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5Université Paris 13, Sorbonne Paris Cité,
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Abstract

This article is composed of three self-consistent chapters that can be read independently of each other. In

Chapter 1, we define and we analyze the low Mach number problem through a linear analysis of a perturbed

linear wave equation. Then, we show how to modify Godunov type schemes applied to the linear wave equation

to make this scheme accurate at any Mach number. This allows to define an all Mach correction and to propose

a linear all Mach Godunov scheme for the linear wave equation. In Chapter 2, we apply the all Mach correction

proposed in Chapter 1 to the case of the non-linear barotropic Euler system when the Godunov type scheme is

a Roe scheme. A linear stability result is proposed and a formal asymptotic analysis justifies the construction in

this non-linear case by showing how this construction is related with the linear analysis of Chapter 1. At last,

we apply in Chapter 3 the all Mach correction proposed in Chapter 1 in the case of the full Euler compressible

system. Numerous numerical results proposed in Chapters 1, 2 and 3 justify the theoretical results and show

that the obtained all Mach Godunov type schemes are both accurate and stable for all Mach numbers. We also

underline that the proposed approach can be applied to other schemes and allows to justify other existing all

Mach schemes.

Keywords: Compressible Euler system, linear wave equation, low Mach number flow, Godunov
scheme, Roe scheme.
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Introduction

In many situations, the Mach number in the nuclear core of a pressurized water reactor is close to zero.
This implies that the acoustic waves are often not crucial in the mass, momentum and energy balances
to model the thermal-hydraulics in the nuclear core. As a consequence, a low Mach number model as
the one proposed in [12, 2] can be a correct approach, such a model being free of any acoustic waves.
Nevertheless, in some accidental situations, the Mach number is not always and/or not everywhere
close to zero, which implies that acoustic waves (which can be rarefaction and/or shock waves) cannot
be neglected. The simplest model which can model low Mach flows as well as rarefaction and/or shock
waves is the compressible Euler system

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · [(ρE + p)u] = 0

(1)

which can be simplified into the barotropic Euler system{
∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0
(2)

when we suppose that the flow is isentropic. In (1) and (2), ρ is the density, p is the pressure, u is the

velocity and E :=
|u|2

2
+ ε is the total energy, ε being the internal energy. To close (1) and (2), p, ρ

and ε are linked through the respective given functions p(ρ, ε) and p(ρ) which define the equations
of state of the fluid. At last, t ≥ 0 is the time variable and the spatial variable is defined by x ∈ Rd
(d ∈ {1, 2, 3} is the dimension of the space and is chosen as a function of the expected accuracy of the
model). Of course, as a nuclear core is a bounded domain Ω in Rd, we also have to define boundary
conditions on ∂Ω.

In order to capture rarefaction and/or shock waves, a classical numerical approach is to dis-
cretize (1) or (2) by using a Godunov type scheme. In this paper, a Godunov type scheme is a finite
volume type scheme whose numerical fluxes are constructed by using an exact or an approximate 1D
Riemann solver in the normal direction of the edges of the mesh (e.g. the Roe scheme [36] and the
VFRoe scheme [5]). Nevertheless, it is now well known that first order Godunov type schemes applied
to (1) or (2) are most of the time not accurate at low Mach number [3, 7, 9, 39, 21, 19, 20, 32]. It is
also shown in [21] that the second order Roe scheme suffers from a similar inaccuracy at low Mach
number. In the same way, it is shown in [1] that this is also the case for the second and third orders
discontinuous Galerkin scheme using Roe-type fluxes although the results are improved by increasing
the order. For the sake of simplicity, we name in the sequel low Mach number problem this loss of
accuracy in the spatial periodic case for (1) or (2). And we study this low Mach number problem
in the case of first order Godunov type schemes although the proposed theoretical tools could also
be applied to higher orders. Nevertheless, due the non-linearities introduced by slope limiters and
to larger stencils of high order schemes, the proposed analysis will be much more difficult at orders
greater than one.

When the mesh is cartesian and when the boundary conditions on ∂Ω are periodic – in other
words, the physical space Ω is a torus T included in Rd –, it is shown in [11] that the low Mach number
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problem for (1) or (2) can be partially understood and can be cured by studying the low Mach number
problem for the (dimensionless) wave equation ∂tq +

L

M
q = 0,

q(t = 0,x) = q0(x)

(3)

where M is the Mach number (0 < M � 1), q := (r,u)T ∈ R1+d and L(q) := a∗(∇ · u,∇r)T is the
acoustic operator (a∗ is a constant of order one) whose kernel is given by

KerL = E with E :=
{
q ∈ (L2(T))1+d : ∇r = 0 and ∇ · u = 0

}
. (4)

More precisely, the low Mach number problem for (3) can be partially understood and can be cured
by studying the linear equation  ∂tq +

L
M
q = 0,

q(t = 0,x) = q0(x),

(5)

L := L + δL being the acoustic operator L perturbed by a partial differential operator δL coming
from the first order truncation error of the Godunov scheme applied to the linear wave equation (3).
Let us underline that L is a continuous operator in [11]; its discrete version Lh is studied in [15]. It is
underlined in [11] that when (5) is well-posed, the property

”When the initial condition q0(x) is close to the incompressible subspace E,
the solution q(t,x) of (5) remains close to its projection on E at any time.”

(6)

is satisfied under the sufficient condition

q0(·) ∈ E =⇒ ∀t ≥ 0, q(t, ·) ∈ E (7)

(see Point 2 of Theorem 2.2 in [11])1. The mathematical expression of (6) is recalled in the sequel
(see (1.17)). Condition (6) – which is satisfied by the solution of (3) – means that the flow remains
close to an incompressible flow at any time when it is initially the case.

When δL is the first order truncation error of the Godunov scheme applied on a cartesian mesh and
when d ∈ {2, 3}, we check that E is not an invariant subspace for (5) (see Point 2 of Lemma 4.2 in [11])
and that the kernel of L verifies

KerL  E (8)

instead of (4) (see Point 3 of Lemma 4.3 in [11])2. As a consequence, (6) may not be satisfied ((7)
is only a sufficient condition) and q(t,x) may be far from an incompressible flow. Thus, we have
proposed in [11] to modify the Godunov scheme in such a way that (7) is satisfied. In the case of
the Godunov scheme, the simplest choice to verify (7) is to center the discretization of the pressure
gradient in the velocity equation (see also Point 2 of Lemma 4.2 in [11]) by deleting the upwinding
stabilization term in this equation. Indeed, this low Mach correction – which defines the low Mach
Godunov scheme – implies that

KerL = E (9)

(see Point 2 of Lemma 4.3 in [11]), which is stronger than (7). In the linear case (3), this theoretical
approach gives a quite good understanding of the low Mach number problem and defines a simple
and efficient low Mach correction for Godunov schemes. Moreover, numerical results proposed in [11]
justify this correction in the non-linear case (i.e. for compressible Euler and Navier-Stokes systems)
on meshes which are or are not cartesian. Nevertheless, the analysis proposed in [11] is partial and
has been upgraded in [15] in four directions:

1The sufficient condition (7) means that E is an invariant subspace for (5).
2When d = 1, E is invariant – more precisely (9) is verified –, which underlines that the monodimensional case is

particular (see Points 1 of Lemma 4.2 and 4.3 in [11]). In other words, the low Mach number problem does not exist
when d = 1.
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1. Property (6) is too weak to characterize an accurate scheme at low Mach number for (3). Indeed,
this condition does not exclude a priori a highly diffusive scheme in the incompressible space E,
that is to say a scheme for which q(t,x) remains close to E at any time but goes to zero in short
time. To exclude this possibility, (6) has to be replaced by the stronger property

”When the initial condition q0(x) is close to the incompressible subspace E,
the solution q(t,x) of (5) remains close to

the projection on E of the initial condition q0 at any time.”
(10)

Property (10) is justified since the solution of (3) verifies (10). This point is implicitly used
in [15] and is detailed in this paper. More precisely, the mathematical expression of (10) will be
specified in the sequel (see (1.19)) and we will also prove that

E ⊆ KerL (11)

is a sufficient condition to satisfy (10) (see Point 2 of Theorem 1.1.2 in the sequel). Since (9) is
satisfied for the low Mach Godunov scheme, we obtain that (10) is also satisfied. This justifies
the low Mach correction proposed in [11].

2. To explain the low Mach number problem on a cartesian mesh for (3), we have to prove that (10)
is not verified in the case of the Godunov scheme. This result is proved in [15] in the continuous
case by studying the short time behaviour of (5) and by using a Poincaré-Wirtinger inequality
(see Proposition 4.1 and Corollary 4.1 in [15]).

3. It is also important to study the discrete version of the low Mach correction by analyzing the
discrete version Lh of L. This is done in [15] where the link between KerLh and the discrete
version Eh of E is studied on cartesian and triangular meshes (see Lemmas 5.1, 5.2 and 5.6
in [15]). Like in the continuous case, we also study in [15] the short time behaviour of the
(ordinary differential) equation  ∂tqh +

Lh
M
qh = 0,

qh(t = 0) = q0
h

(12)

which is the discrete version of the (partial differential) equation (5) (see Proposition 5.1 in [15])
by using a discrete Poincaré-inequality whose proof can be found in [14]. This allows us to
explain in the semi-discrete case the low Mach number problem on a cartesian mesh.

4. The low Mach number problem does not exist when the mesh is triangular [33, 35]. We explain
in [15] this particular behaviour by proving that the discrete version KerLh = Eh of (9) is
satisfied when the mesh is triangular (see Lemma 5.1 in [15]). Indeed, this result implies that
the discrete version of (10) is satisfied without any low Mach correction.

The results proposed in [15] contribute to the understanding of the low Mach number problem and
justify the low Mach correction proposed in [11]. Nevertheless, as this low Mach correction is obtained
by deleting a part of the upwinding stabilization term in the Godunov scheme, the low Mach Godunov
scheme may be unstable in the case of the non-linear systems (1) and (2) when the Mach number is
of order one (although it is stable for the linear wave equation (3) when the Mach number is close to
zero: this important point will be proved in this paper, see §2.2). Thus, we propose and we justify
in this paper an all Mach correction which allows to recover the low Mach correction when the Mach
number goes to zero, and the classical Godunov scheme when the Mach number is of order one. This
allows to obtain a modified Godunov scheme that we name all Mach Godunov scheme. This all Mach
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correction is identical to the one proposed in [16] and similar to the one proposed in [34, 31] when the
Godunov type scheme is a Roe scheme. The difficulty to justify this correction comes from the fact
that the kernel of the operator L associated to this all Mach Godunov scheme is identical to the one
obtained with the standard Godunov scheme – thus, it verifies (8) and does not verify (11) – and from
the fact that (10) is not verified. In this paper, we prove that the all Mach correction is such that

”When the initial condition q0(x) is close to the incompressible subspace E,
the solution q(t,x) of (5) remains close to the projection on E of the initial condition q0

for short times.”
(13)

And we justify the use of the short time condition (13) instead of the long time condition (10) although
the solution of (3) verifies (10). This point also underlines that (11) is too strong to characterize a
scheme verifying (13). Then, we extend the all Mach correction in the non-linear case, we prove a
linear stability result for this all Mach scheme when the Godunov type scheme is a Roe scheme –
which justifies from the stability point of view the all Mach schemes proposed in [34, 31] – and we
propose numerical results in the linear and non-linear cases. All these results justify the proposed all
Mach correction for Godunov type schemes.

Let us note that the theoretical approach proposed in this paper is general in the sense that it can
be also used to analyze (and possibly to correct) the low Mach accuracy (or inaccuracy) of schemes
that are not at all of Godunov type (e.g. schemes on staggered grid: see §6 in [15] and [30]). That is
why we recalled in this introduction the main steps studied in [11, 15] and that we explain in Chapter
1 the low Mach number problem in a general framework not restricted to Godunov type schemes
before applying it to this type of schemes in Chapters 1, 2 and 3. For example, the low Mach number
problem concerns also other collocated schemes [45, 27]. Liou proposes in [27] a flux splitting type
scheme – named AUSM+-up scheme – that is also accurate at low Mach number. In [28, 25, 26], other
colocated schemes that are accurate at low Mach number are proposed. In [1], an all Mach scheme
using a discontinuous Galerkin method with Roe-type fluxes is used. All these all Mach schemes can
be justified (at least at order one) by using the theoretical approach of Chapter 1 (a preliminary formal
analysis of the AUSM+-up scheme [27] is proposed in §5.5.2 of [11]).

At last, we emphasize that the low Mach number problem defined in this paper as well as the proposed
linear stability results are linked to the discretization of the spatial operators and not to the discretiza-
tion of the time operators. Thus, the possible inaccuracy or the stability constraints linked to the
discretization of the time operators at low Mach number with an explicit, semi-implicit or implicit
scheme is not studied in this paper. This important question is studied in [10] without discretizing the
spatial operators. Thus, the proposed approach and the approach proposed in [10] are complementary.

The outline of this paper is the following. In Chapter 1, we recall the low Mach number problem
and the theoretical framework that we use in [11, 15] and we clarify some of our previous results.
Then, we introduce the definition of an accurate scheme at low Mach number in the linear case and
we justify an all Mach correction for the Godunov scheme applied to the linear wave equation. From
this linear approach, we propose in Chapter 2 all Mach Godunov type schemes in the case of the
non-linear barotropic Euler system (2). We also propose a linear stability result for these non-linear
schemes when the Godunov type scheme is a Roe scheme, and we justify the accuracy of this non-
linear scheme with a formal asymptotic expansion. In Chapter 3, we extend the previous (barotropic)
all Mach Godunov type schemes to the full compressible Euler system (1). We also underline that the
proposed approach to obtain all Mach schemes is not restricted to Godunov type schemes. At last,
we propose numerous numerical results obtained on triangular and cartesian meshes for the 1D and
2D compressible Euler systems. These numerical results show that the proposed non-linear all Mach
Godunov scheme is stable and accurate for low Mach test cases and for test cases whose Mach number
is not small and even greater than one, and on any mesh type. In particular, the all Mach correction
allows to capture the entropic solution in all our numerical tests with shock waves.



Chapter 1

The low Mach number problem
analyzed with the linear wave equation

This first chapter presents the theoretical tools allowing to clearly understand the low Mach number
problem in the case of the Godunov scheme applied to the linear wave equation. This allows us to also
propose and justify a low Mach correction and an all Mach correction in this linear case. Numerical
results justify all these theoretical results. Chapter 1 underlines also that the profound root of the
low Mach number problem is linear. A direct consequence is that it is easy to extend the linear all
Mach correction to the non-linear cases from a practical point of view. Numerical results proposed in
Chapters 2 and 3 justify this simple extrapolation from the linear to the non-linear cases. Nevertheless,
there are still a lack of theoretical results concerning the stability and the preservation of entropic
properties in the non-linear cases when we apply the all Mach correction to Godunov type schemes.

Although Chapter 1 is necessary to clearly understand the low Mach number problem and to justify
the all Mach correction from a theoretical point of view, this chapter is not usefull to understand
how to apply the proposed all Mach correction in the non-linear cases from a practical point of
view. Thus, Chapter 2 – that studies the barotropic Euler system – and Chapter 3 – that studies
the full compressible Euler system – can be read without reading Chapter 1 if we want to quickly
understand how to introduce the all Mach correction in a code that solves the non-linear barotropic
or full compressible Euler system, and without having an accurate theoretical understanding of the
all Mach correction.

It is also important to note that the theoretical approach proposed in this Chapter 1 to analyze
the accuracy of Godunov type schemes in the low Mach number regim can also be applied to other
schemes such as schemes using a finite element type approach or a finite difference type approach on
a staggered mesh (this last case is briefly studied in §6 of [15]).

At last, let us note that the theoretical results allowing to propose and to justify the low Mach
correction are a synthesis of some of the results already proposed in [11, 15]. The theoretical results
allowing to propose and justify the all Mach correction are new.

The outline of Chapter 1 is the following. In §1.1, we recall the low Mach number problem and the
theoretical framework that we use in [11, 15] and we clarify some of our previous results. We introduce
in §1.2 the definition of an accurate scheme at low Mach number in the linear case. In order to obtain
an all Mach Godunov scheme in the case of the linear wave equation, we propose and we justify with
numerical results an all Mach correction in §1.3.

1.1 The low Mach number problem

We recall in this section some results obtained in [11, 15].

9



10CHAPTER 1. THE LOWMACHNUMBER PROBLEMANALYZEDWITH THE LINEARWAVE EQUATION

1.1.1 The low Mach asymptotics in the non-linear case

Let us define the Mach number M :=
u

a
where u and a are respectively an order of the magnitude of

the fluid velocity and of the sound velocity in the domain Ω. Then, when M is close to zero and when
the initial conditions are well-prepared in the following sense

ρ(t = 0,x) = ρ∗(x),

p(t = 0,x) = p∗ +O(M2),

u(t = 0,x) = û(x) +O(M) with ∇ · û(x) = 0

(1.1a)

(1.1b)

(1.1c)

(the notation O(f) means of the order of f), the solution (ρ,u, p) of the (dimensionless) compressible
Euler system 

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +
∇p
M2

= 0,

∂t(ρE) +∇ · [(ρE + p)u] = 0

(1.2a)

(1.2b)

(1.2c)

is close to (ρ,u, p) which satisfies p = p∗ and the incompressible Euler system
∂tρ+ u · ∇ρ = 0, ρ(t = 0,x) = ρ∗(x),

∇ · u = 0, u(t = 0,x) = û(x),

ρ(t,x)(∂tu + u · ∇u) = −∇Π.

(1.3)

In (1.3), Π is a new unknown which has the dimension of a pressure. The pressure Π is sometimes
named dynamic or mechanical pressure and can formally be related to the thermodynamic pressure p
through the expansion p = p∗ + M2Π + O(M3). Let us note that we do not take into account any
boundary conditions in [11, 15] and in the sequel. As a consequence, we suppose that the domain Ω
in which (1.2) is solved is a torus T included in Rd.

1.1.2 The low Mach asymptotics in the linear case

The dimensionless barotropic Euler system is given by
∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +
∇p(ρ)

M2
= 0.

(1.4)

The sound velocity in (1.4) is given by
√
p′(ρ)/M (we suppose that p′(ρ) > 0), which is high at low

Mach number (i.e. when M � 1). For smooth solutions, System (1.4) is equivalent to

∂tq +H(q) +
L
M

(q) = 0 (1.5)

with

q =

(
r
u

)
, H(q) :=

(
u · ∇r

(u · ∇)u

)
= (u · ∇)q, L(q) :=


(a∗ +Mr)∇ · u
p′[ρ∗(1 + M

a∗
r)]

a∗(1 + M
a∗
r)
∇r


where r(t,x) is such that

ρ(t,x) := ρ∗

[
1 +

M

a∗
r(t,x)

]
(1.6)
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with a∗ =
√
p′(ρ∗), ρ∗ being a positive constant of order one. The operator H is the non-linear

transport operator whose time scale is of order one; the operator L/M is the non-linear acoustic
operator whose time scale is of order M . The linearized barotropic Euler system is thus given by

∂tq +Hq +
L

M
q = 0 (1.7)

with

q :=

(
r
u

)
, Hq :=

(
u∗ · ∇r

(u∗ · ∇)u

)
= (u∗ · ∇)q, Lq := a∗

(
∇ · u
∇r

)
where u∗ = Cst

1 and a∗ = Cst2 such that O(|u∗|) = O(a∗) = 1. Let us underline that (1.7) can also be

seen as a linearization of the compressible Euler System (1.2) with p := p∗

(
1 + M

a∗
r
)

when we replace

the energy Equation (1.2c) by s = Cst where s is the entropy. Thus, r(t,x) can be considered as a
pressure perturbation in the sequel.

Let us now introduce the sets

(L2(T))1+d :=

{
q :=

(
r
u

)
:

∫
T
r2dx +

∫
T
|u|2dx < +∞

}

equipped with the inner product 〈q1, q2〉 =

∫
T
q1q2dx and

E =
{
q ∈ (L2(T))1+d : ∇r = 0 and ∇ · u = 0

}
=

{
q ∈ (L2(T))1+d : ∃(a,b) ∈ R1+d and ∃ψ ∈ H1(T) such that r = a and u = b +∇× ψ

}
,

E⊥ =

{
q ∈ (L2(T))1+d :

∫
T
rdx = 0 and ∃φ ∈ H1(T) such that u = ∇φ

}
.

The subspaces E and E⊥ are respectively called incompressible subspace and acoustic subspace. In the
sequel, we use the following classical result:

Lemma 1.1.1.
E⊕ E⊥ = (L2(T))1+d and E ⊥ E⊥.

In other words, any q ∈ (L2(T))1+d can be decomposed into

q = Pq + q⊥

where (Pq, q⊥) ∈ E× E⊥.

The operator P is the Hodge projection, q = Pq + q⊥ is the Hodge decomposition of q and we
have 〈Pq, q⊥〉 = 0. With these tools, we can make explicit the low Mach asymptotics in the linear case
(see Proposition 2.1 in [11]):

Proposition 1.1.1. Let q(t,x) be solution of ∂tq +Hq +
L

M
q = 0,

q(t = 0,x) = q0(x)

(1.8)

with q0 ∈ (L2(T))1+d, and let q1 be solution of{
∂tq1 +Hq1 = 0,

q1(t = 0,x) = Pq0(x).
(1.9)

Then, we have

q1(t,x) = Tu∗,t
(
Pq0
)

(t,x) = Pq(t,x) (1.10)
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where Tu∗,t is the application defined by Tu∗,t(f)(t,x) = f(x− u∗t) and

∀t ≥ 0, ||q − q1||(t) = ||q0 − Pq0||. (1.11)

This allows to write that

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0,
∣∣∣∣q − Tu∗,t (Pq0

)∣∣∣∣ (t) = CM (1.12)

where C is a positive constant, which is equivalent to

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0, ||q − Pq||(t) = CM. (1.13)

In Proposition 1.1.1, || · || is the L2-norm. Equality (1.12) allows to write that as soon as the initial
condition q0 is close to the incompressible subspace E, the solution q(t,x) of (1.8) remains close at
any time to the solution q1(t,x) of (1.9). Thus, the transport Equation (1.9) defines the low Mach
asymptotics of the linear Equation (1.8). Estimate (1.13) means that, as soon as the initial condition q0

is close to the incompressible subspace E, q(t,x) remains close to E.

Moreover, we can rewrite ||q0 − Pq0|| = CM with the less accurate formulation ||q0 − Pq0|| = O(M).
By using (1.6), we easily obtain that the condition ||q0 − Pq0|| = O(M) is equivalent to the well-
prepared initial condition (1.1b)-(1.1c) restricted to the case p∗ = p(ρ∗) with ρ∗ = Cst. Note that in
the barotropic case, (1.1a) has to be replaced by ρ(t = 0,x) = ρ∗ +O(M2) since p = p(ρ).

The proof of Proposition 1.1.1 uses the linearity of (1.8), the fact that E = KerL and the conservation
of the energy E := 〈q, q〉 [11]. At last, let us underline that Proposition 1.1.1 may also be seen as a
simple application of a result by Schochet [40] obtained in the non-linear case (1.5).

Let us now suppose that u∗ = 0 or equivalently H = 0. Thus, Proposition 1.1.1 becomes:

Corollary 1.1.1. Let q(t,x) be solution of ∂tq +
L

M
q = 0,

q(t = 0,x) = q0(x)

(1.14)

with q0 ∈ (L2(T))1+d. Then, we have Pq = Pq0 and

∀t ≥ 0, ||q − Pq0||(t) = ||q0 − Pq0||

which allows to write that

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0, ||q − Pq0||(t) = CM (1.15)

where C is a positive constant.

As a consequence, the low Mach asymptotics of the linear wave Equation (1.14) is simply given
by Pq0(x). Figure 1.1 represents schematically the solution of the linear wave equation.

