845 research outputs found

    Topological Optimization of the Evaluation of Finite Element Matrices

    Full text link
    We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization

    A Godunov-type method for the seven-equation model of compressible two-phase flow

    Get PDF
    We are interested in the numerical approximation of the solutions of the compressible seven-equation two-phase flow model. We propose a numerical srategy based on the derivation of a simple, accurate and explicit approximate Riemann solver. The source terms associated with the external forces and the drag force are included in the definition of the Riemann problem, and thus receive an upwind treatment. The objective is to try to preserve, at the numerical level, the asymptotic property of the solutions of the model to behave like the solutions of a drift-flux model with an algebraic closure law when the source terms are stiff. Numerical simulations and comparisons with other strategies are proposed

    Breaking spaces and forms for the DPG method and applications including Maxwell equations

    Get PDF
    Discontinuous Petrov Galerkin (DPG) methods are made easily implementable using `broken' test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. The technique also permits considerable simplifications of previous analyses of DPG methods for other equations. Reliability and efficiency estimates for an error indicator also follow. Finally, the equivalence of stability for various formulations of the same Maxwell problem is proved, including the strong form, the ultraweak form, and a spectrum of forms in between

    Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media

    Full text link
    In this paper, we study the unconditional convergence and error estimates of a Galerkin-mixed FEM with the linearized semi-implicit Euler time-discrete scheme for the equations of incompressible miscible flow in porous media. We prove that the optimal L2L^2 error estimates hold without any time-step (convergence) condition, while all previous works require certain time-step condition. Our theoretical results provide a new understanding on commonly-used linearized schemes for nonlinear parabolic equations. The proof is based on a splitting of the error function into two parts: the error from the time discretization of the PDEs and the error from the finite element discretization of corresponding time-discrete PDEs. The approach used in this paper is applicable for more general nonlinear parabolic systems and many other linearized (semi)-implicit time discretizations

    Automatic coupling and finite element discretization of the Navier-Stokes and heat equations

    Get PDF
    We consider the finite element discretization of the Navier-Stokes equations coupled with the heat equation where the viscosity depends on the temperature. We prove a posteriori error estimates which allow us to automatically determine the zone where the temperature-dependent viscosity must be inserted into the Navier-Stokes equations and also to perform mesh adaptivity in order to optimize the discretization of these equations

    Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system

    Get PDF
    International audienceThis article is composed of three self-consistent chapters that can be read independently of each other. In Chapter 1, we define and we analyze the low Mach number problem through a linear analysis of a perturbed linear wave equation. Then, we show how to modify Godunov type schemes applied to the linear wave equation to make this scheme accurate at any Mach number. This allows to define an all Mach correction and to propose a linear all Mach Godunov scheme for the linear wave equation. In Chapter 2, we apply the all Mach correction proposed in Chapter 1 to the case of the non-linear barotropic Euler system when the Godunov type scheme is a Roe scheme. A linear stability result is proposed and a formal asymptotic analysis justifies the construction in this non-linear case by showing how this construction is related with the linear analysis of Chapter 1. At last, we apply in Chapter 3 the all Mach correction proposed in Chapter 1 in the case of the full Euler compressible system. Numerous numerical results proposed in Chapters 1, 2 and 3 justify the theoretical results and show that the obtained all Mach Godunov type schemes are both accurate and stable for all Mach numbers. We also underline that the proposed approach can be applied to other schemes and allows to justify other existing all Mach schemes

    Analysis of the Brinkman-Forchheimer equations with slip boundary conditions

    Full text link
    In this work, we study the Brinkman-Forchheimer equations driven under slip boundary conditions of friction type. We prove the existence and uniqueness of weak solutions by means of regularization combined with the Faedo-Galerkin approach. Next we discuss the continuity of the solution with respect to Brinkman's and Forchheimer's coefficients. Finally, we show that the weak solution of the corresponding stationary problem is stable

    The "exterior approach" applied to the inverse obstacle problem for the heat equation

    Get PDF
    International audienceIn this paper we consider the " exterior approach " to solve the inverse obstacle problem for the heat equation. This iterated approach is based on a quasi-reversibility method to compute the solution from the Cauchy data while a simple level set method is used to characterize the obstacle. We present several mixed formulations of quasi-reversibility that enable us to use some classical conforming finite elements. Among these, an iterated formulation that takes the noisy Cauchy data into account in a weak way is selected to serve in some numerical experiments and show the feasibility of our strategy of identification. 1. Introduction. This paper deals with the inverse obstacle problem for the heat equation, which can be described as follows. We consider a bounded domain D ⊂ R d , d ≥ 2, which contains an inclusion O. The temperature in the complementary domain Ω = D \ O satisfies the heat equation while the inclusion is characterized by a zero temperature. The inverse problem consists, from the knowledge of the lateral Cauchy data (that is both the temperature and the heat flux) on a subpart of the boundary ∂D during a certain interval of time (0, T) such that the temperature at time t = 0 is 0 in Ω, to identify the inclusion O. Such kind of inverse problem arises in thermal imaging, as briefly described in the introduction of [9]. The first attempts to solve such kind of problem numerically go back to the late 80's, as illustrated by [1], in which a least square method based on a shape derivative technique is used and numerical applications in 2D are presented. A shape derivative technique is also used in [11] in a 2D case as well, but the least square method is replaced by a Newton type method. Lastly, the shape derivative together with the least square method have recently been used in 3D cases [18]. The main feature of all these contributions is that they rely on the computation of forward problems in the domain Ω × (0, T): this computation obliges the authors to know one of the two lateral Cauchy data (either the temperature or the heat flux) on the whole boundary ∂D of D. In [20], the authors introduce the so-called " enclosure method " , which enables them to recover an approximation of the convex hull of the inclusion without computing any forward problem. Note however that the lateral Cauchy data has to be known on the whole boundary ∂D. The present paper concerns the " exterior approach " , which is an alternative method to solve the inverse obstacle problem. Like in [20], it does not need to compute the solution of the forward problem and in addition, it is applicable even if the lateral Cauchy data are known only on a subpart of ∂D, while no data are given on the complementary part. The " exterior approach " consists in defining a sequence of domains that converges in a certain sense to the inclusion we are looking for. More precisely, the nth step consists, 1. for a given inclusion O n , in approximating the temperature in Ω n × (0, T) (Ω n := D \ O n) with the help of a quasi-reversibility method, 2. for a given temperature in Ω n × (0, T), in computing an updated inclusion O n+1 with the help of a level set method. Such " exterior approach " has already been successfully used to solve inverse obstacle problems for the Laplace equation [5, 4, 15] and for the Stokes system [6]. It has also been used for the heat equation in the 1D case [2]: the problem in this simple case might be considered as a toy problem since the inclusion reduces to a point in some bounded interval. The objective of the present paper is to extend the " exterior approach " for the heat equation to any dimension of space, with numerical applications in the 2D case. Let us shed some light on the two steps o

    Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field

    Get PDF
    International audienceThis paper deals with the numerical resolution of the Vlasov-Poissonsystem with a strong external magnetic field by Particle-In-Cell(PIC) methods. In this regime, classical PIC methods are subject tostability constraints on the time and space steps related to the smallLarmor radius and plasma frequency. Here, we propose anasymptotic-preserving PIC scheme which is not subjected to theselimitations. Our approach is based on first and higher order semi-implicit numericalschemes already validated on dissipative systems. Additionally, when the magnitude of the external magneticfield becomes large, this method provides a consistent PICdiscretization of the guiding-center equation, that is, incompressibleEuler equation in vorticity form. We propose several numerical experiments which provide a solid validation of the method and its underlying concepts
    corecore