research

Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media

Abstract

In this paper, we study the unconditional convergence and error estimates of a Galerkin-mixed FEM with the linearized semi-implicit Euler time-discrete scheme for the equations of incompressible miscible flow in porous media. We prove that the optimal L2L^2 error estimates hold without any time-step (convergence) condition, while all previous works require certain time-step condition. Our theoretical results provide a new understanding on commonly-used linearized schemes for nonlinear parabolic equations. The proof is based on a splitting of the error function into two parts: the error from the time discretization of the PDEs and the error from the finite element discretization of corresponding time-discrete PDEs. The approach used in this paper is applicable for more general nonlinear parabolic systems and many other linearized (semi)-implicit time discretizations

    Similar works

    Full text

    thumbnail-image

    Available Versions