1.1.3 The low Mach asymptotics in the case of the perturbed linear wave equation

The key points to obtain (1.15) are that E = KerL and that (1.14) conserves the energy. In fact, we
can relax these two properties in the following way:

Theorem 1.1.2. Let L be a linear operator and let q(t,x) be solution of the linear equation ∂tq +
L
M
q = 0,

q(t = 0) = q0
(1.16)
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Figure 1.1: Solution q of the linear wave Equation (1.14). The incompressible component of the
solution is Pq0 ∈ E and its acoustic component is q − Pq ∈ E⊥.

supposed to be well-posed in such a way that ||q||(t) ≤ C̃||q0|| for any t ≥ 0, where C̃ is a positive
constant (which in particular does not depend on M). We recall that the subspace E is invariant
for (1.16) if q0(·) ∈ E =⇒ ∀t ≥ 0, q(t, ·) ∈ E (see (7)) where q is the solution of (1.16). Moreover, we
recall that P is the orthogonal projection on E. Let C be another positive constant. Then:

1) When E is invariant for (1.16), we have

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0, ||q − Pq||(t) ≤ CC̃M. (1.17)

2) When L is such that

E ⊆ KerL, (1.18)

we have

||q0 − Pq0|| = CM =⇒ ∀t ≥ 0, ||q − Pq0||(t) ≤ CC̃M. (1.19)

This result is useful to have a first understanding of the low Mach number problem. Indeed, let us
consider that L := L + δL where δL is a perturbation (which may depend on M) deduced from the
truncation error of a given numerical scheme applied to (1.14) on a cartesian mesh. Estimate (1.17)
means that Equation (1.16) does not create any acoustic waves of order one in the acoustic subspace E⊥

when ||q0−Pq0|| = O(M) although the discretization introduces an error through δL. Estimate (1.19)
characterizes the fact that the solution q(t,x) of (1.16) remains close at any time to the low Mach
asymptotics Pq0 of the linear wave equation (1.14) when ||q0−Pq0|| = O(M) although the discretization
introduces an error through the perturbation δL in L.

Proof of Theorem 1.1.2: The proof of Point 1 is written in [11] (see Point 2 of Theorem 2.2 in [11]).
Nevertheless, since the proof of Point 2 follows the steps of the proof of Point 1, we reproduce it here
for the sake of convenience.

Point 1: Let us define q̃(t,x) and q(t,x) solutions of (1.16) with the respective initial conditions q̃0 =
Pq0 and q0 = q0 − Pq0. By linearity, we have q = q̃ + q. Moreover

||q − Pq|| = ||q̃ − Pq̃ + q − Pq|| = ||q − Pq||

since E is invariant for (1.16). Then, we have

||q − Pq|| ≤ ||q|| (1.20)
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since (1 − P) is an orthogonal projection. On the other hand, we have ||q|| ≤ C̃||q0|| and ||q0|| =
||q0 − Pq0|| = CM . Thus, we have

||q|| ≤ CC̃M (1.21)

which allows to obtain ||q − Pq|| ≤ CC̃M by using (1.20).

Point 2: Under Condition (1.18), we have q̃ = Pq0. Thus, we have q − Pq0 = q which allows to
obtain ||q − Pq0|| ≤ CC̃M by using (1.21).�

1.1.4 A first definition of an accurate scheme at low Mach number

Estimate (1.19) suggests to write that the solution q(t,x) of (1.16) is accurate at low Mach number
in the incompressible regime of the linear wave equation if and only if the estimate

∀C1 ∈ R+
∗ , ∃C2 ∈ R+

∗ such that ||q0 − Pq0|| = C1M =⇒ ∀t ≥ 0, ||q − Pq0||(t) ≤ C2M (1.22)

is satisfied, C2 being a positive parameter that depends on C1 and that does not depend on M . In
this definition, the ”incompressible regime” means that we consider initial data that are close to the
incompressible space E. Point 2 of Theorem 1.1.2 means that a sufficient condition to be accurate at
low Mach number in the sense of (1.22) is that E ⊆ KerL. Let us underline that when E 6⊆ KerL, we
cannot tell whether the solution q(t,x) is or is not accurate at low Mach number in the sense of (1.22)
since (1.18) is only a sufficient condition. In that case, we have to carefully study the time behaviour
of (1.16) to verify if Estimate (1.22) is or is not satisfied.

In the same way, Estimate (1.17) leads us to say that the solution q(t,x) of (1.16) is free of any
spurious acoustic wave if and only if the estimate

∀C1 ∈ R+
∗ , ∃C2 ∈ R+

∗ such that ||q0 − Pq0|| = C1M =⇒ ∀t ≥ 0, ||q − Pq||(t) ≤ C2M (1.23)

is satisfied. Of course, (1.22) is stronger than (1.23) since for any q and q0, we have ||q−Pq|| ≤ ||q−Pq0||.
Point 1 of Theorem 1.1.2 underlines that the invariance of E in the energy space (L2(T))1+d is a
sufficient condition to avoid spurious acoustic waves in the sense of (1.23). Nevertheless, the invariance
of E is not sufficient to be accurate at low Mach number in the sense of (1.22).

Estimates (1.22) and (1.23) are useful to analyze the accuracy of a given scheme at low Mach
number and, in particular, to propose a low Mach correction for low Mach flows, as we will see it in
§1.1.5 and §1.1.6 in the case of Godunov type schemes. Nevertheless, we will also see in §1.2 that in
the case of Godunov type schemes, we will have to relax (1.22) and (1.23) in order to propose and to
justify an all Mach Godunov type scheme.

1.1.5 A first explanation of the right or wrong behaviour of Godunov type schemes
at low Mach number through the study of discrete kernels

We show in this section that the low Mach number problem can be analyzed as we analyzed in §1.1.3
the low Mach asymptotics in the linear perturbed case (1.16).

For that purpose, let us suppose that the domain Ω included in Rd (d ∈ {1, 2, 3}) is discretized by N
cells Ωi. Let Γij be the common edge or face of two neighboring cells Ωi and Ωj and nij be the
unit vector normal to Γij pointing from Ωi to Ωj . The semi-discrete Godunov scheme applied to the
resolution of the linear wave equation (1.14) is given by

d

dt
ri +

a∗
M
· 1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij | [(ui + uj) · nij + ri − rj ] = 0,

d

dt
ui +

a∗
M
· 1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij | [ri + rj + κ(ui − uj) · nij ] nij = 0

(1.24a)

(1.24b)
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with κ = 1. We introduce the parameter κ in (1.24b) for reasons that will appear in the sequel (let
us note that (1.24) is the Godunov scheme if and only if κ = 1). This scheme can be written in the
compact form 

d

dt
qh +

Lκ,h
M

qh = 0,

qh(t = 0) = q0
h

with qh :=

(
ri
ui

)
(1.25)

where the subscript h recalls that (1.25) comes from a spatial discretization of (1.14) (h is a char-
acteristic length of the mesh). The kernel KerLκ,h of the discrete acoustic operator Lκ,h is given
by

KerLκ,h :=


(
ri
ui

)
∈ RN(1+d) such that

∑
Γij⊂∂Ωi

|Γij | [(ui + uj) · nij + ri − rj ] = 0,

and
∑

Γij⊂∂Ωi

|Γij | [ri + rj + κ(ui − uj) · nij ] nij = 0

 . (1.26)

We have the following result:

Lemma 1.1.2.

KerLκ=1,h =

{
qh :=

(
rh
uh

)
∈ RN(1+d) such that ∃a ∈ R, ∀i : ri = c and (ui − uj) · nij = 0

}
(1.27)

and

KerLκ=0,h =

{
qh :=

(
rh
uh

)
∈ RN(1+d) such that ∃a ∈ R, ∀i : ri = c

and
∑

Γij⊂∂Ωi

|Γij |
ui + uj

2
· nij = 0

 . (1.28)

Moreover, we have

KerLκ=1,h ⊆ KerLκ=0,h. (1.29)

By using Point 2 of Theorem 1.1.2 with Lemma 1.1.2, we obtain a first explanation of the right
or wrong behaviour of Godunov type schemes at low Mach number in 1D, 2D and 3D for different
type of meshes. Indeed, Lemma 1.1.2 shows that KerLκ=1,h – which is the kernel in the case of the
Godunov scheme – may not be a good approximation of E because the continuity of u · n on each
edge Γij of the mesh could be too restrictive for particular meshes (e.g. when the mesh is cartesian).
On the other hand, Lemma 1.1.2 shows also that KerLκ=0,h may be a good approximation of E for
any mesh type because ∑

Γij⊂∂Ωi

|Γij |
ui + uj

2
· nij '

∫
Ωi

∇ · u dx. (1.30)

Thus, by also using (1.29), we can say that at the discrete level, KerLκ=1,h may not satisfy (1.18)
and that KerLκ=0,h may satisfy (1.18). These points are studied in [15] when the mesh is cartesian
or triangular, and it is shown that (see Lemmas 5.1, 5.2 and 5.6 in [15]):

on a 2D triangular mesh: KerLκ=1,h = E∆
h ⊂ KerLκ=0,h,

on a 1D cartesian mesh: KerLκ=1,h = E�
h = KerLκ=0,h,

on a 2D or 3D cartesian mesh: KerLκ=1,h  E�
h = KerLκ=0,h

(1.31a)

(1.31b)

(1.31c)
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where E∆
h and E�

h are ad hoc approximations of E which depend on the type of mesh. We recall the

definitions of E∆
h ,
(
E∆
h

)⊥
, E�

h and
(
E�
h

)⊥
in Annex A. In (1.31b) and (1.31c), we suppose that the

number of cells is odd in each direction. If it is not the case, we have to replace (1.31b) and (1.31c)
by 

on a 1D cartesian mesh: KerLκ=1,h = E�
h ⊂ KerLκ=0,h,

on a 2D or 3D cartesian mesh: KerLκ=1,h  E�
h ⊂ KerLκ=0,h

because of the existence of checkerboard modes in the kernel KerLκ=0,h. By using these relations
between the discrete kernels and the discrete incompressible spaces, and by using the sufficient condi-
tion (1.18), we can say that in the sense of Definition (1.22):

on a 2D triangular mesh: the Godunov scheme (i.e. (1.24) with κ = 1) is accurate at low Mach
number,

on a 1D cartesian mesh: the Godunov scheme (i.e. (1.24) with κ = 1) is accurate at low Mach
number,

on a 2D or 3D cartesian mesh: the modified Godunov scheme obtained with (1.24) and κ = 0 is accurate
at low Mach number.

This leads us to define in §1.1.6 the low Mach Godunov type scheme with (1.24) and κ = 0. On the
other hand, we cannot conclude from (1.31c) anything about the accuracy on a 2D or 3D cartesian
mesh of the Godunov scheme (i.e. (1.24) with κ = 1) in the sense of Definition (1.22) since (1.18) is
only a sufficient condition. However, by studying the short time behaviour of (1.24) when κ = 1, we
proved in [15] (see §5.3.2 in [15]) that

On a 2D or 3D cartesian mesh, the Godunov scheme (i.e. (1.24) with κ = 1) is not accurate

at low Mach number.

Proof of Lemma 1.1.2: The proof uses the fact that for any qh ∈ KerLκ,h defined by (1.26), we
have ∑

Γij

|Γij |
[
(ri − rj)2 + κ [(ui − uj) · nij ]2

]
= 0. (1.32)

This relation was proven in [15] (see (88) in [15]). As a consequence, when κ = 1, we obtain
that ∀i : ri = c and (ui − uj) · nij = 0. Let us now suppose that κ = 0. Thus, when qh ∈
KerLκ=0,h, we only deduce from (1.32) that ∀i : ri = c. And, by injecting ri = c in (1.26), we

find
∑

Γij⊂∂Ωi

|Γij |(ui + uj) · nij = 0. The converse is obtained by using the fact that

∑
Γij⊂∂Ωi

|Γij |nij = 0 (1.33)

and ∑
Γij⊂∂Ωi

|Γij |ui · nij = ui ·
∑

Γij⊂∂Ωi

|Γij |nij = 0 (1.34)

We obtain (1.29) by using again (1.33) and (1.34).�

1.1.6 A low Mach Godunov type scheme in the linear and non-linear case

This approach leads us to modify the Godunov scheme by replacing κ = 1 in (1.24) with κ = 0 to
recover the accuracy at low Mach number. This corresponds to centering the discretization of ∇r in
the acoustic operator.

The non-linear version of the linear scheme (1.24) with κ = 0, applied to the compressible Euler
system (1) or to the barotropic Euler system (2), consists in modifying any X scheme of Godunov
type (e.g. X = Roe [36] or X = VFRoe [5]) in such a way that the discretization of the pressure
gradient ∇p is centered. We named this class of schemes low Mach X schemes in [11]. Low Mach
number numerical test cases validate this approach in [11].
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1.1.7 Numerical results in the linear case with an initial condition q0 ∈ E

We illustrate the influence of the cell geometry on the Godunov scheme applied to the linear wave
equation (see Equation (1.31) of §1.1.5). We consider the 2D domain Ω = [0, 1]2 with periodic
boundary conditions. The initial conditions q0 := (r0,u0)T are given by

r(t = 0, x, y) = 1,

ux(t = 0, x, y) = sin2(πx) sin(2πy),

uy(t = 0, x, y) = − sin(2πx) sin2(πy)

(1.35)

which is periodic on the torus [0, 1]2. Thus, we have q0 ∈ E (that is to say q0 = Pq0) which implies
that

q = q0 (1.36)

is solution of the linear wave equation (1.14). From a numerical point of view, we use periodic boundary

conditions and we project q0 on E�
h (resp. E4h ), which provides the numerical initial condition q0

h: thus,

by construction, we have q0
h = Phq0

h where Ph is the discrete Hodge projection on E�
h (resp. E4h ). We

choose a∗ = 1, M = 10−4 and the final time is t = 10×M = 10−3. In Figure 1.2, we show that (1.36)
is satisfied at the discrete level when we solve the linear wave equation (1.14) with the linear Godunov
scheme (1.24) on a triangular mesh. In Figure 1.3, we show that (1.36) is not satisfied with the linear
Godunov scheme on a cartesian mesh since the solution is extremely diffused over time. On cartesian
meshes, we need to correct the linear Godunov scheme. If we use the linear low Mach Godunov scheme
of §1.1.6 on cartesian meshes, Figure 1.4 shows that (1.36) is satisfied again. From a theoretical point
of view, all these results are explained by the study of the discrete kernel of the spatial operator
associated to the linear Godunov scheme (see (1.31)).

Triangular mesh Legend Initial time Final time:
Godunov scheme

Figure 1.2: Velocity magnitude ‖u‖ obtained at initial time t = 0 and at final time t = 10−3 =
10×M with the linear Godunov scheme on a triangular mesh (700 cells) for an initial incompressible

state q0 ∈ E
4
h and a Mach numberM = 10−4. According to Equation (1.31a), the initial incompressible

state q0 ∈ E
4
h is preserved over time with the linear Godunov scheme on a triangular mesh.

1.1.8 Toward an all Mach Godunov type scheme in the non-linear case

In the sequel of this paper, we modify the non-linear low Mach X scheme defined in §1.1.6 in such a
way that it is identical to the X scheme when the Mach number is greater than one. In other words,
we introduce all Mach Godunov type schemes which are expected to be stable and accurate on both
rectangular and triangular meshes and for any Mach number. For that purpose, we clearly define in
§1.2 what ”accurate” means in the linear case. Then, we construct in §1.3 the all Mach Godunov type
schemes still in the linear case, and we extend it to the non-linear barotropic case in §2.1 and to the
fully compressible case in §3.1.
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Cartesian mesh Legend Initial time Final time:
Godunov scheme

Figure 1.3: Velocity magnitude ‖u‖ obtained at initial time t = 0 and at final time t = 10−3 = 10×M
with the linear Godunov scheme on a cartesian mesh (30 × 30 cells with ∆x = ∆y = 0.33) for an
initial incompressible state q0 ∈ E�

h and a Mach number M = 10−4. According to Equation (1.31c),
the initial condition q0 ∈ E�

h is not preserved over time with the linear Godunov scheme on a cartesian
mesh. The solution is extremely diffused over time.

Cartesian mesh Legend Initial time Final time:
low Mach Godunov scheme

Figure 1.4: Velocity magnitude ‖u‖ obtained at initial time t = 0 and at final time t = 10−3 = 10×M
with the linear low Mach Godunov scheme on a cartesian mesh (30×30 cells with ∆x = ∆y = 0.33) for
an initial condition q0 ∈ E�

h and a Mach number M = 10−4. According to Equation (1.31c), the initial
condition q0 ∈ E�

h is preserved over time with the linear low Mach Godunov scheme on a cartesian
mesh. The linear low Mach Godunov scheme allows to preserve q0 ∈ E�

h on cartesian meshes.
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1.2 Definition of an accurate scheme at low Mach number in the
linear case

Estimate (1.22) is suggested by Estimate (1.15) of Corollary 1.1.1 which concerns the linearization (1.8)
of the barotropic Euler System (1.5) with H := 0. But, when H 6= 0, Estimate (1.15) cannot be
satisfied by the solution q(t,x) of (1.8) and has to be replaced by Estimate (1.12) of Proposition 1.1.1.
Nevertheless, we have the following result:

Lemma 1.2.1. Let q(t,x) be solution of ∂tq +Hq +
L

M
q = 0,

q(t = 0,x) = q0(x)

(1.37)

with q0 ∈ L2(T)× (C1(T))d. Then, we have

∀(C1, C2) ∈
(
R+
∗
)2
, ∃C3 ∈ R+

∗ such that ||q0 − Pq0|| = C1M

=⇒ ∀t ∈ [0, C2M ], ||q − Pq0||(t) ≤ C3M, (1.38)

C3 being a positive parameter that depends on (C1, C2) and that does not depend on M .

As a consequence, the important point is to verify if Estimate (1.22) is or is not satisfied only for short
times. Thus, we relax (1.22) and we propose the following definition:

Definition 1. The solution q(t,x) of  ∂tq +
L
M
q = 0,

q(t = 0) = q0
(1.39)

is said to be accurate at low Mach number for short times in the incompressible regime of the linear
wave equation if and only if the estimate

∀(C1, C2) ∈
(
R+
∗
)2
, ∃C3 ∈ R+

∗ such that ||q0 − Pq0|| = C1M

=⇒ ∀t ∈ [0, C2M ], ||q − Pq0||(t) ≤ C3M (1.40)

is satisfied, C3 being a positive parameter that depends on (C1, C2) and that does not depend on M .

A second reason that justifies the study of ||q − Pq0||(t) for short times and not for long times is
that the boundary conditions may have an important influence on the behaviour of ||q − Pq0||(t) for
long times. For example, ||q − Pq0||(t) may be small for short times and large for long times with
periodic boundary conditions although ||q−Pq0||(t) could remain small for any time with transparent
boundary conditions when it is small for short times. Let us recall that we impose in this paper
periodic boundary conditions.

Thus, we will construct in the sequel a numerical scheme for which the solution of the associated first
order modified equation is accurate at low Mach number in the sense of (1.40) but not in the sense
of (1.22).

Let us note that we can keep (1.23) for the spurious acoustic waves when H 6= 0 because of
Estimate (1.13) of Proposition 1.1.1. Nevertheless, when a solution q(t,x) is accurate at low Mach
number in the sense of Definition 1, we are sure that this solution is free of any spurious acoustic wave
in short time (this is a consequence of the fact that for any q and q0, we have ||q− Pq|| ≤ ||q− Pq0||);
but we can say nothing a priori in long time. Thus, we also relax (1.23) with:
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Fig. 1.5(a) Fig. 1.5(b) Fig. 1.5(c)
(1.40) and (1.42) are verified (1.40) is not verified, (1.42) is verified (1.40) and (1.42) are not verified

Figure 1.5: Explanation of the low Mach problem: different behaviours based on Definitions 1 and 2.

Definition 2. The solution q(t,x) of  ∂tq +
L
M
q = 0,

q(t = 0) = q0
(1.41)

is said to be free of any spurious acoustic wave for short times if and only if the estimate

∀(C1, C2) ∈
(
R+
∗
)2
, ∃C3 ∈ R+

∗ such that ||q0 − Pq0|| = C1M

=⇒ ∀t ∈ [0, C2M ], ||q − Pq||(t) ≤ C3M (1.42)

is satisfied, C3 being a positive parameter that depends on (C1, C2) and that does not depend on M .

Figure 1.5 describes three different behaviours based on Definitions 1 and 2: Figure 1.5(a) describes
a solution q(t,x) which is accurate at low Mach number; Figure 1.5(b) describes a solution q(t,x) which
is not accurate at low Mach number but which is free of any spurious acoustic wave; Figure 1.5(c)
describes a solution q(t,x) which is not accurate at low Mach number and which is not free of spurious
acoustic waves. The numerical results proposed in §1.3.3 will be coherent with Figure 1.5.

Proof of Lemma 1.2.1: We have

||q − Pq0||(t) ≤
∣∣∣∣q − Tu∗,t (Pq0

)∣∣∣∣ (t) +
∣∣∣∣Tu∗,t (Pq0

)
− Pq0

∣∣∣∣ (t)
where Tu∗,t is the application defined by (Tu∗,tf)(x) = f(x − u∗t). Thus, by using (1.12), we obtain
that

||q0 − Pq0|| = C1M =⇒ ∀t ≥ 0 : ||q − Pq0||(t) ≤ C1M +
∣∣∣∣Tu∗,t (Pq0

)
− Pq0

∣∣∣∣ (t).
On the other hand, for any q := (r,u)T ∈ E, we have (since r is a constant in space):

||Tu∗,tq − q||2 (t) =

∫
T
|u(x− u∗t)− u(x)|2dx.

But, for any u ∈
(
C1(T)

)d
, we have

|u(x− u∗t)− u(x)| ≤ |u∗|tmax
T
|∇u|

with |∇u|2 :=
d∑

k=1

|∇uk|2 where u := (u1, . . . , ud)
T , d is the spatial dimension and | · | is the euclidian

norm in Rd. Thus

∀t ∈ [0, C2M ] : ||Tu∗,tq − q|| (t) ≤ C2M |u∗|max
T
|∇u| · |T|
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with |T| :=
∫
T dx. This allows to write that

∀t ∈ [0, C2M ] :
∣∣∣∣Tu∗,t (Pq0

)
− Pq0

∣∣∣∣ (t) ≤ C2M |u∗|max
T
|∇u0| · |T|

where Pq0 = (r0,u0)T , which gives the result with

C3 = C1 + C2|u∗|max
T
|∇u0| · |T|.

�

1.3 Construction and justification of an all Mach Godunov scheme
in the linear case

In this section, we construct a modified Godunov type scheme which is asymptotically identical to
the linear low Mach Godunov scheme (see (1.24) with κ = 0) when M � 1 and which is identical to
the linear Godunov scheme (see (1.24) with κ = 1) when M = O(1). We justify this construction by
using the tools introduced in §1.1. We name this linear scheme all Mach Godunov scheme.

The non-linear versions of this linear all Mach Godunov scheme will be directly obtained in §2.1 and
§3.1 from the linear approach proposed below.

1.3.1 The case of the linear wave equation on a cartesian mesh

This subsection is devoted to the cartesian case. This case is interesting because it allows to propose an
all Mach Godunov type scheme through a simple study of the first order modified equation associated
with the Godunov scheme (1.24)κ=1 applied to the linear wave equation (1.14).

Let us define the 2D system  ∂tq +
Lν
M
q = 0,

q(t = 0,x) = q0(x)

(1.43)

with x := (x, y), q := (r,u)T , u := (ux, uy)
T and

Lν = L−MBν with Bνq =


νr∆r

νux
∂2ux
∂x2

νuy
∂2uy
∂y2

 (1.44)

where
ν := (νr, νu) ∈ (R+)3 and νu := (νux , νuy) ∈ (R+)2.

