it is possible to
affirm that a specific SOM is able to provide an efficient crowd-environment
interaction representations. Vice versa a failure will be detected. Failures are
due to the poor capability of larger SOM layers of finding analogies between
input data: similar inputs may be mapped to different neurons (see Subsection
5.2). In table 4, the performances (in people flow detections) of three SOMs
(16, 25 and 36 neurons respectively) are shown. The interesting result is that
a 16-neuron SOM is able to detect three zone passages also in the presence of
corrupted data input.

Table 4 People flows detections using different people counters and SOMs. Accuracy of
the precision: aPC1 = 80%, aPC2 = 60%. Success = 1, Failure = 0.

SOM 16 SOM 25 SOM 36
Direction PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

Zone 1 7→ Zone 2 1 1 1 1 1 0
Zone 2 7→ Zone 3 1 0 1 0 0 0
Zone 3 7→ Zone 2 1 1 1 1 1 0
Zone 2 7→ Zone 1 1 1 1 0 1 0

For the test, a SOM 25 and PC1 have been employed. In Fig. 17 the cog-
nitive system predictions and detections of normal and abnormal interactions
between an operator and the crowd are shown. In the figure, the operator
actions and corresponding video frames are represented (blue operator action
rectangle) in the ground truth bar. The prediction (yellow prediction rectan-
gle) and action bar represents the cognitive system actions. The anomaly is
represented by a red anomaly rectangle. Considering the case (a), the system
predicts the first zone crossing (i.e. from zone 1 to zone 2) as to open d1 (spec-
ified by blue triangle). In this case, the operator action finds a correspondence
with the predicted action (i.e. d1). During the second zone crossing (i.e. from
zone 2 to zone 3) the system detects an anomalous operator-crowd interaction
behaviour: the user opens an uncorrected door (i.e. d3 indicated by blue circle).
The case (b) presents the same analysis for a different people flow direction.

7 Conclusion

An automatic systems called Cognitive Surveillance Node (CSN), which is part
of a complex cognitive JDL-based and bio-inspired architecture was presented
in this work. Also, a bio-inspired structure was proposed, for encoding and syn-
thesizing signals for modelling cause-effect relationships between entities. In
particular, the case where one of such entities is a human operator was studied.
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(a)

(b)

Fig. 17 The qualitative results of the normal and anomalous operator-crowd interaction
detection, during the operator support phase. The ground truth bar represents the oper-
ator actions in corresponding with video frames. Prediction and action bar represents the
cognitive system actions.

Interaction models are stored within an AM during a learning phase. Knowl-
edge is thus transferred from a human operator towards the CSN. Learned
representations can be used, at different levels, either to support human de-
cisions by detecting anomalous interaction models and thus compensating for
human shortcomings, or, in an automatic decision scenario, to identify anoma-
lous patterns and choose the best strategy to preserve stability of the entire
system.

Results are shown in a simulated visual 3D environment in the context
of crowd monitoring. The simulated crowd is modelled according to the So-
cial Forces Model. The results show two possible applications of the CSN for
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crowd surveillance applications: first, the system can support the operator for
crowd management and people flow redirection by detecting drift from some
learned interaction models; secondly, to work in automatic mode and thus
autonomously detecting anomalies in crowd behaviour. Furthermore, it has
been shown how user-crowd interaction knowledge, learned from the simula-
tor and modelled as proposed is useful in order to detect anomalies on real
video sequences.

Future developments of this work will include a detailed study on the im-
pact of other self organizing maps, e.g. GNG or GH-SOM on the performances
of our system. In particular, we are interested to design a cognitive control-
based architecture that is able to switch among various contextual knowledge
representation levels provided by different AMs.
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