Thus, (1.43) is a perturbed wave equation whose perturbation is given by δLν = −MBν . In the 2D
cartesian case (the 3D cartesian case is similar) [11], the first order modified equation of the Godunov
scheme (1.24)κ=1 applied to the linear wave equation (1.14) is given by (1.43)(1.44) with ν = νG where

νG := (νGr , ν
G
u ) and νGr := a∗

∆x

2M
, νGu := a∗

∆x

2M
(1, 1)

(∆x is the mesh size supposed to be identical in the directions x and y for the sake of simplicity). We
prove that (see Lemma 4.3 in [11]):

Lemma 1.3.1.
1) In 1D with νr ≥ 0, νux ≥ 0:

KerLν = E.
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2) In 2D with νr ≥ 0, νux = νuy = 0:
KerLν = E.

3) In 2D with νr ≥ 0, νux > 0 and νuy > 0:

KerLν =

{
q :=

(
r
u

)
∈ (L2(T))3 such that ∃c ∈ R : r = c and ∂xux = ∂yuy = 0

}
 E.

(1.45)

The extension of Lemma 1.3.1 to the 3D case is straightforward.

We deduce from Point 2 of Theorem 1.1.2 and from Point 3 of Lemma 1.3.1 that the solution q(t,x)
of (1.43)(1.44) may not be accurate at low Mach number in the incompressible regime as soon as
the spatial dimension is 2D (or 3D) and νu is not equal to zero. Indeed, in that case, we do not
have E ⊆ KerLν (see (1.18)). However, the situation is more involved since E ⊆ KerLν is only a
sufficient condition: as a consequence, the knowledge of KerLν is not sufficient to have a correct
understanding of the low Mach behaviour of the Godunov scheme and of any modified Godunov
scheme obtained by modifying the numerical viscosity νG. Moreover, for a particular choice of νu,
we may expect that the short time estimate (1.40) is satisfied even if the long time estimate (1.22) is
not satisfied. In that case, the solution q(t,x) would be accurate at low Mach number in the sense of
Definition 1.

This is illustrated by the following result:

Theorem 1.3.1. Let q(t,x) be the solution of the 2D equation (1.43)(1.44). Then, for any νr ≥ 0:

1) When νu = νGu , for almost all function q0 ∈ (L2(T))3, q(t,x) verifies

∀C1 ∈ R+
∗ , ∃(C2, C3) : ||q0 − Pq0|| = C1M =⇒ ∀t ≥ C2M, ||q − Pq0||(t) ≥ C3∆x (1.46)

as soon as M ≤ C3

C1
∆x, C2 and C3 being positive parameters that respectively depend on T and (T, q0),

and that do not depend on M and ∆x.

2) When νu = νGu and ∆x = C0M , for any q0 ∈ (H2(T))3, q(t,x) verifies

∀(C0, C1, C2) ∈
(
R+
∗
)3
, ∃C3 : ||q0 − Pq0|| = C1M =⇒ ∀t ∈ [0, C2M ], ||q − Pq0||(t) ≤ C3M,

(1.47)

C3 being a positive parameter that depends on (T, q0, C0, C1, C2) and that does not depend on M .
Moreover, C3 goes to C1 when C0 goes to zero.

3) When νu = MνGu , for any q0 ∈ (H2(T))3, q(t,x) verifies

∀(C1, C2) ∈
(
R+
∗
)2
, ∃C3 : ||q0 − Pq0|| = C1M =⇒ ∀t ∈ [0, C2M ], ||q − Pq0||(t) ≤ C3M,

(1.48)

C3 being a positive parameter that depends on (T, q0, C1, C2,∆x) and that does not depend on M .

Again, we easily extend this result to the 3D case. This result shows that the short time behaviours
of (1.43)(1.44) with ν = (νr, ν

G
u ) and with ν = (νr,MνGu ) are different although the kernels of L(νr,νGu )

and of L(νr,MνGu ) are identical (see Point 3 of Lemma 1.3.1). This is an illustration of the fact that
Condition (1.18) is only a sufficient condition to be accurate at low Mach number in the sense of
Definition 1.

More precisely:
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• Point 1 of Theorem 1.3.1 and its 3D version show that when the mesh is cartesian, for almost
all q0 ∈ (L2(T))1+d, the Godunov scheme in 2D/3D is not accurate at low Mach number in the
sense of Definition 1 when M � ∆x.

Let us note that we do not prove that the solution q(t,x) of (1.43)(1.44) is not accurate at low
Mach number by producing in short time spurious acoustic waves (see Definition 2 for the notion
of spurious acoustic wave). In other words, we prove that the short time behaviour of q(t,x)
is characterized by Figure 1.5(b) but we do not prove that it is characterized by Figure 1.5(c).
Numerical results proposed in §1.3.3 show that there exist initial conditions q0 such that spurious
acoustic waves are not created in short time – which corresponds to Figure 1.5(b) – and such
that spurious acoustic waves are created in short time – which corresponds to Figure 1.5(c).

• Point 2 of Theorem 1.3.1 and its 3D version show that when the mesh is cartesian, for any q0 ∈
(H2(T))1+d, the Godunov scheme in 2D/3D is accurate at low Mach number in the sense of
Definition 1 when ∆x = O(M) or when ∆x�M , which is too expensive from a computational
point of view.

• Point 3 of Theorem 1.3.1 and its 3D version show that when the mesh is cartesian, for any q0 ∈
(H2(T))1+d, the modified Godunov scheme obtained by replacing νGu with MνGu is accurate at
low Mach number in the sense of Definition 1 even when M � ∆x. Thus, this scheme is also
free of any spurious acoustic waves in the sense of Definition 2. This result is central in our way
to construct an all Mach Godunov scheme. At last, we underline that all the results proposed
in Theorem 1.3.1 are valid as soon as νr ≥ 0, that is to say not only when νr = νGr .

Proof of Theorem 1.3.1: Let q1(t) be the solution of ∂tq1 +
Lν
M
q1 = 0,

q1(t = 0,x) = (q0 − Pq0)(x)

(1.49)

and q2(t) be the solution of  ∂tq2 +
Lν
M
q2 = 0,

q2(t = 0,x) = Pq0(x)

(1.50)

where Lν is defined with (1.44). By linearity, the solution q(t,x) of (1.43)(1.44) satisfies

q(t,x) = q1(t,x) + q2(t,x).

Since ||q − Pq0||(t) = ||q1 + q2 − Pq0||(t), we have

∀t ≥ 0 : ||q − Pq0||(t) ≥
∣∣||q2 − Pq0||(t)− ||q1||(t)

∣∣ (1.51)

and

∀t ≥ 0 : ||q − Pq0||(t) ≤ ||q1||(t) + ||q2 − Pq0||(t). (1.52)

Moreover, since (1.49) is a dissipative equation when νr ≥ 0, νux ≥ 0 and νuy ≥ 0 (see Lemma 4.1
in [11]), we obtain ||q1||(t) ≤ ||q0 − Pq0|| which implies that

∀t ≥ 0 : ||q1||(t) ≤ C1M (1.53)

since ||q0−Pq0|| = C1M . We will use below (1.51), (1.52) and (1.53) to prove (1.46), (1.47) and (1.48).
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Proof of Point 1:

Let us define the orthogonal projection Pν on KerLν (Pν = P if and only if νr ≥ 0 and νux = νuy = 0;
in particular, Pν 6= P when ν = νG). In [15], we prove that

∀t ≥ MLT
a∗

: ||q2 − Pq0||(t) ≥ ∆x

3LT
||Pq0 − PνPq0||

where LT is a constant which only depends on T (see Estimate (50) of Corollary 4.1 in [15]). Hence

∀t ≥ C2M : ||q2 − Pq0||(t) ≥ C∆x (1.54)

with C2 =
LT
a∗

and C =
||Pq0 − PνPq0||

3LT
. In the sequel, we suppose that C is non-zero, which is the

case for almost all function q0 ∈ (L2(T))3. Using (1.51), (1.53) and (1.54), we obtain

∀t ≥ C2M : ||q − Pq0||(t) ≥ C∆x− C1M. (1.55)

Let us now consider any M such that

C1M ≤ C3∆x with C3 =
C

2
. (1.56)

We deduce from (1.55) and (1.56) that

∀t ≥ C2M : ||q − Pq0||(t) ≥ C3∆x

for any M ≤ C3
C1

∆x, which allows to obtain (1.46).

Proof of Points 2 and 3:

Since LP = 0, we deduce from (1.50) that

∂t(q2 − Pq0) +
L

M
(q2 − Pq0) = Bν(q2 − Pq0) +BνPq0. (1.57)

Then, by multiplying (1.57) with q2 − Pq0 and by integrating, we obtain

1

2
· d
dt
||q2 − Pq0||2(t) = 〈q2 − Pq0, Bν(q2 − Pq0)〉+ 〈q2 − Pq0, BνPq0〉

since 〈q2 − Pq0, L(q2 − Pq0)〉 = 0. And since{
〈q2 − Pq0, Bν(q2 − Pq0)〉 ≤ 0,

〈q2 − Pq0, BνPq0〉 ≤ ||q2 − Pq0|| · ||BνPq0||,

we can write that

d

dt
||q2 − Pq0||(t) ≤ ||BνPq0|| ≤ max(|νux |, |νuy |) · ||Pq0||H2

by using the definition of Bν in (1.44), which gives

∀t ∈ [0, C2M ] : ||q2 − Pq0||(t) ≤ C2M ·max(|νux |, |νuy |) · ||Pq0||H2

since ||q2 − Pq0||(0) = 0, that is to say

∀t ∈ [0, C2M ] : ||q − Pq0||(t) ≤
(
C1 + C2 max(|νux |, |νuy |) · ||Pq0||H2

)
M (1.58)

by using (1.52) and (1.53).
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Let us now suppose that νu = νGu . In that case, we have max(|νux |, |νuy |) =
a∗∆x

2M
which implies

that (1.58) is given by

∀t ∈ [0, C2M ] : ||q − Pq0||(t) ≤
(
C1 +

C2a∗∆x

2M
||Pq0||H2

)
M

which allows to obtain (1.47) with C3 = C1 +
C0C2a∗

2
||Pq0||H2 when ∆x = C0M .

We now suppose that νu = MνGu . In that case, (1.58) is given by

∀t ∈ [0, C2M ] : ||q − Pq0||(t) ≤
(
C1 +

C2a∗∆x

2
||Pq0||H2

)
M

which allows to obtain (1.48) with C3 = C1 +
C2a∗∆x

2
||Pq0||H2 .�

1.3.2 The case of the linear wave equation on any mesh type

In order to recover accuracy at low Mach number, Points 1 and 3 of Theorem 1.3.1 lead us to modify
the Godunov scheme (1.24)κ=1 applied to the linear wave equation ∂tq +

L

M
q = 0,

q(t = 0,x) = q0(x)

(1.59)

by replacing κ = 1 (which is equivalent to νu = νGu ) with κ = M (which is equivalent to νu = MνGu )
in (1.24). Thus, we propose the all Mach Godunov scheme

d

dt
ri +

a∗
M
· 1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij | [(ui + uj) · nij + ri − rj ] = 0,

d

dt
ui +

a∗
M
· 1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij | [ri + rj + θ(M)(ui − uj) · nij ] nij = 0
(1.60)

with
θ(M) = min(M, 1) (1.61)

which also allows to recover the Godunov scheme (1.24)κ=1 when the Mach number is greater than
one.

The all Mach Godunov scheme (1.60) may be rewritten as

d

dt

(
r
u

)
i

+
1

|Ωi|
∑

Γij⊂∂Ωi

|Γij |ΦAM,Godunov
ij = 0 (1.62)

with the two following expressions for the numerical flux ΦAM,Godunov
ij which are equivalent in this

linear case1:

• First expression:

ΦAM,Godunov
ij = ΦGodunov

ij + [θ(M)− 1]
a∗

2M

(
0

[(ui − uj) · nij ]nij

)
(1.63)

where ΦGodunov
ij is the unmodified Godunov flux (ΦGodunov

ij is easily deduced from (1.24)κ=1) and
where θ(M) is defined by (1.61). Thus, the simple corrective flux

[θ(M)− 1]
a∗

2M

(
0

[(ui − uj) · nij ]nij

)
(1.64)

1The notation AM in Φ
AM,Godunov
ij means that this flux defines an All Mach scheme.
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defines an all Mach correction which is equal to zero when the Mach number is greater than one. This
all Mach correction introduces numerical anti-diffusion since θ(M)− 1 ≤ 0. At last, we can note that
the linear all Mach Godunov scheme (1.62)(1.63) may be seen as the Godunov scheme plus a pressure

correction since the correction [θ(M)−1]
a∗

2M
[(ui−uj) ·nij ]nij in (1.64) is homogeneous to a pressure.

• Second expression: The flux (1.63) is equivalent to

ΦAM,Godunov
ij =

a∗
M

(
(u · n)∗

r∗∗n

)
ij

with r∗∗ij = θ(M)r∗ij + [1− θ(M)]
ri + rj

2
(1.65)

where (r∗, (u · n)∗) is solution of the 1D linear Riemann problem in the nij direction



∂tqζ +
Lζ
M
qζ = 0,

ζ < 0 : qζ(t = 0, ζ) =

(
ri

ui · nij

)
,

ζ ≥ 0 : qζ(t = 0, ζ) =

(
rj

uj · nij

) (1.66)

with qζ :=

(
r
uζ

)
and Lζqζ := a∗∂ζ

(
uζ
r

)
, ζ being the coordinate in the nij direction. This gives


r∗ij =

ri + rj
2

+
(ui − uj) · nij

2
,

(u · n)∗ij =
(ui + uj) · nij

2
+
ri − rj

2
.

The linear all Mach Godunov scheme (1.62)(1.63) – which is equivalent to (1.62)(1.65)2 – may be seen
as a Godunov type scheme whose Riemann solver is corrected to be accurate at low Mach number.

1.3.3 Numerical results on a 2D cartesian mesh

Firstly, we justify the linear all Mach Godunov scheme (1.61)(1.62)(1.63) on cartesian meshes by
testing it with the initial condition q0

h ∈ E�
h used in §1.1.7. The results are presented in Figure 1.6

and can be compared to the one obtained with the linear Godunov scheme (see Figure 1.3) which is
defined with (1.62)(1.63) where θ(M) := 1. Even if q0

h ∈ E�
h is not exactly preserved over time when

we solve the linear wave equation (1.14) with the linear all Mach Godunov scheme on a cartesian mesh
(because of (1.31c)), the results are better with the linear all Mach Godunov scheme since the initial
condition seems to be preserved over time.

Secondly, we justify Points 1 and 3 of Theorem 1.3.1 and the linear all Mach Godunov scheme
with numerical results obtained on a 2D cartesian mesh by studying the error ‖qh−Phq0

h‖(t) obtained
with the linear Godunov scheme and with the linear all Mach Godunov scheme. For that purpose,
we modify a little bit the initial condition of §1.1.7 by adding an orthogonal component of the order
of M . This means that we can write the initial condition q0

h as q0
h = q0

h,1 + M q0
h,2 where q0

h,1 ∈ E�
h

2The non-linear versions of (1.62)(1.63) and (1.62)(1.65) are not equivalent: see §2.1 and §3.1.
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Cartesian mesh Legend Initial time Final time:
all Mach Godunov scheme

Figure 1.6: Velocity magnitude ‖u‖ obtained at initial time t = 0 and at final time t = 10−3 = 10×M
with the linear all Mach Godunov scheme on a cartesian mesh (30 × 30 cells with ∆x = ∆y = 0.33)
for an initial condition q0 ∈ E�

h (see Equation (1.35)) and a Mach number M = 10−4. The linear all
Mach Godunov scheme gives better results than those obtained with the linear Godunov scheme (see
Figure 1.3).

and q0
h,2 ∈

(
E�
h

)⊥
with ‖q0

h,2‖ = 1. This initial condition is given by



r(t = 0, x, y) = 1 + 0 ,

ux(t = 0, x, y) = sin2(πx) sin(2πy) + M
cos(2πx) cos(2πy)

‖(0, cos(2πx) cos(2πy),− sin(2πx) sin(2πy))‖ ,

uy(t = 0, x, y) = − sin(2πx) sin2(πy) + M
− sin(2πx) sin(2πy)

‖(0, cos(2πx) cos(2πy),− sin(2πx) sin(2πy))‖ .

(1.67)

Moreover, we consider a coarse cartesian mesh (30 × 30 cartesian mesh with ∆x = ∆y = 0.033) and
a small Mach number M = 10−4. In Figure 1.7, we plot the error ‖qh − Phq0

h‖(t) generated with each
scheme as a function of time. The linear Godunov scheme is not accurate at low Mach number in
the sense of Defintion 1 (see Point 1 of Theorem 1.3.1). Indeed, with the linear Godunov scheme,
the norm of the deviation ‖qh − Pq0

h‖(t) is greater than ∆x = ∆y = 0.033 for times of the order
of M = 10−4. However, the linear all Mach Godunov scheme is accurate at low Mach number (see
Point 3 of Theorem 1.3.1) since the norm of the deviation ‖qh−Pq0

h‖(t) remains of the order of M for
times of the order of M = 10−4: this is exactly the configuration of Figure 1.5(a). In Figure 1.7, we
also represent ‖qh − Pq0

h‖(t) obtained with the linear all Mach Godunov scheme until an asymptotic
state is reached. This point justifies Definition 1 which only considers the short time behaviour on
which the linear all Mach Godunov scheme is accurate although its long time behaviour is the same as
the one of the linear Godunov scheme in a periodic domain. Figure 1.8 represents ‖qh−Pqh‖(t) = ‖q⊥h ‖
for 0 ≤ t/M ≤ 10 with M = 10−4 where q⊥h is the projection of qh in (E�

h )⊥. Here, the important point
is that the Godunov scheme is such that the energy ‖qh−Pqh‖(t) = ‖q⊥h ‖(t) of the acoustic part of the
solution remains of the order of M on a time scale of order M although ‖qh−Pq0

h‖(t) is of order one (see
Figure 1.7). In this particular case, the Godunov scheme is not accurate at low Mach number in the
sense of Definition 1 (see Figure 1.7) but is free of spurious acoustic waves in the sense of Definition 2.
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Figure 1.7: Norm of the deviation ‖qh−Pq0
h‖(t) as a function of time for M = 10−4 (0 ≤ t/M ≤ 10 for

the top pictures and 0 ≤ t/M ≤ 105 for the bottom picture) obtained with an initial condition q0 = q0
1+

Mq0
2 ∈ E�

h+
(
E�
h

)⊥
(see Equation (1.67)) on a 30×30 cartesian mesh. The scales are not the same for all

figures. The linear Godunov scheme is not accurate at low Mach number (see Point 1 of Theorem 1.3.1)
since the norm of the deviation ‖qh−Pq0

h‖(t) (top left picture) is much greater than ∆x = ∆y = 0.033
for times of the order of M = 10−4. The linear all Mach Godunov scheme is accurate at low Mach
number (see Point 3 of Theorem 1.3.1) since the norm of the deviation ‖qh−Pq0

h‖(t) (top right picture)
remains of the order of M for times of the order of M = 10−4: this is exactly the configuration of
Figure 1.5(a). The bottom picture represents ‖qh−Pq0

h‖(t) obtained with the linear all Mach Godunov
scheme until an asymptotic state is reached. This point justifies Definition 1 which only considers
the short time behaviour. Indeed, the long time behaviours of the linear Godunov scheme and of the
linear all Mach Godunov scheme are the same in a periodic domain.
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This is exactly the configuration of Figure 1.5(b). This particular result is due to the form of the
incompressible part q0

h,1 = Pq0
h of the initial condition (1.67) which satisfies ∂xxxu

0
x,1 + ∂yyyu

0
y,1 = 0.

Indeed, setting Du := ∂xxxux + ∂yyyuy, it may be proved by simple algebraic manipulations that
when νux = νuy =: ν, the triplet (r,∇ · u,Du) solves the following equations:

∂tr +
a∗
M
∇ · u− νr∆r = 0,

∂t(∇ · u) +
a∗
M

∆r − νDu = 0,

∂t(Du) +
a∗
M

(∂xxxx + ∂yyyy)r + ν∂xxyy(∇ · u)− ν∆(Du) = 0,

so that when starting from an initial condition such that r0 = 1, ∇ · u0 = 0 and Du0 = 0, the
solution (r,u) remains in the incompressible space E. And thus the initial incompressible part of the

solution q0
1 does not transfer energy from the incompressible space E�

h to the acoustic space
(
E�
h

)⊥
.

Let us note that in the case of the initial condition (1.67), we can also verify this result by computing
the exact solution u1(t). Indeed, (1.67) implies that

u0
1,x = sin2(πx) sin(2πy) =

1

2
sin(2πy)− 1

2
cos(2πx) sin(2πy),

u0
1,y = − sin2(πy) sin(2πx) = −1

2
sin(2πx) +

1

2
cos(2πy) sin(2πx),

and it can be checked that (1, 1
2 sin(2πy),−1

2 sin(2πx))T is in the kernel of the perturbed wave operator,
and that (0,− cos(2πx) sin(2πy), cos(2πy) sin(2πx))T is an eigenvector of the perturbed wave operator
when νux = νuy =: ν, associated to the eigenvalue 4π2ν. Thus, the initial condition (1.67) gives rise
to

u1,x(t) =
1

2
sin(2πy)− 1

2
cos(2πx) sin(2πy) exp(−4π2νt),

u1,y(t) = −1

2
sin(2πx) +

1

2
cos(2πy) sin(2πx) exp(−4π2νt).

As a consequence, the solution is free of spurious acoustic waves in the sense of Definition 2 although
it is inaccurate at low Mach number in the sense of Definition 1 when ν = νG.
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Figure 1.8: Norm of the acoustic wave ‖qh−Pqh‖(t) = ‖q⊥h ‖(t) as a function of time for 0 ≤ t/M ≤ 10

with M = 10−4 obtained with an initial condition q0 = q0
1 +M q0

2 ∈ E�
h +

(
E�
h

)⊥
(see Equation (1.67))

on a 30 × 30 cartesian mesh (∆x = ∆y = 0.033). The linear Godunov scheme does not produce

spurious acoustic waves in
(
E�
h

)⊥
since ‖qh − Pqh‖(t) = ‖q⊥h ‖(t) remains of the order of M for times

of order M = 10−4. This is due to the fact that the initial incompressible part q0
h,1 = Pq0

h of the

initial condition satisfies ∂xxxu
0
x,1 + ∂yyyu

0
y,1 = 0. In this particular case, the linear Godunov scheme

is not accurate at low Mach number in the sense of Definition 1 (see Figure 1.7) but is free of spurious
acoustic waves in the sense of Definition 2: this is exactly the configuration of Figure 1.5(b).
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To better understand the behaviour of the Godunov scheme and of the all Mach Godunov scheme
in the general case, we modify the incompressible part q0

h,1 = Pq0
h of the initial condition (1.67) such

that q0
h,1 does not satisfy ∂xxxu

0
x,1 + ∂yyyu

0
y,1 = 0. This new initial condition is given by

r(t = 0, x, y) = 1 + 0 ,

ux(t = 0, x, y) = 2 sin2(πx) sin(4πy) + M
cos(2πx) cos(2πy)

‖(0, cos(2πx) cos(2πy),− sin(2πx) sin(2πy))‖ ,

uy(t = 0, x, y) = − sin(2πx) sin2(2πy) + M
− sin(2πx) sin(2πy)

‖(0, cos(2πx) cos(2πy),− sin(2πx) sin(2πy))‖ .

(1.68)

The conclusion of Figure 1.9 is the same as the one of Figure 1.7: the all Mach Godunov scheme is
accurate at low Mach number and the Godunov scheme is not accurate at low Mach number in the
sense of Definition 1. However, if we focus on ‖qh − Pqh‖(t) = ‖q⊥h ‖(t) (see Figure 1.10), we see that
the energy ‖qh − Pqh‖(t) = ‖q⊥h ‖(t) of the acoustic part of the solution grows up to values of the
order of ∆x = 0.033 on a time scale of order M . Thus, by transfering energy from the incompressible

space E�
h to the acoustic space

(
E�
h

)⊥
, the Godunov scheme is no longer free of spurious acoustic waves

in
(
E�
h

)⊥
: this is exactly the configuration of Figure 1.5(c). However, the linear all Mach Godunov

scheme is free of spurious acoustic waves in the sense of Definition 2 since ‖qh − Pqh‖(t) = ‖q⊥h ‖(t)
remains of the order of M for times of the order of M = 10−4.

Thirdly, we justify Point 2 of Theorem 1.3.1. Figure 1.11 shows that the Godunov scheme is
accurate at low Mach number if we take a mesh such that ∆x = ∆y � M . For this illustration, we
consider a finer cartesian mesh (100 × 100 cartesian mesh with ∆x = ∆y = 0.01) and a larger Mach
number M = 10−1. The norms of the deviations from the initial condition ‖qh−Pq0

h‖(t) obtained with
the Godunov scheme and the all Mach Godunov scheme remain of the order of M for times of the
order of M = 10−1. This property is no more satisfied for long times. We note that this computation
can be done because the Mach number is not so small (M = 10−1). Indeed, the computation cannot
be done on a classical computer for a mesh satisfying ∆x = ∆y � M if M = 10−4. This remark
also justifies the all Mach Godunov scheme because of the numerical cost of the Godunov scheme on
cartesian meshes such that ∆x = ∆y �M for small Mach number M .
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Figure 1.9: Norm of the deviation ‖qh−Pq0
h‖(t) as a function of time for M = 10−4 (0 ≤ t/M ≤ 10 for

the top pictures and 0 ≤ t/M ≤ 105 for the bottom picture) obtained with an initial condition q0 = q0
1+

Mq0
2 ∈ E�

h+
(
E�
h

)⊥
(see Equation (1.68)) on a 30×30 cartesian mesh. The scales are not the same for all

figures. The linear Godunov scheme is not accurate at low Mach number (see Point 1 of Theorem 1.3.1)
since the norm of the deviation ‖qh−Pq0

h‖(t) (top left picture) is much greater than ∆x = ∆y = 0.033
for times of the order of M = 10−4. The linear all Mach Godunov scheme is accurate at low Mach
number (see Point 3 of Theorem 1.3.1) since the norm of the deviation ‖qh−Pq0

h‖(t) (top right picture)
remains of the order of M for times of the order of M = 10−4: this is exactly the configuration of
Figure 1.5(a). The bottom picture represents ‖qh−Pq0

h‖(t) obtained with the linear all Mach Godunov
scheme until an asymptotic state is reached. This point justifies Definition 1 which only considers
the short time behaviour. Indeed, the long time behaviours of the linear Godunov scheme and of the
linear all Mach Godunov scheme are the same in a periodic domain.
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Figure 1.10: Norm of the spurious acoustic wave ‖qh − Pqh‖(t) = ‖q⊥h ‖(t) as a function of time

for 0 ≤ t/M ≤ 10 with M = 10−4 obtained with an initial condition q0 = q0
1 + M q0

2 ∈ E�
h +

(
E�
h

)⊥
(see Equation (1.68)) on a 30 × 30 cartesian mesh (∆x = ∆y = 0.033). The linear Godunov scheme

produces spurious acoustic waves in
(
E�
h

)⊥
since the energy ‖qh − Pqh‖(t) = ‖q⊥h ‖(t) of the acoustic

part of the solution grows up to values of the order of ∆x on a time scale of order M : this is exactly
the configuration of Figure 1.5(c). The linear all Mach Godunov scheme is free of spurious acoustic
waves in the sense of Definition 2 since ‖qh − Pqh‖(t) = ‖q⊥h ‖(t) remains of the order of M for times
of order M = 10−4.
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Figure 1.11: Norm of the deviation ‖qh−Pq0
h‖(t) as a function of time for 0 ≤ t/M ≤ 10 and M = 10−1

obtained with an initial condition q0 = q0
1 +M q0

2 ∈ E�
h +

(
E�
h

)⊥
(see Equation (1.68)) on a 100× 100

cartesian mesh. The Godunov scheme and the all Mach Godunov scheme are accurate at low Mach
number on fine cartesian meshes (∆x = ∆y = M/10) (see Point 2 of Theorem 1.3.1). Indeed, the
norms of the deviations ‖qh − Pq0

h‖(t) obtained with the Godunov scheme and with the all Mach
Godunov scheme remain of the order of M for times of the order M = 10−1. This property is no
more satisfied for long times. Moreover, the all Mach Godunov scheme is more accurate at low Mach
number than the Godunov scheme.



Chapter 2

The non-linear barotropic case

This second chapter can be read without reading Chapter 1.

Godunov type schemes are known to be inacurrate at low Mach number (the Mach number will
be denoted in what follows by M): their solutions do not reproduce the correct asymptotic behaviour
of flows when M → 0. This is known as, and will be called here, the low Mach number problem. In
Chapter 1, we analyzed this issue on the simple linear wave equation ∂tq +

L

M
q = 0,

q(t = 0,x) = q0(x)

(2.1)

with q = (r,u)T and Lq = a∗(∇ · u,∇r)T where a∗ = Cst such that O(a∗) = 1 (the notation O(f)
means of the order of f), where u is the flow velocity and r is a rescaled pressure, and we proposed
a correction to the Godunov scheme that allows to recover a correct accuracy at low Mach number,
while being identical to the standard Godunov scheme for Mach numbers greater than or equal to 1.
Indeed, on a mesh with cells denoted by Ωi, interfaces between cells Ωi and Ωj denoted by Γij and
unit normal vector from Ωi to Ωj denoted by nij , the standard Godunov scheme for Equation (2.1)
can be written as

d

dt
ri +

a∗
M
· 1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij | [(ui + uj) · nij + ri − rj ] = 0,

d

dt
ui +

a∗
M
· 1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij | [ri + rj + κ(ui − uj) · nij ] nij = 0
(2.2)

with κ = 1. In this linear case, the proposed correction amounts to replace κ in (2.2) by a function
θ(M) := min(M, 1), so that the corrected scheme is given by

d

dt

(
r
u

)
i

+
1

|Ωi|
∑

Γij⊂∂Ωi

|Γij |ΦAM,Godunov
ij = 0 (2.3)

with the following two expressions for the numerical flux ΦAM,Godunov
ij which are equivalent in the

linear case1:

• First expression:

ΦAM,Godunov
ij = ΦGodunov

ij + [θ(M)− 1]
a∗

2M

(
0

[(ui − uj) · nij ]nij

)
(2.4)

where ΦGodunov
ij is the unmodified Godunov flux (ΦGodunov

ij is easily deduced from (2.2)κ=1). Thus, the
simple corrective flux

[θ(M)− 1]
a∗

2M

(
0

[(ui − uj) · nij ]nij

)
(2.5)

1The notation AM in Φ
AM,Godunov
ij means that this flux defines an All Mach scheme.

33
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defines an all Mach correction which is equal to zero when the Mach number is greater than one. This
all Mach correction introduces numerical anti-diffusion since θ(M)− 1 ≤ 0. At last, we can note that
the linear all Mach Godunov scheme (2.3)(2.4) may be seen as the Godunov scheme plus a pressure

correction since the correction [θ(M)− 1]
a∗

2M
[(ui−uj) ·nij ]nij in (2.5) is homogeneous to a pressure.

• Second expression: The flux (2.4) is equivalent to

ΦAM,Godunov
ij =

a∗
M

(
(u · n)∗

r∗∗n

)
ij

with r∗∗ij = θ(M)r∗ij + [1− θ(M)]
ri + rj

2
(2.6)

where (r∗, (u · n)∗) is solution of the 1D linear Riemann problem in the nij direction

∂tqζ +
Lζ
M
qζ = 0,

ζ < 0 : qζ(t = 0, ζ) =

(
ri

ui · nij

)
,

ζ ≥ 0 : qζ(t = 0, ζ) =

(
rj

uj · nij

) (2.7)

with qζ :=

(
r
uζ

)
and Lζqζ := a∗∂ζ

(
uζ
r

)
, ζ being the coordinate in the nij direction. This gives


r∗ij =

ri + rj
2

+
(ui − uj) · nij

2
,

(u · n)∗ij =
(ui + uj) · nij

2
+
ri − rj

2
.

The aim of Chapter 2 is to extend the all Mach correction defined above to the non-linear barotropic
Euler system (2). Chapter 2 is usefull to understand from a practical point of view how to quickly
introduce the all Mach correction in a code that solves the non-linear barotropic Euler system with
a Godunov type scheme. When the Godunov type scheme is a Roe scheme, we prove that it remains
possible to obtain linear stability results when we use an all Mach correction and we justify this
correction in the non-linear case with a formal asymptotic analysis. In particular, the link between
this formal asymptotic analysis and some results obtained in Chapter 1 in the linear case is detailed.
In Chapter 3, we extend and we test with numerous test cases the proposed non-linear all Mach
correction to the full compressible Euler system (1).

The outline of Chapter 2 is the following. From the linear approach recalled above, we propose all
Mach Godunov type schemes in §2.1 in the case of the barotropic Euler system (2). We propose in §2.2
a linear stability result for these non-linear schemes when the Godunov type scheme is a Roe scheme,
and we justify in §2.3 the accuracy of this non-linear scheme with a formal asymptotic expansion. §2.2
and §2.3 concern also the all Mach schemes proposed in [34, 31].

2.1 Construction of all Mach Godunov type schemes in the barotropic
case

We now extend the linear all Mach Godunov schemes (2.3)(2.4) and (2.3)(2.6) to the non-linear case
when the linear wave equation (2.1) is replaced by the barotropic Euler system (2). This leads us to
propose the non-linear all Mach Godunov type scheme

d

dt

(
ρ
ρu

)
i

+
1

|Ωi|
∑

Γij⊂∂Ωi

|Γij |ΦAM,X
ij = 0 (2.8)
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with again two possible expressions for the numerical flux ΦAM,X
ij . In (2.8), X is a Godunov type

scheme: e.g. X=Godunov [17], X = Roe [36], X = VFRoe [5] or X = Lagrange + Projection type
scheme (see §2.2.5).

The two possible expressions for ΦAM,X
ij are the following:

• First expression: The non-linear version of (2.4) is given by

ΦAM,X
ij = ΦX

ij + (θij − 1)
ρijaij

2

(
0

[(ui − uj) · nij ] nij

)
(2.9)

where ΦX
ij is the unmodified flux given by the X scheme and where

θij = θ(Mij) with θ(M) = min(M, 1), (2.10)

Mij , ρij and aij being estimates at the edge Γij respectively of the Mach number, the density and the
sound velocity. Thus, the all Mach correction is now given by

(θij − 1)
ρijaij

2

(
0

[(ui − uj) · nij ] nij

)
(2.11)

and introduces anti-diffusion since θij − 1 ≤ 0. The flux ΦAM,Roe
ij obtained with (2.9) and when X is

the Roe scheme [36] is specified in Annex C in the subsonic case (see (C.8)).

• Second expression: The non-linear version of (2.6) is given by

ΦAM,X
ij =

(
ρ∗(u · n)∗

ρ∗(u∗ · n)u∗ + p∗∗n

)
ij

with p∗∗ij = θijp
∗
ij + (1− θij)

pi + pj
2

(2.12)

where (ρ∗,u∗) is solution of a 1D (linearized or non-linearized) Riemann problem. Let us note that p∗∗

in (2.12) replaces p∗ := p(ρ∗). As in the linear case (see (2.3)(2.6)), the non-linear all Mach X
scheme (2.8)(2.12) may be seen as a Godunov type scheme whose Riemann solver is corrected to be
accurate at low Mach number.

We underline that the non-linear all Mach X schemes (2.8)(2.9) (which is the non-linear version
of (2.3)(2.4)) and (2.8)(2.12) (which is the non-linear version of (2.3)(2.6)) are not equivalent although
the linear schemes (2.3)(2.4) and (2.3)(2.6) are equivalent.

Definition of the Mach number Mij: The Mach number Mij in (2.10) may be defined with Mij :=
|uij |
aij

or with Mij :=
|uij · nij |

aij
(uij and aij are estimates at the edge Γij respectively of the velocity

and the sound velocity), the second one giving a less dissipative scheme (especially for shear flows for
which we may have uij ⊥ nij). Moreover, the linear stability result proposed in Theorem 2.2.1 is valid
with these two definitions of the Mach number Mij . Nevertheless, the numerical results proposed in

this paper are obtained by using Mij :=
|uij |
aij

to define the all Mach correction (2.11).

We know that the Godunov scheme applied to the barotropic Euler system (2) is stable (and
entropic) for any Mach number and is not always accurate at low Mach number (for example on a
two or three-dimensional cartesian mesh). The aim of the all Mach Godunov scheme is to obtain an
accurate scheme at low Mach number on any mesh type. However, since in the all Mach Godunov
scheme we reduce the numerical diffusion of the Godunov scheme, we are not sure that the all Mach
Godunov scheme remains stable for any Mach number. In the following two sections, we partly
justify the stability and the accuracy of the all Mach Godunov scheme applied to the barotropic Euler
system (2) on any mesh type and for any Mach number. More precisely:
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• In Section 2.2, we (partly) justify the stability question by proposing a linear stability result in
the subsonic case for (2.8)(2.9) when the X scheme is the Roe scheme [36].

• In Section 2.3, we (partly) justify the accuracy question with a formal asymptotic expansion
applied to (2.8)(2.9) when the X scheme is the Roe scheme [36].

2.2 A linear stability result in the subsonic barotropic case

We now prove a linear stability result for the all Mach Godunov type schemes (2.8)(2.9). This result
(partly) justifies the stability question of the all Mach Godunov type schemes.

We study this stability question by extending the linear Godunov scheme (2.3)(2.4) to the linear
system  ∂tq +Hq +

L

M
q = 0,

q(t = 0,x) = q0(x)

(2.13)

where u∗ ∈ Rd (d ∈ {1, 2, 3}) is a constant velocity field such that O(|u∗|) = 1. Here, it is important
to take into account the linear transport operator Hq := (u∗ · ∇)q because the discretization of this
operator has an impact on the stability of the all Mach Godunov scheme as we will see below. This is
due to the fact that the Godunov approach does not split the material and acoustic waves (respectively

described with ∂tq+Hq = 0 and ∂tq+
L

M
q = 0). This leads us to conclude this section with a remark

on the Lagrange + Projection approach which splits the material and acoustic waves.

2.2.1 The linear all Mach Godunov scheme in the subsonic case

When the Godunov scheme is applied to System (2.13) and when the flow is subsonic i.e.

|u∗| <
a∗
M

(subsonic condition), (2.14)

the Godunov flux ΦGodunov
ij is given by (see (B.8) in Annex B)

ΦGodunov
ij = ΦGodunov,convection

ij + ΦGodunov,acoustic
ij (2.15)

where

ΦGodunov,convection
ij =

1

2

(
(u∗ · nij) [ri + rj + (ui − uj) · nij ]

(u∗ · nij) [(ui + uj) + (ri − rj)nij ]− |u∗ · nij | [(ui − uj)× nij ]× nij

)

(2.16)

and

ΦGodunov,acoustic
ij =

a∗
2M

(
(ui + uj) · nij + ri − rj

[ri + rj + (ui − uj) · nij ] nij

)
. (2.17)

Fluxes (2.16) and (2.17) discretize respectively the linear convection operator Hq and the linear
acoustic operator L

M q. Flux (2.17) is of course identical to the Godunov flux in (2.2).

To obtain the all Mach version ΦAM,Godunov
ij of ΦGodunov

ij defined by (2.15), we just add the all Mach cor-

rection (2.5) to ΦGodunov
ij as in (2.4). Thus, this consists in replacing the acoustic flux ΦGodunov,acoustic

ij

defined by (2.17) by the all Mach acoustic flux

ΦAM,Godunov,acoustic
ij = ΦGodunov,acoustic

ij + [θ(M)− 1]
a∗

2M

(
0

[(ui − uj) · nij ] nij

)
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with θ(M) := min(Mach, 1) =
|u∗|
a∗

M since Mach =
|u∗|
a∗/M

< 1, a∗/M being the sound velocity

in (2.13)2 (we have Mach = O(M) since O(|u∗|) = O(a∗) = 1). In other words, we do not correct

the convective flux ΦGodunov,convection
ij defined by (2.16), which is coherent with the fact that the low

Mach number problem is only linked to a wrong discretization of the acoustic operator at low Mach
number.

To summarize, under the subsonic condition (2.14), the linear all Mach Godunov scheme applied
to (2.13) is given by

d

dt
ri +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
{

(u∗ · nij) [ri + rj + γ(M)(ui − uj) · nij ]

+
a∗
M

[(ui + uj) · nij + ri − rj ]
}

= 0,

d

dt
ui +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
{

(u∗ · nij) [(ui + uj) + ζ(M)(ri − rj)nij ]

− β(M)|u∗ · nij | [(ui − uj)× nij ]× nij

+
a∗
M

[ri + rj + θ(M)(ui − uj) · nij ] nij
}

= 0

(2.18a)

(2.18b)

with (γ, ζ, β)(M) := (1, 1, 1). The parameters γ(M), ζ(M) and β(M) are introduced in (2.18) to
also study below the influence of the consistency error terms (ui − uj) · nij in (2.18a), (ri − rj)nij
in (2.18b) and [(ui − uj)× nij ] × nij in (2.18b) on the stability. When θ(M) := min

(
|u∗|
a∗
M, 1

)
, we

will see below that (2.18) is stable for any γ(M), ζ(M) and β(M) such that γ(M)+ζ(M)
2 ∈ [0, 1] and

β(M) ≥ 0. This suggests that we can improve the accuracy of the all Mach Godunov scheme with
particular choices of γ(M), ζ(M) and β(M): in [34, 31], the authors propose all Mach schemes which

are equivalent in the linear case to (2.18) with θ(M) := min
(
|u∗|
a∗
M, 1

)
and with particular choices of

γ(M), ζ(M) and β(M). At last, it is important to underline that, as long as γ(M), ζ(M) and β(M)
remain of the order of a constant independent of the Mach number M , they have no influence on the
M−1 term of the asymptotic expansion of 2.18 when M → 0, and thus have no influence on the low
Mach number problem as defined in the introduction of this Chapter 2: only the parameter θ(M) has
an influence on the low Mach number problem (see §2.3).

2.2.2 L2-stability in the semi-discrete subsonic case

Let us define the energy

Eh =
∑
i

|Ωi|
(
r2
i + |ui|2

)
.

We have the following L2-stability result (we recall that |u∗|a∗
M below is equal to the Mach number

since a∗/M defined the sound velocity in (2.13)):

Theorem 2.2.1. Let (r,u) be solution of (2.18). Under the subsonic condition (2.14), for any γ(M),

ζ(M) and β(M) such that γ(M)+ζ(M)
2 ∈ [0, 1] and β(M) ≥ 0:

1) When θ(M) := 1, we have:
d

dt
Eh ≤ 0. (2.19)

Thus, in particular, the Godunov scheme (obtained also with γ(M) = ζ(M) = β(M) = 1) satisfies
(2.19).

2The quantity a∗/M is the sound velocity in (2.13) because M is such that
√
p′(ρ)/M is the sound velocity in (1.4).
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2) When θ(M) := min

( |u∗|
a∗

M, 1

)
, we have:

d

dt
Eh ≤ 0. (2.20)

Thus, in particular, the all Mach Godunov scheme (obtained also with γ(M) = ζ(M) = β(M) = 1)
satisfies (2.20).

3) When θ(M) := 0, we have:

d

dt
Eh ≤

γ(M) + ζ(M)

2

∑
Γij

|Γij | |u∗ · nij | |(ui − uj) · nij |2 . (2.21)

Thus, in particular, the low Mach Godunov scheme (obtained also with γ(M) = ζ(M) = β(M) = 1)
satisfies (2.21).

The three points of Theorem 2.2.1 are illustrated with numerical results in §2.2.3. Let us note that

Point 2 of Theorem 2.2.1 is also satisfied with θ(M) :=
|u∗ · n|
a∗

M instead of θ(M) :=
|u∗|
a∗

M .

Discussion about Theorem 2.2.1:

Inequality (2.19) confirms that the Godunov scheme is stable. Inequality (2.20) shows that the all
Mach Godunov scheme is stable and, thus, justifies from the stability point of view the all Mach
correction (2.11).

Moreover, inequalities (2.19) and (2.20) with (γ, ζ, β) 6= (1, 1, 1) suggest that we can also improve the
accuracy of the Godunov scheme and of the all Mach Godunov scheme by choosing for example γ(M) =

ζ(M) = β(M) = min
(
|u∗|
a∗
M, 1

)
: in [34], Rieper proposes an all Mach scheme that corresponds to the

choices ζ(M) = β(M) = 1 and γ(M) = θ(M) := min
(
|u∗|
a∗
M, 1

)
; in [31], Oßwald et al. propose an all

Mach scheme that corresponds to the choices ζ(M) = 1 and γ(M) = β(M) = θ(M) := min
(
|u∗|
a∗
M, 1

)
.

Of course, other choices are possible: for example γ(M) = ζ(M) = β(M) = θ(M) := min
(
|u∗|
a∗
M, 1

)
or γ(M) = −ζ(M) = β(M) = θ(M) := min

(
|u∗|
a∗
M, 1

)
.

Inequality (2.21) prevents from obtaining
d

dt
Eh ≤ 0 when u∗ 6= 0 and γ(M)+ζ(M)

2 6= 0. As a conse-

quence, we may observe numerical instabilities with the low Mach Godunov scheme when u∗ 6= 0 and
γ(M)+ζ(M)

2 6= 0. Nevertheless, when u∗ := 0 – i.e. when we restrict the stability analysis to the low
Mach Godunov scheme applied to the linear wave equation (i.e. to scheme (2.2) with κ = 0) –, the
low Mach Godunov scheme is stable. On the other hand, inequality (2.21) suggests also that we can
choose θ(M) = 0 from the stability point of view when we choose ζ(M) = −γ(M). In §2.2.3, we will
study the scheme obtained with ζ(M) = β(M) = −γ(M) = 1 and θ(M) = 0 (together with the all
Mach Godunov scheme, the scheme of Rieper [34] and the scheme of Oßwald et al. [31]).

Proof of Theorem 2.2.1: Before proving Points 1, 2 and 3, we perform some preliminary calcula-
tions.

Preliminary calculations: By multiplying (2.18a) by 2|Ωi|ri and by summing with respect to i, we
obtain

d

dt

∑
i

|Ωi|r2
i = −

∑
i

∑
Γij⊂∂Ωi

|Γij | [(u∗ · nij) [ri + rj + γ(M)(ui − uj) · nij ] ri

+
a∗
M

[(ui + uj) · nij + ri − rj ] ri
]
. (2.22)
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On the other hand, by using ∑
Γij⊂∂Ωi

|Γij |nij = 0, (2.23)

we obtain ∑
i

∑
Γij⊂∂Ωi

|Γij |(u∗ · nij)r2
i =

∑
i

r2
i u∗ ·

∑
Γij⊂∂Ωi

|Γij |nij

 = 0.

Moreover ∑
i

∑
Γij⊂∂Ωi

|Γij |(u∗ · nij)rirj =
∑
Γij

|Γij | [u∗ · (nij + nji)] rirj = 0

since nij + nji = 0. We deduce from the last two equalities that∑
i

∑
Γij⊂∂Ωi

|Γij |(u∗ · nij)(ri + rj)ri = 0. (2.24)

We have also∑
i

∑
Γij⊂∂Ωi

|Γij |(u∗·nij) [(ui − uj) · nij ] ri =
∑
Γij

|Γij |(u∗·nij) [(ui − uj) · nij ] ri+
∑
Γij

|Γij |(u∗·nji) [(uj − ui) · nji] rj

which gives∑
i

∑
Γij⊂∂Ωi

|Γij |(u∗ · nij) [(ui − uj) · nij ] ri =
∑
Γij

|Γij |(u∗ · nij) [(ui − uj) · nij ] (ri − rj). (2.25)

Moreover
a∗
M

∑
i

∑
Γij⊂∂Ωi

|Γij | [(ui + uj) · nij ] ri =
a∗
M

∑
i

∑
Γij⊂∂Ωi

|Γij |(uj · nij)ri

by using again (2.23). We have also that

a∗
M

∑
i

∑
Γij⊂∂Ωi

|Γij |(uj · nij)ri =
a∗
M

∑
Γij

|Γij | [riuj · nij + rjui · nji] ,

which allows to write

a∗
M

∑
i

∑
Γij⊂∂Ωi

|Γij | [(ui + uj) · nij ] ri =
a∗
M

∑
Γij

|Γij | [riuj − rjui] · nij . (2.26)

At last, we have

a∗
M

∑
i

∑
Γij⊂∂Ωi

|Γij |(ri − rj)ri =
a∗
M

∑
Γij

|Γij |(ri − rj)ri +
a∗
M

∑
Γij

|Γij |(rj − ri)rj .

Hence
a∗
M

∑
i

∑
Γij⊂∂Ωi

|Γij |(ri − rj)ri =
a∗
M

∑
Γij

|Γij | · |ri − rj |2. (2.27)

Thus, by using (2.22), (2.24), (2.25), (2.26) and (2.27), we find

d

dt

∑
i

|Ωi|r2
i = −

∑
Γij

|Γij |
[
γ(M)(u∗ · nij) [(ui − uj) · nij ] (ri − rj)

+
a∗
M

[
(riuj − rjui) · nij + |ri − rj |2

]]
. (2.28)
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Let us now multiply (2.18b) by 2|Ωi|ui. By summing with respect to i and using the fact that for any
vector w there holds that (w × n) · u = −w · (u× n), we obtain

d

dt

∑
i

|Ωi| |ui|2 = −
∑
i

∑
Γij⊂∂Ωi

|Γij |
[
(u∗ · nij) [(ui + uj) + ζ(M)(ri − rj)nij ] · ui

+ β(M)|u∗ · nij | [(ui − uj)× nij ] · (ui × nij) +
a∗
M

[ri + rj + θ(M)(ui − uj) · nij ] (nij · ui)
]
. (2.29)

On the other hand, by using the arguments used to obtain (2.24) and (2.26), we respectively find∑
i

∑
Γij⊂∂Ωi

|Γij |(u∗ · nij)(ui + uj) · ui = 0 (2.30)

and
a∗
M

∑
i

∑
Γij⊂∂Ωi

|Γij |(ri + rj)(nij · ui) =
a∗
M

∑
Γij

|Γij |(rjui − riuj) · nij . (2.31)

We have also∑
i

∑
Γij⊂∂Ωi

|Γij |(u∗·nij)(ri−rj)(nij ·ui) =
∑
Γij

|Γij |(u∗·nij)(ri−rj)(nij ·ui)+
∑
Γij

|Γij |(u∗·nji)(rj−ri)(nji·uj)

which allows to write∑
i

∑
Γij⊂∂Ωi

|Γij |(u∗ · nij)(ri − rj)(nij · ui) =
∑
Γij

|Γij |(u∗ · nij) [(ui − uj) · nij ] (ri − rj). (2.32)

Moreover

a∗
M

∑
i

∑
Γij⊂∂Ωi

|Γij | [(ui − uj) · nij ] (nij · ui) =
a∗
M

∑
Γij

|Γij | [(ui − uj) · nij ] (nij · ui)

+
a∗
M

∑
Γij

|Γij | [(uj − ui) · nji] (nji · uj)

and therefore

a∗
M

∑
i

∑
Γij⊂∂Ωi

|Γij | [(ui − uj) · nij ] (nij · ui) =
a∗
M

∑
Γij

|Γij | |(ui − uj) · nij |2 . (2.33)

At last, we obtain∑
i

∑
Γij⊂∂Ωi

|Γij | |u∗ · nij | [(ui − uj)× nij ] · (ui × nij) =
∑
Γij

|Γij | |u∗ · nij | |(ui − uj)× nij |2 . (2.34)

Thus, by using (2.29), (2.30), (2.31), (2.32), (2.33) and (2.34), we find

d

dt

∑
i

|Ωi| |ui|2 = −
∑
Γij

|Γij |
{
ζ(M)(u∗ · nij) [(ui − uj) · nij ] (ri − rj)

+β(M) |u∗ · nij | |(ui − uj)× nij |2 +
a∗
M

[
(rjui − riuj) · nij + θ(M) |(ui − uj) · nij |2

]}
. (2.35)

Finally, by summing (2.28) and (2.35), we obtain

d

dt
Eh = −

∑
Γij

|Γij | {[γ(M) + ζ(M)](u∗ · nij) [(ui − uj) · nij ] (ri − rj)

+β(M)|u∗ · nij | |(ui − uj)× nij |2 +
a∗
M

[
|ri − rj |2 + θ(M) |(ui − uj) · nij |2

]}
. (2.36)
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Moreover, we have

−2(u∗ · nij) [(ui − uj) · nij ] (ri − rj) ≤ |u∗ · nij |
[
|(ui − uj) · nij |2 + |ri − rj |2

]
. (2.37)

Thus, by using the subsonic condition (2.14) and since |u∗ · nij | ≤ |u∗|, we obtain

−2(u∗ · nij) [(ui − uj) · nij ] (ri − rj) ≤ |u∗ · nij | |(ui − uj) · nij |2 +
a∗
M
|ri − rj |2. (2.38)

By using (2.36), this allows to write

d

dt
Eh ≤ −

∑
Γij

|Γij |
{
|u∗ · nij |

(
β(M) |(ui − uj)× nij |2 −

γ(M) + ζ(M)

2
|(ui − uj) · nij |2

)
+
a∗
M
θ(M) |(ui − uj) · nij |2 +

[
1− γ(M) + ζ(M)

2

]
a∗
M
|ri − rj |2

}
that is to say

d

dt
Eh ≤ −

∑
Γij

|Γij |
{[

a∗
M
θ(M)− γ(M) + ζ(M)

2
|u∗ · nij |

]
|(ui − uj) · nij |2

+

[
1− γ(M) + ζ(M)

2

]
a∗
M
|ri − rj |2

}
(2.39)

for any β(M) ≥ 0.

Proof of Points 1 and 2: Let us suppose that θ(M) := 1 (cf. Point 1). Since |u∗ · nij | ≤ |u∗|, we ob-

tain
d

dt
Eh ≤ 0 when γ(M)+ζ(M)

2 ∈ [0, 1] by using the subsonic condition (2.14) and the inequality (2.39).

When θ(M) :=
|u∗|
a∗

M (cf. Point 2), we deduce from (2.39) that

d

dt
Eh ≤ −

∑
Γij

|Γij |
{[
|u∗| −

γ(M) + ζ(M)

2
|u∗ · nij |

]
|(ui − uj) · nij |2 +

[
1− γ(M) + ζ(M)

2

]
a∗
M
|ri − rj |2

}

which also gives
d

dt
Eh ≤ 0 when γ(M)+ζ(M)

2 ∈ [0, 1].

Proof of Point 3: When θ(M) := 0 and γ(M)+ζ(M)
2 ∈ [0, 1], we deduce from (2.39) that

d

dt
Eh ≤

γ(M) + ζ(M)

2

∑
Γij

|Γij | |u∗ · nij | |(ui − uj) · nij |2 .

�

2.2.3 Numerical results on the L2-stability in the linear subsonic case

We illustrate Points 1, 2 and 3 of Theorem 2.2.1 with numerical results obtained on a 2D cartesian
mesh. For that purpose, we consider the following problem, which was also considered in the numerical
results of Chapter 1 for the simple linear wave equation: We consider the 2D domain Ω = [0, 1]2 with
periodic boundary conditions. The initial conditions q0 := (r0,u0)T are given by

r(t = 0, x, y) = 1,

ux(t = 0, x, y) = sin2(πx) sin(2πy),

uy(t = 0, x, y) = − sin(2πx) sin2(πy)

(2.40)

which is periodic on the torus [0, 1]2 and belongs to the kernel of the simple linear wave equation
(2.13 with u∗ = 0).

We study in Figure 2.1 the energy Eh(t) of the numerical solutions obtained from the linear scheme
(2.18) approaching the solution of (2.13) for various values of the set (γ(M), ζ(M), β(M), θ(M)):
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• the linear Godunov scheme (i.e. γ(M) = ζ(M) = β(M) = θ(M) = 1),

• the linear all Mach Godunov scheme (i.e. γ(M) = ζ(M) = β(M) = 1 and θ(M) := min
(
|u∗|
a∗
M, 1

)
),

• the linear low Mach Godunov scheme (i.e. γ(M) = ζ(M) = β(M) = 1 and θ(M) = 0)

• the all Mach scheme of Rieper [34] (ζ(M) = β(M) = 1 and γ(M) = θ(M) := min
(
|u∗|
a∗
M, 1

)
),

• the all Mach scheme of Oßwald et al. [31] (ζ(M) = 1 and γ(M) = β(M) = θ(M) :=

min
(
|u∗|
a∗
M, 1

)
),

• an hybrid all Mach scheme (obtained with ζ(M) = β(M) = −γ(M) = 1 and θ(M) = 0).

In the numerical results of Chapter 1, the convective part was not taken into account. In other
words, (2.13) was solved with (2.18) by choosing u∗ = 0. Now, we choose u∗ = (1, 0)T in (2.13)

and (2.18). The parameter M is fixed to 0.5 and a∗ = 1. In that case, the Mach number
|u∗|
a∗/M

is equal to M and the subsonic condition (2.14) is satisfied. Let us note that for the scheme of

Rieper and for the scheme of Oßwald et al., we have γ(M) = min
(
|u∗|
a∗
M, 1

)
and ζ(M) = 1. Thus,

the stability condition γ(M)+ζ(M)
2 ∈ [0, 1] of Theorem 2.2.1 is satisfied for these two schemes since

min
(
|u∗|
a∗

M,1
)

+1

2 ≤ 1. Of course, the stability condition γ(M)+ζ(M)
2 ∈ [0, 1] is also satisfied by the low

Mach Godunov scheme, the all Mach Godunov scheme and the hybrid all Mach scheme.

Figure 2.1 shows that the energy Eh(t) decreases with time with the Godunov scheme, with the all
Mach Godunov scheme, with the scheme of Rieper, with the scheme of Oßwald et al. and with the
hybrid scheme, which is coherent with Points 1, 2 and 3 of Theorem 2.2.1. Moreover, the low Mach
Godunov scheme is not stable since Eh(t) explodes with time, which is coherent with Point 3 of
Theorem 2.2.1. We can also remark that the scheme of Oßwald et al. is less dissipative than the
scheme of Rieper: this point is mentioned in [31]. Nevertheless, the scheme of Oßwald et al. is more
dissipative than the hybrid scheme which is the least dissipative scheme. These last two remarks are
also coherent with Point 3 of Theorem 2.2.1.

At last, let us note that the results obtained with the all Mach Godunov scheme and with the scheme
of Rieper are similar. This can be explained by noting that the decreasing of the energy differs between
these two schemes only through the quantity∑

Γij

|Γij |γ(M)(u∗ · nij) [(ui − uj) · nij ] (ri − rj)

(see (2.36)) – which is the discrete version of

γ(M) (∆x u∗,x〈∂xr, ∂xux〉+ ∆y u∗,y〈∂yr, ∂yuy〉)

(see (2.47) below) –, by noting that γ(M) = 1 for the all Mach Godunov scheme and that γ(M) =

min
(
|u∗|
a∗
M, 1

)
= 1

2 for the scheme of Rieper (since, in the present case, |u∗| = a∗ = 1 and M = 1
2)

and also by noting that ri(t) is close to a constant (equal to 1 in the present case: see (2.40)) for any
i and any t ≥ 0 since this is initially the case.

2.2.4 L2-stability in the continuous subsonic case

To get a better understanding of the importance of the convection operator in Theorem 2.2.1, it is
interesting to study the L2-stability of the 1st order modified equation associated with (2.18) when the
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Figure 2.1: Linear L2-stability study: norm of the energy Eh(t) as a function of time for 0 ≤ t/M ≤ 10
and M = 0.5 obtained with the initial condition (2.40) which belongs to the kernel of the linear wave
equation (Equation (2.13) with u∗ = 0) on a 30× 30 cartesian mesh. The energy Eh(t) decreases with
time with the Godunov scheme, with the all Mach Godunov scheme, with the scheme of Rieper [34]
(whose results are similar to those obtained with the all Mach Godunov scheme), with the scheme
of Oßwald et al. [31] and with the hybrid scheme obtained with ζ(M) = β(M) = −γ(M) = 1 and
θ(M) = 0. However, the low Mach Godunov scheme is not stable since the energy Eh(t) explodes
with time. Moreover, the hybrid scheme is the least dissipative scheme. These numerical results are
coherent with Points 1, 2 and 3 of Theorem 2.2.1.

mesh is cartesian. When we suppose for the sake of simplicity that the dimension is 2D, this equation
is given by  ∂tq +Hq +

LM
M

q = 0,

q(t = 0,x) = q0(x)

(2.41)

where, in the 2D case, H is the perturbed convection operator defined by

Hq = Hq − 1

2


γ(M)u∗,x∆x∂2

xxux + γ(M)u∗,y∆y∂
2
yyuy

ζ(M)u∗,x∆x∂2
xxr + β(M)|u∗,y|∆y∂2

yyux

β(M)|u∗,x|∆x∂2
xxuy + ζ(M)u∗,y∆y∂

2
yyr

 (2.42)

and where LM is the perturbed linear acoustic operator defined by

LMq = Lq − a∗
2


∆x∂2

xxr + ∆y∂2
yyr

θ(M)∆x∂2
xxux

θ(M)∆y∂2
yyuy

 . (2.43)

By defining the energy with

E := 〈q, q〉 =

∫
Td

(r2 + |u|2)dx,

we obtain the following result which is the continuous version of Theorem 2.2.1:

Theorem 2.2.2. Let q(t,x) be solution of (2.41). Under the subsonic condition (2.14), for any γ(M),

ζ(M) and β(M) such that γ(M)+ζ(M)
2 ∈ [0, 1] and β(M) ≥ 0:

1) When θ(M) := 1:

d

dt
E ≤ 0. (2.44)
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2) When θ(M) := min

( |u∗|
a∗

M, 1

)
:

d

dt
E ≤ 0. (2.45)

3) When θ(M) := 0:

d

dt
E ≤ γ(M) + ζ(M)

2

(
∆x|u∗,x| · ||∂xux||2 + ∆y|u∗,y| · ||∂yuy||2

)
. (2.46)

Proof of Theorem 2.2.2: The proof is similar to the proof of Theorem 2.2.1. Nevertheless, it is
more simple since the operators are continuous.

Preliminary calculations: By multiplying (2.41) with q and by integrating over Ω, we obtain that

d

dt
E = −{[γ(M) + ζ(M)] (∆x u∗,x〈∂xr, ∂xux〉+ ∆y u∗,y〈∂yr, ∂yuy〉)

+ β(M)
(
∆y|u∗,y| · ||∂yux||2 + ∆x|u∗,x| · ||∂xuy||2

)
+
a∗
M

[(
∆x||∂xr||2 + ∆y||∂yr||2

)
+ θ(M)

(
∆x||∂xux||2 + ∆y||∂yuy||2

)]}
(2.47)

which is the continuous version of (2.36). Moreover, we have

−2∆x u∗,x〈∂xr, ∂xux〉 ≤ ∆x|u∗,x|
(
||∂xux||2 + ||∂xr||2

)
which is the continuous version of (2.37). Thus, under the subsonic condition (2.14), we can write
that

−2∆x u∗,x〈∂xr, ∂xux〉 ≤ ∆x|u∗,x| · ||∂xux||2 + ∆x
a∗
M
||∂xr||2

which is the continuous version of (2.38). In the same way, we have

−2∆y u∗,y〈∂yr, ∂yuy〉 ≤ ∆y|u∗,y| · ||∂yuy||2 + ∆y
a∗
M
||∂yr||2.

Then, we deduce from (2.47) that

d

dt
E ≤ −

{
∆x

[
a∗
M
θ(M)− γ(M) + ζ(M)

2
|u∗,x|

]
||∂xux||2 + ∆y

[
a∗
M
θ(M)− γ(M) + ζ(M)

2
|u∗,y|

]
||∂yuy||2

+

(
1− γ(M) + ζ(M)

2

)
a∗
M

(
∆x||∂xr||2 + ∆y||∂yr||2

)}
for any β(M) ≥ 0, which is the continuous version of (2.39).

Proof of Points 1, 2 and 3: We conclude the proof as in the semi-discrete case (see the proof of
Theorem 2.2.1).�

2.2.5 A remark on the Lagrange + Projection approach

The potential loss of stability when θ(M) := 0 (see Point 3 of Theorems 2.2.1 and 2.2.2) is directly
linked to

E(q) := −1

2


u∗,x∆x∂2

xxux + u∗,y∆y∂
2
yyuy

u∗,x∆x∂2
xxr

u∗,y∆y∂
2
yyr


in (2.42) which is the non-dissipative part of the truncation error of the Godunov scheme applied to
the linear equation (2.13). The existence of this non-dissipative truncation error is a consequence of
the fact that the Godunov scheme is built by taking into account at the same time the convective and
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acoustic waves (see Annex B). This suggests that a Lagrange + Projection approach – which consists
in splitting the acoustic and convective waves – may not have any stability problem when θ(M) := 0.

Indeed, a Lagrange + Projection approach applied to the linear equation (2.13) consists, at any time
step n, in computing an estimate of the solution by solving ∂tq

L +
L

M
qL = 0,

qL(t = n∆t,x) = qn(x)

(Lagrange step) (2.48)

and, then, to correct this estimate by solving{
∂tq +Hq = 0,

q(t = n∆t,x) = qL ((n+ 1)∆t,x) .
(Projection step) (2.49)

Let us now suppose that we solve (2.48) with the all Mach Godunov scheme (2.3)(2.4) and that we
solve (2.49) with the Godunov scheme (i.e. with the classical upwind scheme). For this particular
Lagrange + Projection scheme, the 1st order modified equation is given by ∂tq +Hq +

LM
M

q = 0,

q(t = 0,x) = q0(x)

(2.50)

where, in the 2D case, H is the perturbed convective operator

Hq = Hq − 1

2


|u∗,x|∆x∂2

xxrx + |u∗,y|∆y∂2
yyr

|u∗,x|∆x∂2
xxux + |u∗,y|∆y∂2

yyux

|u∗,x|∆x∂2
xxuy + |u∗,y|∆y∂2

yyuy

 (2.51)

and where LM is the perturbed linear acoustic operator defined by (2.43). In that case, we easily
obtain:

Theorem 2.2.3. Let q(t,x) be solution of (2.50). For any θ(M) ≥ 0, we have:

d

dt
E ≤ 0.

It would be also easy to obtain the semi-discrete version of Theorem 2.2.3.

Point 3 of Theorem 2.2.2 and Theorem 2.2.3 underline the fact that if the low Mach correction
(i.e. θ(M) := 0) is identical for any Godunov type schemes, the stability analysis of the low Mach
scheme obtained with the low Mach correction strongly depends on the type of Godunov type scheme.
On the other hand, Point 2 of Theorem 2.2.2 suggests that the all Mach correction is better than the
low Mach correction from a stability point of view, which is coherent since the all Mach correction is
less anti-dissipative than the low Mach correction.

2.3 Formal asymptotic analysis in the barotropic case

We now (partly) justify the accuracy question with a formal asymptotic analysis applied to the all Mach
Godunov type scheme (2.8)(2.9) when X is the Roe scheme [36]. This analysis is classical [21, 35, 34].
The original point in the following calculus is that we clearly link this formal asymptotic analysis to
the point of view proposed in Chapter 1. Moreover, we introduce the parameters γ(M), ζ(M) and
β(M) already introduced in the linear scheme (2.18) to show that these parameters do not have any
influence on the low Mach number problem when |γ(M)|, |ζ(M)| and β(M) ≥ 0 are lower than a
positive constant independent of the Mach number M , these parameters having only an influence on
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the stability of the scheme (see Section 2.2). This will allow us to also justify the all Mach schemes
proposed in [34, 31] from the low Mach number problem point of view, the all Mach schemes proposed
in [34, 31] being similar to (2.8)(2.9) when X is the Roe scheme.

When the X scheme is the Roe scheme [36], the dimensionless all Mach Roe scheme deduced
from (2.8)(2.9) and restricted to the subsonic case is given by (see (C.9) in Annex C)

d

dt
ρi +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
[
(ρiui + ρjuj) · nij + γ(M)M

ρij
aij

(uij · nij)(ui − uj) · nij

+
aij
M

(ρi − ρj)
]

= 0

d

dt
(ρiui) +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
{
ρi(ui · nij)ui + ρj(uj · nij)uj

+ζ(M)
aij
M

(ρi − ρj) [uij + (uij · nij)nij ]
− β(M)ρij |uij · nij | [(ui − uj)× nij ]× nij

+ γ(M)M
ρij(uij · nij)

aij
[(ui − uj) · nij ] uij

+

[
1

M2
(pi + pj) +

θij
M
ρijaij(ui − uj) · nij

]
nij

}
= 0

(2.52a)

(2.52b)

with γ(M) = ζ(M) = β(M) = 1, pk = p(ρk), a
2
ij =

pi − pj
ρi − ρj

if ρi 6= ρj and a2
ij = p′(ρi) otherwise, and

θij = θ(Mij) with θ(Mij) = min(Mij , 1). (2.53)

In (2.53), the local Mach number Mij is given by Mij = M
|uij |
aij

. Thus, we can write that Mij = O(M)

which means that
θij
M
≤ C (2.54)

where C is a constant of order one (since Mij � 1). The parameters γ(M), ζ(M) and β(M) are
introduced in (2.52) to also study the all Mach schemes proposed in [34, 31] which are equivalent to
(2.52)(2.53) but with (γ, ζ, β)(M) 6= (1, 1, 1) (see Discussion about Theorem 2.2.1 in §2.2.1 and the
numerical results in §2.2.3). We recall that for stability reasons, γ(M), ζ(M) and β(M) are such that

γ(M) + ζ(M)

2
∈ [0, 1] and β(M) ≥ 0

(see Theorems 2.2.1 and 2.2.2). Moreover, we now suppose that

∃C̃ > 0 such that ∀M > 0 : max[|γ(M)|, |ζ(M)|, β(M)] ≤ C̃. (2.55)

At last, we impose periodic boundary conditions.

Let us now assume the asymptotic expansion for φ = (ρ,u)

φ = φ(0) +Mφ(1) +Mφ(2) + . . . . (2.56)

We remark that since p = p(ρ), there holds that p(0) = p
(
ρ(0)
)

and p(1) = p′
(
ρ(0)
)
ρ(1). More-

over,
(
a

(0)
ij

)2
=

p
(0)
i −p

(0)
j

ρ
(0)
i −ρ

(0)
j

if ρ
(0)
i 6= ρ

(0)
j and

(
a

(0)
ij

)2
=

p
(1)
i −p

(1)
j

ρ
(1)
i −ρ

(1)
j

= p′
(
ρ

(0)
i

)
otherwise. Under the

(sufficient) condition (2.55), by plugging (2.56) in (2.52) and by separating the orders M−1 and M0,
we obtain:
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• Order M−1: We deduce from (2.52a) that∑
Γij⊂∂Ωi

|Γij |a(0)
ij

(
ρ

(0)
i − ρ

(0)
j

)
= 0.

Thus, we have
∑
i

ρ
(0)
i

∑
Γij⊂∂Ωi

|Γij |a(0)
ij

(
ρ

(0)
i − ρ

(0)
j

)
= 0 which gives

∑
Γij

|Γij |
[
a

(0)
ij

(
ρ

(0)
i − ρ

(0)
j

)
ρ

(0)
i + a

(0)
ji

(
ρ

(0)
j − ρ

(0)
i

)
ρ

(0)
j

]
= 0 (2.57)

with a
(0)
ji = a

(0)
ij . Then, we obtain∑

Γij

|Γij |a(0)
ij

(
ρ

(0)
j − ρ

(0)
i

)2
= 0

which implies that

∀i : ρ
(0)
i = ρ(0)(t) (2.58)

because for all i and j, a
(0)
ij > 0. Thus, p

(0)
i = p(0)(t) and a

(0)
ij = a(0)(t) =

(
p′
(
ρ0(t)

))1/2
.

Moreover, if |ζ(M)| is of order one, we deduce from (2.52b) and (2.54) that∑
Γij⊂∂Ωi

|Γij |
[(
p

(1)
i + p

(1)
j

)
nij + ζ(M)a

(0)
ij

(
ρ

(0)
i − ρ

(0)
j

)
(uij + (uij · nij)nij)

]
= 0

which gives ∑
Γij⊂∂Ωi

|Γij |
(
p

(1)
i + p

(1)
j

)
nij = 0 (2.59)

by using (2.58). If |ζ(M)| is of order Mα with α > 0, we directly deduce (2.59) from (2.52b)
and (2.54). Let us note that Equation (2.59) is equivalent to∑

Γij⊂∂Ωi

|Γij |
[
p

(1)
i + p

(1)
j + κρ(0)a(0)(u

(0)
i − u

(0)
j ) · nij

]
nij = 0 (2.60)

with κ = 0 for the all Mach Roe scheme. Note that we obtain the same relation (2.60) with
κ = 0 for the all Mach schemes of Rieper [34] and Oßwald et al. [31]. In the case of the Roe
scheme – which is defined by (2.52) and θij = 1 instead of (2.53) –, we obtain (2.60) with κ = 1.

• Order M0: We deduce from (2.52a) and (2.58) that

d

dt
ρ(0)(t) +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
[
ρ(0)

(
u

(0)
i + u

(0)
j

)
· nij + a(0)

(
ρ

(1)
i − ρ

(1)
j

)]
= 0. (2.61)

On the other hand, we have∑
i

∑
Γij⊂∂Ωi

|Γij |ρ(0)
(
u

(0)
i + u

(0)
j

)
·nij = ρ(0)

∑
Γij

|Γij |
[(

u
(0)
i + u

(0)
j

)
· nij +

(
u

(0)
j + u

(0)
i

)
· nji

]
= 0

and ∑
i

∑
Γij⊂∂Ωi

|Γij |a(0)
(
ρ

(1)
i − ρ

(1)
j

)
=
∑
Γij

|Γij |
[
a(0)

(
ρ

(1)
i − ρ

(1)
j

)
+ a(0)

(
ρ

(1)
j − ρ

(1)
i

)]
= 0.

Thus, by using (2.61), we obtain
∑
i

(
2|Ωi|

d

dt
ρ(0)(t)

)
= 0 and therefore

d

dt
ρ(0)(t) = 0. In other

words, we have

∀i : ρ
(0)
i = Cst (2.62)
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and, thus, p
(0)
i = Cst and a

(0)
ij = Cst. By plugging (2.62) in (2.61), we obtain that∑

Γij⊂∂Ωi

|Γij |
[
ρ(0)

(
u

(0)
i + u

(0)
j

)
· nij + a(0)

(
ρ

(1)
i − ρ

(1)
j

)]
= 0

which gives ∑
Γij⊂∂Ωi

|Γij |
[
ρ(0)a(0)

(
u

(0)
i + u

(0)
j

)
· nij +

(
p

(1)
i − p

(1)
j

)]
= 0 (2.63)

by using the fact that
(
a(0)
)2

=
p
(1)
i −p

(1)
j

ρ
(1)
i −ρ

(1)
j

if ρ
(0)
i = ρ

(0)
j .

To summarize, we have proved that a necessary condition of validity of the expansion (2.56) is

that
(
p

(1)
i ,u

(0)
i

)
∈ R3N satisfies

∑
Γij⊂∂Ωi

|Γij |
[
ρ(0)a(0)

(
u

(0)
i + u

(0)
j

)
· nij +

(
p

(1)
i − p

(1)
j

)]
= 0,

∑
Γij⊂∂Ωi

|Γij |
[
p

(1)
i + p

(1)
j + κρ(0)a(0)

(
u

(0)
i − u

(0)
j

)
· nij

]
nij = 0

(2.64)

with κ = 0 in the case of the non-linear all Mach Roe scheme (2.52)(2.53). Note that we obtain the
same necessary condition (2.64) with κ = 0 for the all Mach schemes of Rieper [34] and Oßwald et

al. [31]. In the case of the Roe scheme, we obtain (2.64) with κ = 1. Thus, by defining ri :=
p
(1)
i

ρ(0)a(0)
,

we obtain that
(
ri,u

(0)
i

)
belongs to the kernel of the discrete acoustic operator Lκ,h that appears in

Equation (2.2).

It was proved in Chapter 1 that these kernels are quite different according to the value of κ and
to the type of meshes:

KerLκ=1,h =

{
qh :=

(
rh
uh

)
∈ RN(1+d) such that ∃a ∈ R, ∀i : ri = c and (ui − uj) · nij = 0

}
(2.65)

and

KerLκ=0,h =

{
qh :=

(
rh
uh

)
∈ RN(1+d) such that ∃a ∈ R, ∀i : ri = c

and
∑

Γij⊂∂Ωi

|Γij |
ui + uj

2
· nij = 0

 . (2.66)

Moreover, we have

KerLκ=1,h ⊆ KerLκ=0,h. (2.67)

These spaces are studied in [15] when the mesh is cartesian or triangular, and it is shown that (see
Lemmas 5.1, 5.2 and 5.6 in [15]):

on a 2D triangular mesh: KerLκ=1,h = E∆
h ⊂ KerLκ=0,h,

on a 2D cartesian mesh: KerLκ=1,h  E�
h = KerLκ=0,h

(2.68a)

(2.68b)

where E∆
h and E�

h are ad hoc approximations of the continuous incompressible space {r = cst and ∇ ·
u = 0} which depend on the type of mesh. We recall the definitions of E∆

h and E�
h in Annex A.
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On rectangular meshes, we thus obtain that the low Mach asymptotic solution of the non-linear
all Mach Roe scheme (i.e. (2.52) with θij = θ(Mij)) can be any of the elements of the discrete
incompressible space E�

h , and may thus be an accurate approximation of the exact solution, while the
low Mach asymptotic solution of the non-linear Roe scheme (i.e. (2.52) with θij = 1) only belongs to
a very small subspace of E�

h , and will thus not be an accurate approximation of the exact solution.
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Chapter 3

Application to the compressible Euler
system

This third chapter can be read without reading Chapters 1 and 2.

Chapter 3 is self-consistent to understand how to introduce from a practical point of view an all Mach
correction in a code that solves the non-linear compressible Euler system (1) with a Godunov type
scheme. Nevertheless, Chapter 1 is necessary to clearly understand the low Mach problem and the
origin of the all Mach correction from a theoretical point of view, and Chapter 2 is usefull to justify
this correction from a stability point of view.

The outline of Chapter 3 is the following. In §3.1, we extend the barotropic all Mach Godunov type
schemes proposed in Chapter 2 to the compressible Euler system (1). We underline in §3.2 that the
proposed approach to obtain all Mach schemes is not restricted to Godunov type schemes. At last, we
propose numerical results in §3.3 obtained on triangular and cartesian meshes for the 2D compressible
Euler system. These numerical results show that the proposed non-linear all Mach Godunov scheme
is stable and accurate for low Mach test cases and for test cases whose Mach number is not small and
even greater than one, and on any mesh type. Moreover, they show also that the all Mach correction
allows to capture the entropic solution in all our numerical tests with shock waves.

3.1 Construction of all Mach Godunov type schemes for the com-
pressible Euler system

We have shown formally in Chapter 2 (see in particular §2.3) that the low Mach number inaccuracy
can be studied and cured in the case of the non-linear barotropic case, which underlines that the
energy equation may not have any influence on this question. This point is justified in Chapter 1 from
a theoretical point of view by studying the low Mach number problem in the case of the linear wave
equation.

This leads us to extend in this section the all Mach Godunov type schemes (2.8)(2.9) and (2.8)(2.12)
obtained for the non-linear barotropic Euler system (2) to the full compressible Euler system (1)
without modifying the energy equation. In other words, we propose the all Mach Godunov type
scheme

d

dt

 ρ
ρu
ρE


i

+
1

|Ωi|
∑

Γij⊂∂Ωi

|Γij |ΦAM,X
ij = 0 (3.1)

with two possible expressions for the numerical flux ΦAM,X
ij (we recall that X is a Godunov type

scheme):

51
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• First expression:

ΦAM,X
ij = ΦX

ij + (θij − 1)
ρijaij

2

 0
[(ui − uj) · nij ] nij

0

 (3.2)

where ΦX
ij is the unmodified flux given by the X scheme and where

θij = θ(Mij) with θ(M) = min(M, 1), (3.3)

Mij , ρij and aij being estimates at the edge Γij respectively of the Mach number, the density and the
sound velocity. Thus, the all Mach correction is now given by

(θij − 1)
ρijaij

2

 0
[(ui − uj) · nij ] nij

0

 . (3.4)

Let us note that we could replace (3.4) by

(θij − 1)
aij
2

 0
[(ρiui − ρjuj) · nij ] nij

0

 (3.5)

or by

(θij − 1)
1

2

 0
[(ρiaiui − ρjajuj) · nij ] nij

0

 . (3.6)

The flux ΦAM,Roe
ij obtained with (3.2) and when X is the Roe scheme [36] is specified in Annex D in

the subsonic case (see (D.7a), (D.7c) and (D.8)).

• Second expression:

ΦAM,X
ij =


ρ∗(u · n)∗

ρ∗(u∗ · n)u∗ + p∗∗n

(ρ∗E∗ + p∗)(u · n)∗


ij

with p∗∗ij = θijp
∗
ij + (1− θij)

pi + pj
2

(3.7)

where (ρ∗,u∗, E∗) is solution of a 1D (linearized or non-linearized) Riemann problem.

Definition of the Mach number Mij: As in the barotropic case, the Mach number Mij in (3.3)

may be defined with Mij :=
|uij |
aij

or with Mij :=
|uij · nij |

aij
, the second one giving a less dissipative

scheme (especially for shear flows for which we may have uij ⊥ nij). The numerical results proposed in

this paper are obtained by using Mij :=
|uij |
aij

to define the all Mach correction (3.4). Let us underline

that the linear stability result proposed in Theorem 2.2.1 is valid with these two definitions of the
Mach number Mij .

Concerning the stability of the non-linear all Mach schemes (3.1)(3.2) and (3.1)(3.7):
These all Mach schemes – directly deduced from the barotropic case – are justified to cure the accuracy
problem at low Mach number. But, it is not obvious that the linear stability result obtained in §2.2 in
the barotropic case when the X scheme is the Roe scheme remains valid. Indeed, the energy equation
is as important as the other two equations in any stability analysis. This point will have to be studied
carefully in a future work. However, numerical results obtained in §3.3 by using the Godunov scheme
with (3.1)(3.7) (which means that states ·∗ are given by solving an exact 1D Riemann problem [17])
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do not show any stability problem. This justifies the extension of our all Mach Godunov scheme to
the full Euler system.

Introduction of the parameters γ(M), ζ(M) and β(M) in (3.1)(3.2) when X is a Roe
scheme: When X is a Roe scheme, it is also possible to introduce the parameters γ(M), ζ(M) and
β(M) in (3.1)(3.2) – and, thus, in (D.7a), (D.7c) and (D.8) – to reduce the numerical dissipation, as
it has been done in the linear case (2.18) and in the non-linear barotropic case (2.52). Nevertheless,
we do not study in this paper the influence of these parameters in the non-linear case (3.1)(3.2) with
numerical test cases although we propose in §2.2 theoretical and numerical results concerning this
question in the linear case.

3.2 Other all Mach schemes

The analysis used to justify the all Mach correction (3.4) in Chapters 1 and 2 is not limited to
Godunov type schemes applied to the compressible Euler system (1). For example, this analysis
applied to the Rusanov scheme [38] would lead us to use the all Mach correction (3.5) with aij
replaced by |λij | := max(|uij · nij − aij |, |uij · nij + aij |) in order to define the all Mach Rusanov
scheme

d

dt

 ρ
ρu
ρE


i

+
1

|Ωi|
∑

Γij⊂∂Ωi

|Γij |ΦAM,Rusanov
ij = 0 (3.8)

with

ΦAM,Rusanov
ij = ΦRusanov

ij + (θij − 1)
|λij |

2

 0
ρiui − ρjuj

0

 (3.9)

where ΦRusanov
ij is the unmodified Rusanov flux and where θij = θ(Mij) (θ(M) is defined by (3.3) and

Mij =
|uij |
aij

where uij and aij correspond to states given by the Roe solver, see (D.4)). We could also

formally justify the non-linear all Mach Rusanov scheme (3.8)(3.9) with a formal asymptotic analysis
similar to the one used to justify the all Mach Roe scheme (2.52).

In the same way, when the mesh is 2D cartesian with ∆x = ∆y, the all Mach Lax-Friedrichs
scheme is given by

d

dt

 ρ
ρu
ρE


i

+
1

|Ωi|
∑

Γij⊂∂Ωi

|Γij |ΦAM,LF
ij = 0 (3.10)

with

ΦAM,LF
ij = ΦLF

ij + (θij − 1)
∆x

2∆t

 0
ρiui − ρjuj

0

 (3.11)

where ΦLF
ij is the unmodified Lax-Friedrichs flux [23]. In (3.11),

∆x

∆t
is equal to max

i
(|ux,i ± ai|, |uy,i ± ai|) /CFL

with CFL ≤ 1.

Concerning the stability of the all Mach schemes (3.8)(3.9) and (3.10)(3.11):

As in the case of the Godunov type schemes applied to the compressible Euler system (1) (see §3.1),
the stability of these all Mach schemes will have to be carefully studied. This is out of the scope of
this paper.
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Let us also note that a Lagrange + Projection type scheme can also be corrected with a similar low
Mach correction, and that the stability of this type of scheme should not be affected by the all Mach
correction: see §2.2.5.

3.3 Numerical results

We study the behaviour of the all Mach Godunov scheme given by (3.1) where ΦAM,X
ij is given by (3.7)

and where (ρ∗,u∗, E∗) is solution of a 1D non-linearized Riemann problem [17] (i.e. X is the Godunov
scheme) and θij = min(Mij , 1). We consider that the fluid follows a perfect gas equation of state p =
(γ − 1)ρe with a specific heat ratio γ = 1.4. For a perfect gas law, the Mach number M is equal to

M =
|u|
a

with a =

√
γ
p

ρ
.

We discretize the time operators in (3.1) with a first order Euler scheme. Thus, the global scheme is
explicit. Moreover, the time step ∆t is linked to the mesh size through a classical CFL condition. For
all numerical tests, the CFL number is set to 0.4.

We test unmodified Godunov type schemes, low Mach Godunov type schemes and all Mach Go-
dunov type schemes with six test cases whose Mach number is both low and of order 1, moreover in
1D and in 2D (with cartesian and triangular meshes). All computations are done with the toolbox
CDMATH [29, 13].

The first four tests are 1D tests (see Figures 3.1-3.10). These 1D tests illustrate that the Godunov
scheme is accurate in 1D at low Mach number, which is a consequence of (1.31b) obtained in the linear
case, the all Mach Godunov scheme being also accurate at low Mach number. They illustrate also that
even if the all Mach Godunov scheme reduces the numerical diffusion of the Godunov scheme when
the Mach number is subsonic, the all Mach Godunov scheme stays stable and captures the entropic
solutions with shock. Moreover, we show through these first four test cases that the low Mach Godunov
scheme – corresponding to θij = 0 in (3.7) (i.e. centered discretization for the pressure gradient) –
is not stable in the non-linear case: this point is coherent with Point 3 of Theorem 2.2.1 (stability
analysis in the linear case) and with the numerical results of §2.2.3.

In a fifth test case (see Figures 3.11-3.12), we consider a 2D low Mach flow. This 2D test shows the
influence of the cells geometry on the behaviour of the Godunov scheme at low Mach number and the
improvement of the all Mach Godunov scheme against the Godunov scheme for low Mach flows.

The sixth test case is a 2D compressible flow (see Figures 3.13-3.15). This 2D test shows the stability
of the all Mach Godunov scheme on cartesian and triangular meshes.

3.3.1 A 1D compressible flow: Sod shock tube

We consider the classical Sod shock tube [42]. The initial conditions are
ρ0(x < 0.5) = 1,

p0(x < 0.5) = 1,

u0(x < 0.5) = 0

and


ρ0(x ≥ 0.5) = 0.125,

p0(x ≥ 0.5) = 0.1,

u0(x ≥ 0.5) = 0.

(3.12)

The domain Ω is equal to [0, 1] and we study the numerical solution before the waves reach the
boundary ∂Ω. Thus, we impose the boundary conditions

(ρ, p, u)(t ≥ 0, x ∈ ∂Ω) = (ρ0, p0, u0)(x ∈ ∂Ω).

In Figure 3.1, we test the stability of the Godunov, of the all Mach Godunov and of the low Mach
Godunov scheme. With the Godunov scheme and the all Mach Godunov schemes, the norm |u2 +
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p2| stays bounded with time. With the low Mach Godunov scheme, the norm |u2 + p2| explodes
which means that the low Mach Godunov scheme is not stable. These results are coherent with
Theorem 2.2.1. In Figure 3.2, we compare the Godunov scheme and the all Mach Godunov scheme
to the exact solution at time t = 0.2 s. The number of cells is equal to N = 1 000. The resulting
Mach number M verifies 0 ≤ M ≤ 0.95, so that we have both low Mach and order 1 Mach values.
Both schemes show a correct agreement with the exact solution. The all Mach Godunov scheme is
slightly less diffusive than the Godunov scheme. Let us underline that although parts of the solutions
clearly do not belong to the low Mach regime since max

(t,x)∈[0,0.2]×Ω
M ≈ 0.95, the all Mach Godunov

scheme is stable and provides right numerical results. In Figure 3.3, we perform a convergence study
on the density variable. The coarser and finer meshes contain N = 200 and N = 3 200 regular cells
respectively, and ∆x = 1

N . It may be checked that the convergence rate is very close to 0.65 in the L1

norm for both schemes [4, 41] but the all Mach Godunov scheme is more accurate than the Godunov
scheme.
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Figure 3.1: Sod shock tube (compressible flow) : |u2 + p2|(t) as a function of time for 0 ≤ t ≤ 0.007 s.
With the Godunov scheme and the all Mach Godunov scheme, the quantity |u2 +p2|(t) stays bounded
with time. The low Mach Godunov scheme is not stable since |u2 + p2|(t) explodes with time.

3.3.2 A 1D compressible flow: a modified Sod shock tube

We consider a modified version of the classical Sod shock tube [42] that can be found in [43]. The
solution consists of a right shock wave, a right travelling contact wave and a left sonic rarefaction
wave. This test is very useful in assessing the satisfaction of the entropic property of the numerical
methods. The initial conditions are

ρ0(x < 0.2) = 1,

p0(x < 0.2) = 1,

u0(x < 0.2) = 0.75

and


ρ0(x ≥ 0.2) = 0.125,

p0(x ≥ 0.2) = 0.1,

u0(x ≥ 0.2) = 0.

(3.13)

The domain Ω is equal to [0, 1] and we study the numerical solution before the waves reach the
boundary ∂Ω. Thus, the boundary conditions are those of §3.3.1.

In Figure 3.4, we test the stability of the Godunov, of the all Mach Godunov and of the low Mach
Godunov schemes. With the Godunov scheme and the all Mach Godunov schemes, the norm |u2 +
p2| stays bounded with time. With the low Mach Godunov scheme, the norm |u2 + p2| explodes
which means that the low Mach Godunov scheme is not stable. These results are coherent with
Theorem 2.2.1. In Figure 3.5, we compare the Godunov scheme and the all Mach Godunov scheme
to the exact solution at time t = 0.2 s. The number of cells is equal to N = 1 000. The resulting
Mach number M verifies 0 ≤ M ≤ 1.28, so that we have both low Mach and order 1 Mach values.
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Figure 3.2: Sod shock tube (compressible flow): density ρ (top left), velocity u (top right), pressure p
(bottom left) and Mach number M (bottom right) at time t = 0.2 s with N = 1 000 regular cells.
Both schemes show a correct agreement with the exact solution. The all Mach Godunov scheme is
stable and slightly less diffusive than the Godunov scheme.
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Figure 3.3: Sod shock tube (compressible flow): L1 norm of the error for the density at time t = 0.2 s
(logarithmic scales). The coarser and finer meshes contain N = 100 and N = 3 200 regular cells
respectively, and ∆x = 1

N . The all Mach Godunov scheme is more accurate than the Godunov scheme.
It may be checked that the convergence rate is very close to 0.65 in L1 norm [4, 41].
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Both schemes show a correct agreement with the exact solution and present the classical sonic point
glitch [37] in the left rarefaction wave. The all Mach Godunov scheme is slightly less diffusive than
the Godunov scheme but allows also to capture the entropic solution. Let us underline that although
parts of the solutions clearly do not belong to the low Mach regime since max

(t,x)∈[0,0.2]×Ω
M ≈ 1.28,

the all Mach Godunov scheme is stable and provides right numerical results. In Figure 3.3, we
perform a convergence study on the density variable. The coarser and finer meshes contain N = 100
and N = 3 200 regular cells respectively, and ∆x = 1

N . It may be checked that the convergence rate is
very close to 0.60 in the L1 norm for both schemes but the all Mach Godunov scheme is more accurate
than the Godunov scheme. We obtain similar results for a Rusanov, a HLLC or a Roe approximate
Riemann solver with or without the all Mach correction.
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Figure 3.4: Modified Sod shock tube (compressible flow) : |u2 + p2|(t) as a function of time for 0 ≤
t ≤ 0.0045 s. With the Godunov scheme and the all Mach Godunov scheme, the quantity |u2 + p2|(t)
stays bounded with time. The low Mach Godunov scheme is not stable since |u2 + p2|(t) explodes
with time.

3.3.3 A 1D compressible flow: a robustness test

We consider a test designed to assess the robustness and accuracy of the numerical methods [43]. Its
solution consists of a strong shock wave, a contact surface and a left rarefaction wave. The initial
conditions are 

ρ0(x < 0.5) = 1.0,

p0(x < 0.5) = 1000,

u0(x < 0.5) = 0.0

and


ρ0(x ≥ 0.5) = 1.0,

p0(x ≥ 0.5) = 0.01,

u0(x ≥ 0.5) = 0.0

(3.14)

The domain Ω is equal to [0, 1] and we study the numerical solution before the waves reach the
boundary ∂Ω. Thus, the boundary conditions are those of §3.3.1.

In Figure 3.7, we compare the Godunov scheme and the all Mach Godunov scheme to the exact
solution at time t = 0.012 s. The number of cells is equal to N = 2 000. The resulting Mach number
M verifies 0 ≤ M ≤ 1.9, so that we have both low Mach and order 1 Mach values. Both schemes
show a correct agreement with the exact solution. In Figure 3.8, we perform a convergence study on
the density and the velocity variables. The coarser and finer meshes contain N = 100 and N = 3 200
regular cells respectively, and ∆x = 1

N . It may be checked that the convergence rate is very close
to 0.56 in the L1 norm for the density and 0.85 for the velocity for both schemes. Since the most part
of the error is done on the contact discontinuity, we do not see any difference between the Godunov
scheme and the all Mach Godunov scheme convergence curves for the density variable. On the velocity
curve, we see that the all Mach Godunov scheme is more accurate than the Godunov scheme. We
obtain similar results for a Rusanov, a HLLC or a Roe approximate Riemann solver with or without
the all Mach correction.
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Figure 3.5: Modified Sod shock tube (compressible flow) : density ρ (top left), velocity u (top right),
pressure p (bottom left) and Mach number M (bottom right) at time t = 0.2 s with N = 1 000 regular
cells. Both schemes show a correct agreement with the exact solution. The all Mach Godunov scheme
is stable and slightly less diffusive than the Godunov scheme.
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Figure 3.6: Modified Sod shock tube (compressible flow) : L1 norm of the error for the density at
time t = 0.2 s (logarithmic scales). The coarser and finer meshes contain N = 100 and N = 3 200
regular cells respectively, and ∆x = 1

N . The all Mach Godunov scheme is more accurate than the
Godunov scheme. It may be checked that the convergence rate is very close to 0.60 in L1 norm [4, 41].
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Figure 3.7: A robustness test (compressible flow) : density ρ (top left), velocity u (top right), pressure p
(bottom left) and Mach number M (bottom right) at time t = 0.012 s with N = 2 000 regular cells.
Both schemes show a correct agreement with the exact solution.

0.03125

0.0625

0.125

0.25

0.5

0.000457247 0.00137174 0.00411523

er
ro

r
=

∥ρ
h

−
ρ

e
x
a
c
t∥

∆x

Godunov
AM-Godunov

1

0.03125

0.0625

0.125

0.25

0.5

1

0.000457247 0.00137174 0.00411523

er
ro

r
=

∥u
h

−
u

e
x
a
c
t∥

∆x

Godunov
AM-Godunov

1

Figure 3.8: A robustness test (compressible flow) : L1 norm of the error for the density and the velocity
at time t = 0.012 s (logarithmic scales). The coarser and finer meshes contain N = 100 and N = 3200
regular cells respectively, and ∆x = 1

N . It may be checked that the convergence rate is very close
to 0.56 in L1 norm for the density and 0.85 for the velocity. On the density variable, we do not
see any difference between both schemes because the most part of the error is done on the contact
discontinuity. If we look on the velocity variable, the all Mach Godunov scheme is more accurate.
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3.3.4 A 1D compressible flow: a vacuum test

We consider a test designed to assess the performance of the numerical methods for low-density
flows [43]. This test consists of two rarefaction waves and a trivial contact wave of zero speed. The
region between the two non-linear waves is close to vacuum. The initial conditions are

ρ0(x < 0.5) = 1.0,

p0(x < 0.5) = 0.4,

u0(x < 0.5) = −2.0

and


ρ0(x ≥ 0.5) = 1.0,

p0(x ≥ 0.5) = 0.4,

u0(x ≥ 0.5) = 2.0

(3.15)

The domain Ω is equal to [0, 1] and the boundary conditions are the same as in §3.3.2.

In Figure 3.9, we compare the Godunov scheme and the all Mach Godunov scheme to the exact
solution at time t = 0.15 s. The number of cells is equal to N = 2 000. The resulting Mach number M
verifies 0 ≤M ≤ 2.7, so that we have both low Mach and order 1 Mach values. Both schemes show a
correct agreement with the exact solution. In particular, they preserve the positivity of the solution.
In Figure 3.10, we perform a convergence study on the density and the velocity variables. The coarser
and finer meshes contain N = 100 and N = 3 200 regular cells respectively, and ∆x = 1

N . It may be
checked that the convergence rate is very close to 0.60 in the L1 norm for the density and 0.65 for the
velocity for both schemes.
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Figure 3.9: A vacuum test (compressible flow) : density ρ (top left), velocity u (top right), pressure p
(bottom left) and Mach number M (bottom right) at time t = 0.15 s with N = 2 000 regular cells.
Both schemes show a correct agreement with the exact solution.

3.3.5 A 2D low Mach number flow: a vortex in a box

We consider the low Mach test performed in [8, 6]. This test shows the influence of the cells geometry
on the behaviour of the Godunov scheme at low Mach number. Indeed, the Godunov scheme is
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Figure 3.10: A vacuum test (compressible flow) : L1 norm of the error for the density and for the
velocity at time t = 0.012 s (logarithmic scales). The coarser and finer meshes contain N = 100
and N = 3 200 regular cells respectively, and ∆x = 1

N . It may be checked that the convergence rate
is very close to 0.60 in L1 norm for the density and 0.65 for the velocity. The error done with both
schemes is almost the same.

accurate at low Mach number on triangular meshes [35, 18] while this is not the case on cartesian
meshes (this point – studied in detail in [15, 14] – is recalled in §1.1.5). We also show the improvement
of the all Mach Godunov scheme against the Godunov scheme when we consider cartesian meshes.
The computational domain is Ω = [0, 1]× [0, 1] with an initial condition given by

ρ0(x, y) = 1− 1
2tanh

(
y − 1

2

)
,

u0
x(x, y) = 2 sin2(πx) sin(πy) cos(πy) = sin2(πx) sin(2πy),

u0
y(x, y) = −2 sin(πx) cos(πx) sin2(πy) = − sin(2πx) sin2(πy),

p0(x, y) = 1000.

(3.16)

No-slip boundary conditions are imposed on the domain boundaries. We consider as reference solution
the solution obtained by the Godunov scheme on a 400×400 cartesian mesh with ∆x = ∆y = 0.0025:
see Figure 3.11. Indeed, according to Point 2 of Theorem 1.3.1 (obtained in the linear case), the
Godunov scheme is accurate at low Mach when ∆x = ∆y � M . Here, we have ∆x = ∆y ≈ M/10.
On Figure 3.11, the final time of computation is 0.125 s and we verify that the Mach number for the
resulting flows is of order 0.026 so that we are in the low Mach regime.

In Figure 3.12, we plot the velocity magnitude |u| obtained with the Godunov scheme and the all
Mach Godunov scheme on a coarser cartesian mesh (50 × 50 cells with ∆x = ∆y = 0.02) and with
the Godunov scheme on a triangular mesh with 2 300 cells. We observe that the Godunov scheme
is not accurate at low Mach number on this cartesian mesh (∆x = ∆y ≈ 10 × M), the solution
being extremely diffused over time. However, the all Mach Godunov scheme is accurate at low Mach
number on the same cartesian mesh (∆x = ∆y ≈ 10×M). Indeed, the solution obtained with the all
Mach Godunov scheme is close to the reference solution. Thus, the accuracy of the Godunov scheme
at low Mach number on cartesian meshes depends on the size of the cells and on the Mach number
– which is coherent with Points 1 and 2 of Theorem 1.3.1 – while this accuracy only depends on
the cell size for the all Mach Godunov scheme – which is coherent with Point 3 of Theorem 1.3.1.
In particular, the all Mach Godunov scheme is accurate at low Mach number on a cartesian mesh
verifying ∆x = ∆y � M . On triangular meshes, the solution obtained with the Godunov scheme is
close to the reference solution at low Mach number which means that the Godunov scheme is accurate
at low Mach number on triangular meshes independently of the Mach number.

The all Mach Godunov scheme on cartesian meshes can also be justified by the numerical cost of
the Godunov scheme at low Mach number. Indeed, to be accurate at low Mach number, the Godunov
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scheme needs a mesh size of ∆x = ∆y ≈ M/10. This equality is satisfied for the reference solution
in Figure 3.11 but the computation lasts 6 hours. The results obtained with the all Mach Godunov
scheme on the 50 × 50 cartesian mesh (see Figure 3.12) are as accurate as those obtained with the
Godunov scheme on the 400× 400 cartesian mesh but the computation only lasts 0.03 hour.

Figure 3.11: Vortex in a box (low Mach flow): velocity magnitude |u| (left picture) and Mach number
(right picture) at time t = 0.125 s for the reference solution obtained with the Godunov scheme on
a 400× 400 cartesian mesh (∆x = ∆y = 0.0025). Indeed, according to Point 2 of Theorem 1.3.1, the
Godunov scheme is accurate at low Mach number if ∆x = ∆y = 0.0025�Mach ≈ 0.01.

3.3.6 A 2D compressible flow: a 2D-Riemann problem

We consider a 2D Riemann problem that consists of 4 shock waves [6, 24]. This example tests the
stability of the all Mach Godunov scheme for a 2D compressible flow. We consider the domain Ω =
[0, 1]× [0, 1]. The initial condition is

(ρ, ux, uy, p)
0 (x, y) =



(0.1308, 1.206, 1.206, 0.029) , if x < 0.5 and y < 0.5,

(0.5323, 0.000, 1.206, 0.300) , if x ≥ 0.5 and y < 0.5,

(0.5323, 1.206, 0.000, 0.300) , if x < 0.5 and y ≥ 0.5,

(1.5000, 0.000, 0.000, 1.500) , otherwise.

(3.17)

We impose exact boundary conditions. This means that we impose at the boundary of the domain
the exact value of the solution. In fact, the value at each boundary corresponds to the resolution
of a 1D shock. The final time of computation is t = 0.4 s. This configuration leads to a Mach
number that ranges from 10−5 to 3.15 (see Figure 3.13). Thus, according to the regions of the
computational domain, the flow belongs to the low Mach regime or to the order 1 Mach regime. We
did the computation on cartesian and triangular meshes (see Figures 3.14 and 3.15).

We consider as a reference solution the approximation obtained with the Godunov scheme on
a 600×600 cartesian mesh. In Figure 3.13, we plot the velocity magnitude |u| and the Mach number of
the reference solution. In Figure 3.14 (respectively Figure 3.15), we display the velocity magnitude |u|
obtained on a 200 × 200 cartesian mesh (respectively on a triangular mesh with 40 300 cells) with
the Godunov scheme and the all Mach Godunov scheme. We see that the all Mach Godunov scheme
is stable for this test case which has regions with low and order 1 Mach number values. Moreover,
since the all Mach Godunov scheme reduces the numerical diffusion of the Godunov scheme, the wave
pattern at the center of the domain is better captured (on cartesian and triangular meshes) when one
uses the all Mach Godunov scheme. This allows to apply the all Mach Godunov scheme on hybrid
meshes containing triangular and cartesian cells. Our results are similar to those obtained by Chalons,
Girardin and Kokh in [6] with a corrected Lagrange + Projection scheme on cartesian meshes (this
scheme is described in §2.2.5 in the linear case).
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Cartesian mesh Godunov scheme All Mach Godunov scheme

Legend Triangular mesh Godunov scheme

Figure 3.12: Vortex in a box (low Mach flow): velocity magnitude |u| obtained at time t = 0.125 s
on a 50 × 50 cartesian mesh (∆x = ∆y = 0.02) on the top row and on a triangular mesh with 2 300
cells on the bottom row. The Godunov scheme is not accurate at low Mach number on this cartesian
mesh (top middle): the solution is strongly diffused over time. The all Mach Godunov scheme (top
right) is accurate at low Mach number on this cartesian mesh: the solution is close to the reference
solution (see Figure 3.11). On triangular meshes, the Godunov scheme (bottom right) is accurate at
low Mach number: the solution is close to the reference solution (see Figure 3.11).

Figure 3.13: 2D-Riemann problem: velocity magnitude |u| (left) and Mach number (right) for the
reference solution obtained with the Godunov scheme on a 600×600 cartesian mesh with ∆x = ∆y =
0.0017.
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Cartesian mesh Legend

Godunov scheme All Mach Godunov scheme

Figure 3.14: 2D-Riemann problem: velocity magnitude |u| obtained on a 200 × 200 cartesian mesh.
The all Mach Godunov scheme is stable. Moreover, since we reduce the numerical diffusion of the
scheme, the all Mach Godunov scheme is closer to the reference solution than the Godunov scheme.
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Triangular mesh Legend

Godunov scheme All Mach Godunov scheme

Figure 3.15: 2D-Riemann problem: velocity magnitude |u| obtained on a triangular mesh with 40 300
cells. The all Mach Godunov scheme is stable on triangular meshes. Moreover, since we reduce the
numerical diffusion of the scheme, the all Mach Godunov scheme is closer to the reference solution
than the Godunov scheme.
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Conclusion

Through the study of the linear wave equation discretized with a Godunov scheme, we have pro-
posed in Chapter 1 a simple all Mach correction to apply to any Godunov type scheme solving the
compressible Euler system to make this scheme accurate in the incompressible regime as well as in
the compressible regime. We have named this modified scheme all Mach Godunov type scheme. The
short time behaviour of the solution of the first order equivalent equation associated with the all
Mach Godunov scheme applied to the linear wave equation justifies this correction when the mesh is
cartesian.

In the non-linear barotropic case and when the Godunov type scheme is a Roe scheme, we justify in
Chapter 2 this approach with a formal asymptotic expansion. Moreover, a linear stability result shows
that this all Mach Roe scheme should be stable in the non-linear barotropic case.

Numerical results systematically justify the theoretical results obtained in Chapter 1 and 2.

At last, we have proposed numerous numerical results in Chapter 3 that justify the all Mach correction
in the case of the full compressible Euler system when the Godunov type scheme is the Godunov
scheme.

The proposed theoretical results have been obtained in the periodic case. Since the aim of this
study is to obtain all Mach Godunov type schemes that can be applied to the modelling of a nuclear core
and since a nuclear core is not a periodic domain, we will have to study the influence of non-periodic
boundary conditions on the accuracy and stability of these all Mach Godunov type schemes.

Furthermore, the entropic properties of the all Mach schemes should be analyzed deeply from a
theoretical point of view. Indeed, the all Mach correction reduces the numerical diffusion of the
scheme and, then, plays a role on the entropic properties. Nevertheless, the all Mach Godunov type
schemes studied in this paper capture the entropic solution in all our numerical test cases.

Moreover, the low Mach number problem was analyzed in the case of the first order Godunov type
schemes. Nevertheless, it seems that higher Godunov type scheme have a similar lack of accuracy at
low Mach number. Thus, the case of higher order Godunov type schemes should also be analyzed by
using the proposed approach.

At last, the low Mach number problem defined in this paper as well as the proposed linear stability
results are linked to the discretization of the spatial operators and not to the discretization of the time
operators. Thus, the possible inaccuracy or the stability constraints linked to the discretization of the
time operators at low Mach number should be analyzed by extending the proposed approach and by
also finding possible links with the approach proposed in [10].
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Appendix A

Definitions of E and (E)⊥ in the discrete
case

We recall in this annex the definitions of E∆
h ,
(
E∆
h

)⊥
, E�

h and
(
E�
h

)⊥
proposed in §3.4 of [15]. The way

to construct these spaces is studied more deeply in [14] by also taking into account a porosity that
plays the role of a weight in these spaces.

The discrete spaces E∆
h and

(
E∆
h

)⊥
are discrete versions of respectively E and (E)⊥ when the mesh

is triangular; the discrete spaces E�
h and

(
E�
h

)⊥
are discrete versions of respectively E and (E)⊥ when

the mesh is cartesian. The subscript h recalls that E∆
h ,
(
E∆
h

)⊥
, E�

h and
(
E�
h

)⊥
are discrete spaces, h

being a characteristic length of the mesh. At last, we recall that the continuous spaces E and (E)⊥

are defined with

E =
{
q ∈ (L2(T))1+d : ∇r = 0 and ∇ · u = 0

}
=

{
q ∈ (L2(T))1+d : ∃(a,b) ∈ R1+d and ∃ψ ∈ H1(T) such that r = a and u = b +∇× ψ

}
,

E⊥ =

{
q ∈ (L2(T))1+d :

∫
T
rdx = 0 and ∃φ ∈ H1(T) such that u = ∇φ

}

where (L2(T))1+d :=

{
q :=

(
r
u

)
:

∫
T
r2dx +

∫
T
|u|2dx < +∞

}
is equipped with the inner prod-

uct 〈q1, q2〉 =

∫
T
q1q2dx.

A.1 Definitions of E∆
h and

(
E∆
h

)⊥
Let us suppose that all cells Ωi of the mesh are triangles Ti arranged so that the computational domain
is periodic. In §3.4.1 of [15], we define E∆

h with

E∆
h =

{
q :=

(
r
u

)
∈ R3N such that ∃(a, b, c, ψh) ∈ R3 × Vh

such that ∀Ti : ri = c and ui =

(
a
b

)
+ (∇× ψh)|Ti

}

where

Vh :=
{
ψh ∈ C0(Td), ψh periodic on Td such that ∀Ti : (ψh)|Ti ∈ P 1(Ti)

}
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is the standard P 1 (first-order polynomial functions) Lagrange finite element space associated with
this triangular mesh. Then, we show that (see Lemma 3.1 in [15])

(
E∆
h

)⊥
=

{
q :=

(
r
u

)
∈ R3N such that

∑
i

|Ti|ri = 0 and

∃φh ∈Wh such that ∀Ti : ui = (∇φh)|Ti

}
where

Wh :=
{
φh ∈ L2(Td), φh periodic on Td such that ∀Ti : (φh)|Ti ∈ P 1(Ti)

and φh is continuous at the edge midpoints
}

is the nonconforming Crouzeix-Raviart P 1 finite element space associated with this triangular mesh.

A.2 Definitions of E�
h and

(
E�
h

)⊥
We now suppose that the computational domain is a rectangle and that the mesh is made up of
Nx ×Ny rectangles Ωi,j of constant size ∆x×∆y where Nx and Ny are the numbers of cells in the x
and y directions. In §3.4.2 of [15], we define E�

h with

E�
h =

{
q :=

(
r
u

)
∈ R3NxNy such that ∃(a, b, c, (ψi,j)) ∈ R3 × RNxNy

such that ∀(i, j) : ri,j = c and ui,j =

(
a
b

)
+


ψi,j+1 − ψi,j−1

2∆y

−ψi+1,j − ψi−1,j

2∆x
.


}
.

Then, we show that (see Lemma 3.2 in [15])

(
E�
h

)⊥
=

{
q :=

(
r
u

)
∈ R3NxNy such that

∑
(i,j)

ri,j = 0

and ∃(φi,j) ∈ RNxNy such that ui,j =


φi+1,j − φi−1,j

2∆x

φi,j+1 − φi,j−1

2∆y


}
.

Let us note that we suppose above that both Nx and Ny are odd. If this is not the case, the situation
is a little more involved due to even/odd decoupling which may produce checkerboard modes.



Appendix B

The linear Godunov scheme and the
subsonic case

B.1 The linear Godunov scheme

The linear equation

∂tq + u∗ · ∇q +
a∗
M
Lq = 0 (B.1)

may be written as
∂tq +Ax∂xq +Ay∂yq +Az∂zq = 0

where

Ax =


u∗,x

a∗
M

0 0
a∗
M

u∗,x 0 0

0 0 u∗,x 0
0 0 0 u∗,x

 , Ay =


u∗,y 0

a∗
M

0

0 u∗,y 0 0
a∗
M

0 u∗,y 0

0 0 0 u∗,y

 and Az =


u∗,z 0 0

a∗
M

0 u∗,z 0 0
0 0 u∗,z 0
a∗
M

0 0 u∗,z

 .

System (B.1) can also be written as

∂tq +A(n)∂ζq = 0, (B.2)

where A(n) = Axnx +Ayny +Aznz that is to say

A(n) = (u∗ · n)1 +

 0
a∗
M

nT

a∗
M

n 0

 ,

1 being the identity matrix in R4×4. By integrating (B.2) on Ωi and by applying the Gauss law, we
obtain

d

dt

∫
Ωi

q(t,x)dx +
∑

Γij⊂∂Ωi

∫
Γij

A(nij)qds = 0.

By supposing that q(t,x) is constant and equal to qi(t) in Ωi and by approximating the flux A(n)q with
A(nij)qRP,ij on each edge Γij where qRP,ij is the solution of the one-dimensional Riemann problem in
the nij direction 

∂tq +A(nij)∂ζq = 0,

q(t = 0, ζ) =


qi if ζ < 0,

qj if ζ ≥ 0,

(B.3)

we obtain the (semi-discrete) Godunov finite volume scheme

|Ωi|
d

dt
qi +

∑
Γij⊂∂Ωi

|Γij |ΦGodunov
ij = 0. (B.4)
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Since the matrix A does not depend on q, the Godunov flux ΦGodunov
ij can also be written as

ΦGodunov
ij = A(nij)

qi + qj
2
− |A(nij)|

2
· (qj − qi) with |A(nij)| :=

4∑
k=1

|λk|rk ⊗ lk (B.5)

where λk are the eigenvalues of A(n)

λ1 = u∗ · n−
a∗
M

λ2 = u∗ · n, λ3 = u∗ · n, λ4 = u∗ · n +
a∗
M
,

with a complete set of linearly independent right eigenvectors

r1 = β

(
1
−n

)
, r2 =

(
0
ta

)
, r3 =

(
0
tb

)
, r4 = β

(
1
n

)
and left eigenvectors

lT1 =


1

2β

− n

2β

 , lT2 =

(
0

ta

)
, lT3 =

(
0

tb

)
, lT4 =


1

2β
n

2β


where β2 = 1/2 and (ta, tb,n) defines an orthonormal basis of R3. The left eigenvectors lk are such
that lm · rn = δmn (δmn is the Kronecker symbol). Knowing this, the Godunov flux (B.5) can be
written as

ΦGodunov
ij = u∗ · nij

 ri + rj
2

ui + uj
2

+
a∗
M

 ui + uj
2

· nij
ri + rj

2
nij


− 1

4

∣∣∣u∗ · nij − a∗
M

∣∣∣ [(rj − ri)− (uj − ui) · nij ]
(

1

−n

)

− 1

2
|u∗ · nij |

(
0

− [(uj − ui)× nij ]× nij

)

− 1

4

∣∣∣u∗ · nij +
a∗
M

∣∣∣ [(rj − ri) + (uj − ui) · nij ]
(

1

n

)
(B.6)

because
[
(uj − uj) · taij

]
taij +

[
(uj − uj) · tbij

]
tbij = − [(uj − ui)× nij ] × nij . Indeed, for any v ∈ R3,

we have (v · ta)ta + (v · tb)tb = −(v× n)× n. In 3D, it is slightly more complicated to work with taij
and tbij because the basis (taij , t

b
ij) has to be constructed, while nij is usually at hand. Nevertheless,

the operator × has no sense in 1D and 2D but we can also use (B.6) if we use the following notation

(v × n)× n :=

{
0, in 1D,

− (v · t) t, in 2D,
(B.7)

where in 2D t is easily deduced from n.

B.2 The linear Godunov scheme in the subsonic case

We write the linear Godunov scheme (B.4) (B.6) in the subsonic case

|u∗| <
a∗
M

(subsonic condition).
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Then, we have u∗ ·n− a∗
M < 0 and u∗ ·n+ a∗

M > 0 and the Godunov flux ΦGodunov
ij (B.6) takes the form

ΦGodunov
ij :=

1

2

(
(u∗ · nij) [ri + rj + (ui − uj) · nij ]

(u∗ · nij) [(ui + uj) + (ri − rj)nij ]− |u∗ · nij | [(ui − uj)× nij ]× nij

)

+
a∗

2M

(
(ui + uj) · nij + ri − rj

[ri + rj + (ui − uj) · nij ] nij

)
. (B.8)
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Appendix C

The all Mach Roe scheme for the
barotropic Euler system

We firstly construct the Roe scheme applied to the barotropic Euler system (2) when the flow is
subsonic. Then, we specify the all Mach version of this scheme deduced from (3.1) and (3.2). Finally,
we write the dimensionless version of this all Mach Roe scheme used in the asymptotic expansion
proposed in Section 2.3.

C.1 The Roe scheme for the barotropic Euler system

Let us apply the finite volume scheme

d

dt

∫
Ωi

U(t,x)dx +
∑

Γij⊂∂Ωi

∫
Γij

f(U) · nds = 0 (C.1)

to the barotropic Euler system (2) written in 3D. In (C.1), U := (ρ, ρu)T and the flux f(U) is the 4×3
matrix

f(U) =

(
ρuT

ρu⊗ u + p1

)
=: (fx, fy, fz)

(1 is the identity matrix in R3×3). Thus, the flux in the direction n is defined by

f(U) · n = (nxfx + nyfy + nzfz)(U) =


ρu · n

ρuxu · n + pnx
ρuyu · n + pny
ρuzu · n + pnz

 =


ρu · n

ρ (u · n) u + pn

 .

The Roe scheme is an approximation of (C.1) given by

|Ωi|
d

dt
Ui(t) +

∑
Γij⊂∂Ωi

|Γij |ΦRoe
ij = 0 (C.2)

where ΦRoe
ij is an approximation on the interface Γij of f(U) · n. Since the Roe scheme is an upwind

scheme [17], ΦRoe
ij is given by

ΦRoe
ij =

f(Ui) + f(Uj)
2

· nij −
|Anij (Ui,Uj)|

2
· (Uj − Ui). (C.3)

where Anij (Ui,Uj) is an approximation on Γij of the jacobian matrix

An(U) :=
Df(U) · n

DU =

(
0 nT

a2n− (u · n) u u⊗ n + (u · n) 1

)
=: A.
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More precisely, Anij (Ui,Uj) = Anij (Uij) where Uij is an average state on Γij satisfying

(f(Uj)− f(Ui)) · nij = Anij (Uij) (Uj − Ui) .

Then, Uij is computed with the Roe average state [17]

ρij =
√
ρiρj , ux,ij =

√
ρiux,i +

√
ρjux,j√

ρi +
√
ρj

, uy,ij =

√
ρiuy,i +

√
ρjuy,j√

ρi +
√
ρj

, uz,ij =

√
ρiuz,i +

√
ρjuz,j√

ρi +
√
ρj

and

a2
ij =


∆p

∆ρ
, if ∆ρ 6= 0,

p′(ρi), otherwise

with the notation ∆(·) = (·)j − (·)i. Now, we have to compute |An(UL,UR)| · (∆ρ,∆(ρu))T . One of
the features of the Roe scheme is that the mean states (ρij ,uij) satisfy the relation

∆(ρu) = ρij∆u + (∆ρ)uij .

Moreover, for any (Ui,Uj ,n), |An(Ui,Uj)| = |An(Uij)| :=
4∑

k=1

|λk|rijk ⊗ lijk where

λ1 = u · n− a, λ2 = u · n, λ3 = u · n, λ4 = u · n + a

are the eigenvalues of An(U) with a complete set of linearly independent right eigenvectors

r1 =

(
1

u− a n

)
, r2 =

(
0
ta

)
, r3 =

(
0
tb

)
, r4 =

(
1

u + a n

)
and left eigenvectors

lT1 =

 1

2
+

u · n
2a

− n

2a

 , lT2 =

( −ta · u

ta

)
, lT3 =

( −tb · u

tb

)
, lT4 =

 1

2
− u · n

2a
n

2a


where (n, ta, tb) is an orthonormal basis of R3. The left eigenvectors lk are such that lm · rn = δmn
(δmn is the Kronecker symbol). Noting αijk := lijk (Uj − Ui), the Roe-flux ΦRoe

ij can also be written as

ΦRoe
ij =

f(Ui) + f(Uj)
2

· nij −
1

2

4∑
k=1

|λijk |α
ij
k rijk

where

αij1 = 1
2∆ρ− ρij

2aij
∆ (u · n) , αij2 = ρij∆

(
u · taij

)
, αij3 = ρij∆

(
u · tbij

)
, αij4 = 1

2∆ρ+
ρij
2aij

∆ (u · n) .

Then, we obtain the following flux in the barotropic case

ΦRoe
ij =

f(Ui) + f(Uj)
2

· nij −
1

4
|uij · nij − aij |

(
∆ρ− ρij

aij
∆ (u · nij)

)(
1

uij − aijnij

)
− 1

2
|uij · nij | ρij

(
0

− [∆u× nij ]× nij

)
− 1

4
|uij · nij + aij |

(
∆ρ+

ρij
aij

∆ (u · nij)
)(

1
uij + aijnij

)
(C.4)

because
[
∆u · taij

]
taij +

[
∆u · tbij

]
tbij = − [∆u× nij ]× nij . Nevertheless, the operator × has no sense

in 1D and 2D but we can also use (C.4) if we use the notation (B.7).
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Moreover, we know that the Roe scheme is not entropic for sonic points. The entropy fix of van
Leer and al. [44] (or Harten [22]) is applied on the acoustic waves (k = 1 and k = 4) and corresponds
to adding viscosity near sonic points. We replace the absolute value |λij1 | = |uij · nij − aij | and

|λij4 | = |uij · nij + aij | in formula (C.4) by a smooth parabolic regularization | · |∗ defined by

∣∣∣λijk ∣∣∣∗ =


|λijk | if |λijk | ≥ 2∆λk,

(
λij
)2

4∆λk
+ ∆λk otherwise,

with ∆λk =


(λk)j − (λk)i if (λk)i ≤ 0 ≤ (λk)j ,

0 otherwise.

(C.5)

For small Mach number, there is no sonic point and this correction has no influence on the scheme.

C.2 The Roe scheme for the barotropic Euler system in the subsonic
case

We write the barotropic Roe scheme (C.2)(C.4) in the subsonic case

|uij · nij | < aij .

Then, we have uij · nij − aij < 0 < uij · nij + aij and we can write (C.4) as

ΦRoe
ij =

f(Ui) + f(Uj)
2

· nij −
1

2
ρij

uij · nij
aij

∆ (u · nij)
(

1
uij

)
− 1

2
aij∆ρ

(
1

uij

)
− 1

2
aij (uij · nij) ∆ρ

(
0

nij

)
− 1

2
aijρij∆ (u · nij)

(
0

nij

)
− 1

2
|uij · nij | ρij

(
0

− [∆u× nij ]× nij

)
. (C.6)

Thus, by using (C.2) and (C.6), we obtain

d

dt
ρi +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
[
(ρiui + ρjuj) · nij +

ρij
aij

(uij · nij)(ui − uj) · nij

+ aij(ρi − ρj)
]

= 0,

d

dt
(ρiui) +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
{
ρi(ui · nij)ui + ρj(uj · nij)uj

+ aij(ρi − ρj) [uij + (uij · nij)nij ]
− ρij |uij · nij | [(ui − uj)× nij ]× nij

+
ρij(uij · nij)

aij
[(ui − uj) · nij ] uij

+ [pi + pj + ρijaij(ui − uj) · nij ] nij
}

= 0

(C.7a)

(C.7b)

with pk = p(ρk) and a2
ij =

pi − pj
ρi − ρj

if ρi 6= ρj and a2
ij = p′(ρi) otherwise.
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C.3 The all Mach Roe scheme for the barotropic Euler system in
the subsonic case

We deduce from (2.8), (2.9) and (C.7) that the all Mach Roe scheme in the barotropic and subsonic
case is given by

d

dt
ρi +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
[
(ρiui + ρjuj) · nij +

ρij
aij

(uij · nij)(ui − uj) · nij

+ aij(ρi − ρj)
]

= 0,

d

dt
(ρiui) +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
{
ρi(ui · nij)ui + ρj(uj · nij)uj

+ aij(ρi − ρj) [uij + (uij · nij)nij ]
− ρij |uij · nij | [(ui − uj)× nij ]× nij

+
ρij(uij · nij)

aij
[(ui − uj) · nij ] uij

+ [pi + pj + θijρijaij(ui − uj) · nij ] nij
}

= 0

(C.8a)

(C.8b)

with θij = θ(Mij) := min(Mij , 1) and Mij =
|uij |
aij

. The difference between (C.7) and (C.8) is only in

the last term of the left hand side of (C.7b) and (C.8b).

C.4 Dimensionless version of the all Mach Roe scheme in the sub-
sonic barotropic case

The dimensionless version of (C.8) is obtained by replacing in (C.8) pi, pj and aij respectively by
pi/M

2, pj/M
2 and aij/M where M is an order of the local Mach number Mij . This gives

d

dt
ρi +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
[
(ρiui + ρjuj) · nij +M

ρij
aij

(uij · nij)(ui − uj) · nij

+
aij
M

(ρi − ρj)
]

= 0,

d

dt
(ρiui) +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
{
ρi(ui · nij)ui + ρj(uj · nij)uj

+
aij
M

(ρi − ρj) [uij + (uij · nij)nij ]
−ρij |uij · nij | [(ui − uj)× nij ]× nij

+M
ρij(uij · nij)

aij
[(ui − uj) · nij ]uij

+

[
1

M2
(pi + pj) +

θij
M
ρijaij(ui − uj) · nij

]
nij

}
= 0

(C.9)

with θij = θ(Mij) := min(Mij , 1) and Mij = M
|uij |
aij

.



Appendix D

The all Mach Roe scheme for the
compressible Euler system

D.1 The Roe scheme for the compressible Euler system

Let us apply the finite volume scheme

d

dt

∫
Ωi

U(t,x)dx +
∑

Γij⊂∂Ωi

∫
Γij

f(U) · nds = 0 (D.1)

to the compressible Euler system (1) written in 3D. In (D.1), U := (ρ, ρu, ρE)T and the flux f(U) is
the 5× 3 matrix

f(U) =

 ρuT

ρu⊗ u + p1
(ρE + p) u

 =: (fx, fy, fz)

(1 is the identity matrix in R3×3). Thus, the flux in the direction n is defined by

f(U) · n = (nxfx + nyfy + nzfz)(U) =


ρu · n

ρuxu · n + pnx
ρuyu · n + pny
ρuzu · n + pnz
(ρE + p)u · n

 =


ρu · n

ρ (u · n) u + pn

(ρE + p)u · n

 .

The Roe scheme is an approximation of (D.1) given by

|Ωi|
d

dt
Ui(t) +

∑
Γij⊂∂Ωi

|Γij |ΦRoe
ij = 0 (D.2)

where ΦRoe
ij is an approximation on the interface Γij of f(U) · n. Since the Roe scheme is an upwind

scheme [17], ΦRoe
ij is given by

ΦRoe
ij =

f(Ui) + f(Uj)
2

· nij −
|Anij (Ui,Uj)|

2
· (Uj − Ui) (D.3)

where Anij (Ui,Uj) is an approximation on Γij of the jacobian matrix

An(U) :=
Df(U) · n

DU =


0 nT 0

(γ̂H − a2)n− (u · n)u (u · n)1 + u⊗ n− γ̂n⊗ u γ̂n

1

2
u · n

[
(γ̂ − 2)H − a2

]
HnT − γ̂(u · n)uT γu · n

 =: A

79
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where H = E + p/ρ, a =
√
γp/ρ and γ̂ = γ − 1. More precisely, Anij (Ui,Uj) = Anij (Uij) where Uij is

an average state on Γij satisfying

(f(Uj)− f(Ui)) · nij = Anij (Uij) (Uj − Ui) .

Moreover, for any (Ui,Uj ,nij), |Anij (Ui,Uj)| = |Anij (Uij)| :=
5∑

k=1

|λk|rijk ⊗ lijk where λk are the eigen-

values of Anij (Uij), associated with the left eigenvectors lijk and to the right eigenvectors rijk such

that lijm · rijn = δmn (δmn is the Kronecker symbol). An(U) has five real eigenvalues

λ1 = u · n− a, λ2 = u · n, λ3 = u · n, λ4 = u · n, λ5 = u · n + a

with a complete set of linearly independent right eigenvectors

r1 =

 1
u− a n

H − (u · n) a

 , r2 =

 1
u
|u|2/2

 , r3 =

 0
ta

u · ta

 , r4 =

 0
tb

u · tb

 , r5 =

 1
u + a n

H + (u · n) a

 .

where (n, ta, tb) is an orthonormal basis of R3. Noting αijk := lijk (Uj − Ui) the wave strengths, the
Roe-flux ΦRoe

ij can also be written as

ΦRoe
ij =

f(Ui) + f(Uj)
2

· nij −
5∑

k=1

|λijk |α
ij
k rijk .

Defining the average states ·ij by

ρij =
√
ρiρj , ux,ij =

√
ρiux,i +

√
ρjux,j√

ρi +
√
ρj

, uy,ij =

√
ρiuy,i +

√
ρjuy,j√

ρi +
√
ρj

, uz,ij =

√
ρiuz,i +

√
ρjuz,j√

ρi +
√
ρj

,

Hij =

√
ρiHi +

√
ρjHj√

ρi +
√
ρj

, hij = Hij −
uij · uij

2
, aij =

√
(γ − 1)hij ,

(D.4)

and using the relation Uj − Ui =
∑5

k=1 α
ij
k rijk , we find

αij1 =
∆p− ρijaij∆(u · n)

2a2
ij

, αij2 = ∆ρ− ∆p

a2
ij

, αij3 = ρij∆(u · taij),

αij4 = ρij∆(u · tbij), αij5 =
∆p+ ρijaij∆(u · n)

2a2
ij

.

Then, the Roe-flux ΦRoe
ij is given by

ΦRoe
ij =

f(Ui) + f(Uj)
2

· nij −
1

2
|uij · nij − aij |

∆p− ρijaij∆ (u · nij)
2a2

ij

 1
uij − aijnij

Hij − (uij · nij) aij



− 1

2
|uij · nij |

(
∆ρ− ∆p

a2
ij

) 1
uij

uij · uij
2

− 1

2
|uij · nij | ρij

 0
− [∆u× nij ]× nij

−uij · [[∆u× nij ]× nij ]



− 1

2
|uij · nij + aij |

∆p+ ρijaij∆ (u · nij)
2a2

ij

 1
uij + aijnij

Hij + (uij · nij) aij

 (D.5)
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because
[
∆u · taij

]
taij +

[
∆u · tbij

]
tbij = − [∆u× nij ]× nij . Nevertheless, the operator × has no sense

in 1D and 2D but we can also use (D.5) if we use the notation (B.7).

Moreover, we know that the Roe scheme is not entropic for sonic points. Here, we correct as in the
barotropic case, that is we replace the absolute value |λij1 | = |uij ·nij − aij | and |λij5 | = |uij ·nij + aij |
in formula (D.5) by a smooth parabolic regularization | · |∗ defined by (C.5). For small Mach number,
there is no sonic point and this correction has no influence on the scheme.

D.2 The Roe scheme for the compressible Euler system in the sub-
sonic case

We write the Roe scheme (D.2)(D.5) for the compressible Euler system in the subsonic case |uij ·nij | <
aij . Then, we have uij · nij − aij < 0 < uij · nij + aij and we can write (D.5) as

ΦRoe
ij =

f(Ui) + f(Uj)
2

· nij −
1

2
ρij

uij · nij
aij

∆ (u · nij)

 1
uij
Hij

− 1

2

∆p

aij

 1
uij
Hij


− 1

2
(uij · nij)

∆p

aij

 0
nij

uij · nij

− 1

2
aijρij∆ (u · nij)

 0
nij

uij · nij



− 1

2
|uij · nij |

(
∆ρ− ∆p

a2
ij

)
1

uij
uij · uij

2

− 1

2
|uij · nij | ρij

 0
− [∆u× nij ]× nij

−uij · [[∆u× nij ]× nij ]

 . (D.6)

Thus, by using (D.2) and (D.6), we obtain

d

dt
ρi +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
[

(ρiui + ρjuj) · nij + |uij · nij |
(
ρi − ρj −

pi − pj
a2
ij

)

+
ρij
aij

(uij · nij)(ui − uj) · nij +
1

aij
(pi − pj)

]
= 0,

d

dt
(ρiui) +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
{
ρi(ui · nij)ui + ρj(uj · nij)uj

+
ρij(uij · nij)

aij
[(ui − uj) · nij ] uij +

pi − pj
aij

[uij + (uij · nij)nij ]

+ |uij · nij |
(
ρi − ρj −

pi − pj
a2
ij

)
uij − ρij |uij · nij | [(ui − uj)× nij ]× nij

+ [pi + pj + ρijaij(ui − uj) · nij ] nij
}

= 0,

d

dt
(ρiEi) +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
{
ρiEi(ui · nij) + ρjEj(uj · nij)

+
ρij(uij · nij)

aij
[(ui − uj) · nij ]Hij +

pi − pj
aij

[
Hij + (uij · nij)2

]
+ |uij · nij |

(
ρi − ρj −

pi − pj
a2
ij

)
u2
ij

2
− ρij |uij · nij |uij · [[(ui − uj)× nij ]× nij ]

+ pi(ui · nij) + pj(uj · nij) + ρijaij(uij · nij)(ui − uj) · nij
}

= 0.

(D.7a)

(D.7b)

(D.7c)
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D.3 The all Mach Roe scheme for the compressible Euler system in
the subsonic case

We deduce from (3.1), (3.2) and (D.7) that the all Mach Roe scheme for the compressible Euler system
in the subsonic case is given by (D.7a), (D.7c) and

d

dt
(ρiui) +

1

2|Ωi|
∑

Γij⊂∂Ωi

|Γij |
{
ρi(ui · nij)ui + ρj(uj · nij)uj

+
ρij(uij · nij)

aij
[(ui − uj) · nij ] uij +

pi − pj
aij

[uij + (uij · nij)nij ]

+ |uij · nij |
(
ρi − ρj −

pi − pj
a2
ij

)
uij − ρij |uij · nij | [(ui − uj)× nij ]× nij

+ [pi + pj + θijρijaij(ui − uj) · nij ] nij
}

= 0 (D.8)

with θij = θ(Mij) := min(Mij , 1) and Mij =
|uij |
aij

. The difference between the Roe scheme for the

compressible Euler system and the all Mach Roe scheme for the compressible Euler system is only in
the last term in the left-hand side of (D.7b) and (D.8).
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de conservation dans un environnement SALOME/C++ via la librairie CDMATH. 2015. In
preparation. 54

[14] S. Dellacherie, J. Jung, and P. Omnes. A low Mach correction for the Godunov scheme applied
to the linear wave equation with porosity. In preparation. 7, 61, 69

[15] S. Dellacherie, P. Omnes, and F. Rieper. The influence of cell geometry on the Godunov scheme
applied to the linear wave equation. J. Comp. Phys., 229(14):5315–5338, 2010. 6, 7, 8, 9, 10, 15,
16, 24, 48, 61, 69, 70

83



84 BIBLIOGRAPHY

[16] F. Fillion, A. Chanoine, S. Dellacherie, and A. Kumbaro. Flica-ovap: a new platform for core
thermal-hydraulic studies. Proceedings of the 13th International Topical Meeting on Nuclear
Reactor Thermal Hydraulics (NURETH-13), 2009. 8

[17] E. Godlewski and P.-A. Raviart. In Numerical Approximation of Hyperbolic Systems of Conser-
vation Laws, volume 118 of Applied Mathematical Sciences, pages 215–220. Springer-Verlag, New
York, 1996. 35, 52, 54, 75, 76, 79

[18] H. Guillard. On the behavior of upwind schemes in the low Mach number limit. IV: P0 ap-
proximation on triangular and tetrahedral cells. Computers and Fluids, 38(10):1969–1972, 2009.
61

[19] H. Guillard and A. Murrone. On the behavior of upwind schemes in the low Mach number limit:
II. Godunov type schemes. Computers and Fluids, 33(4):655–675, 2004. 5

[20] H. Guillard and A. Murrone. Behavior of upwind scheme in the low Mach number limit: III. pre-
conditioned dissipation for a five equation two phase model. Computers and Fluids, 37(10):1209–
1224, 2008. 5

[21] H. Guillard and C. Viozat. On the behavior of upwind schemes in the low Mach number limit.
Computers and Fluids, 28:63–86, 1999. 5, 45

[22] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comp. Phys., 135:260–
278, 1997. 77

[23] P.D. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation.
Comm. Pure. Appl. Math., VII:159–193, 1954. 53

[24] P.D. Lax and X.-D. Liu. Solution of two-dimensional Riemann problems of gas dynamics by
positive schemes. SIAM Journal on Scientific Computing, 19(2):319–340, 1998. 62

[25] X.-S. Li and C.-W. Gu. An all-speed roe-type scheme and its asymptotic analysis of low Mach
number behaviour. J. Comp. Phys., 227:5144–5159, 2008. 8

[26] X.-S. Li, C.-W. Gu, and J.-Z. Xu. Development of roe-type scheme for all-speed flows based on
preconditioning method. Computers and Fluids, 38:810–817, 2009. 8

[27] M.-S. Liou. A sequel to ausm: Ausm+, part ii: Ausm+-up for all speeds. J. Comp. Phys.,
214(1):137–170, 2006. 8

[28] I. Mary and P. Sagaut. Large eddy simulation of flow around an airfoil near stall. AIAA Journal,
40(6):1139–1145, 2002. 8

[29] A. Mekkas, A. Talpaert, and S. Dellacherie. Toolbox CDMATH, 2015. 54

[30] Y. Moguen, S. Dellacherie, P. Bruel, and E. Dick. Momentum interpolation for quasi one-
dimensional unsteady low mach number flows with acoustics. Proceedings of the 11th World
Congress on Computational Mechanics (WCCM XI), ECCOMAS, 2014, 2014. 8

[31] K. Oßwald, A. Siegmund, P. Birken, V. Hannemann, and A. Meister. L2Roe: a low dissipation
version of Roe’s approximate Riemann solver for low Mach numbers. Int. J. for Num. Meth. in
Fluids, 81(2):71–86, 2015. 8, 34, 37, 38, 42, 43, 46, 47, 48

[32] H. Paillère, C. Viozat, A. Kumbaro, and I. Toumi. Comparison of low Mach number models for
natural convection problems. Heat and Mass Transfer, 36:567–573, 2000. 5

[33] F. Rieper. Influence of cell geometry on the behaviour of the first-order roe scheme in the low
Mach number regime. In R. Eymard and J.-M. Hérard, editors, Finite Volumes for Complex
Applications V, pages 625–632. Wiley, 2008. 7



BIBLIOGRAPHY 85

[34] F. Rieper. A low Mach number fix for roe’s approximate Riemann solver. Journal of Computa-
tional Physics, 230(13):5263–5287, 2011. 8, 34, 37, 38, 42, 43, 45, 46, 47, 48

[35] F. Rieper and G. Bader. The influence of cell geometry on the accuracy of upwind schemes in
the low Mach number regime. Journal of Computational Physics, 228(8):2918–2933, 2009. 7, 45,
61

[36] P.L. Roe. Approximate Riemann solvers, parameter vectors and difference schemes. J. Comp.
Phys., 43:357–372, 1981. 5, 16, 35, 36, 45, 46, 52

[37] P.L. Roe. Sonic flux formulae. SIAM journal on scientific and statistical computing, 13(2):611–
630, 1992. 57

[38] V.V. Rusanov. Calculation of intersection of non-steady shock waves with obstacles. Comput.
Math. Phys. USSR, 1:267–279, 1961. 53
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