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mutagenesis kit (Agilent Technologies, Santa Clara, CA) was used to per-
form site-directed mutagenesis of blaCMY-2 to produce blaCMY-69 accord-
ing to the manufacturer’s protocol.

PFGE. Pulsed-field gel electrophoresis (PFGE) was performed as re-
ported previously with the exception of the electrophoresis parameters
listed here (17). Briefly, genomic bacterial DNA was digested with XbaI
for 4 h at 37°C. Electrophoresis was performed on the CHEF-DR II system
using a 1% agarose gel at 200 V for 22 h, with an initial switch time of
2.2 s and a final switch time of 54.2 s. Gels were stained with ethidium
bromide and were then analyzed using GelCompar II software (Applied
Maths, Sint-Martens-Latem, Belgium). A dendrogram that compared all
isolates was constructed using GelCompar II software with the Dice coef-
ficient and the unweighted-pair group method with arithmetic means and
with a position tolerance of 1. The banding patterns of isolates required a
�2-band difference for the isolate to be considered a unique strain (18).

Determination of blaCMY background in strains. Plasmid prepara-
tions from plasmids conjugated into E. coli J53 were used to amplify
blaCMY by using the protocol published previously by Hanson et al. (19).
The amplified genes were sequenced using the following primers:
CMY2-F2 (ACGCTAACTCCAGCATTGGT) and CMY2-R2 (CAAACAG
ACCAATGCTGGAG). Sequencing data were assembled with Se-
quencher, version 5.0 (Gene Codes, Ann Arbor, MI).

Identification of blaTEM and blaSHV in strains. Total bacterial DNA
was used to amplify blaTEM and blaSHV according to previously published
methods (20, 21).

AST. MICs for various bacterial isolates were determined by the Mu-
eller-Hinton agar dilution method according to the Clinical and Labora-
tory Standards Institute guidelines (22). The MICs were measured using a
Steers replicator that delivered 10 �l of a diluted overnight culture con-
taining 104 CFU. Avibactam (AstraZeneca, Waltham, MA) was tested at 4
mg/liter in combination with increasing concentrations of ceftazidime
(Sigma-Aldrich). The structures of the compounds used in this study are
shown in Fig. 1.

Protein purification. The CMY-2 �-lactamase was purified as de-
scribed previously (14). Briefly, cultures were grown at 37°C in Super
Optimal Broth (SOB). The cells were then pelleted and were subjected to
stringent periplasmic fractionation. For periplasmic fractionation, cells
were incubated with lysozyme, Benzonase nuclease, and magnesium sul-
fate for 25 min, and with EDTA for an additional 5 min, and were then
centrifuged to pellet cellular debris. The enzyme was purified by prepar-
ative isoelectric focusing using the crude extracts, and then fast-protein
liquid chromatography purification was performed using a HiLoad 16/60
Superdex 75 gel filtration column. The purities of the proteins were as-
sessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
were determined to be �95%. Protein concentrations were determined by
a spectrophotometric assay (Bio-Rad Laboratories, Hercules, CA) using
bovine serum albumin as a standard according to the manufacturer’s
instructions (14).

Steady-state kinetic analysis. Kinetic parameters were determined
using an Agilent (Santa Clara, CA) 8453 diode array spectrophotometer.

All reactions were conducted in 10 mM phosphate-buffered saline (PBS)
at pH 7.4 at room temperature.

The Km and Vmax for CMY-2 and nitrocefin (NCF) were determined
by maintaining enzyme concentrations at 3 nM and using NCF in excess
molar concentration to establish pseudo-first-order kinetics. The subse-
quent data were fit to the Henri-Michaelis-Menten equation using En-
zFitter software (Biosoft Corporation, Ferguson, MO).

For the purposes of this study, the interactions between CMY-2 and
avibactam are represented according to the following scheme, which
is based on previous work with TEM-1 and avibactam (4,
23):

where E is the enzyme, I is the inhibitor, k1 is the association rate constant,
k�1 is the dissociation rate constant, k2 is the acylation rate constant, and
k�2 is the recyclization rate constant.

The determination of the apparent Ki (Ki app) has been described pre-
viously (24). Ki app was determined for CMY-2 by using a direct compe-
tition assay under steady-state conditions. CMY-2 was maintained at 3
nM while the avibactam concentration was varied. NCF was used as the
reporter substrate at a fixed concentration of 100 �M. CMY-2 �-lacta-
mase, avibactam, and NCF were mixed manually, and the reaction veloc-
ity for the first 5 s of the reaction was monitored. Data were linearized
using a Dixon plot of inverse initial steady-state velocities (1/V0) versus
inhibitor concentration [I]. Ki app was determined by dividing the value
for the y intercept by the slope of the line (25). The data were corrected to
account for NCF (Km � 11 � 1 �M) for the �-lactamase using equation 1:

Ki app �corrected� � Ki app �observed� ⁄ �1 � ��S� ⁄ �Km NCF���
(1)

where [S] is the concentration of substrate or NCF.
To obtain the onset of acylation k2/K, progress curves were obtained

by mixing CMY-2 at 5 nM with increasing concentrations of avibactam
using NCF at 100 �M as a reporter substrate (4). Progress curves were fit
to equation 2 to obtain the observed rate constant for inactivation (kobs).

y � Vf · x � �V0 � Vf� · �1 � exp��kobs · X�� ⁄ kobs � A0 (2)

Here, Vf is the final velocity, V0 is the initial velocity, and A0 is the
initial absorbance at a 	 of 482 nm. The data were plotted as kobs versus
[avibactam]. The k2/K value was obtained by correcting the value ob-
tained for the slope of the line (k2/K observed) for the use of NCF (Km

NCF � 11 � 1 �M) as an indicator substrate (equation 3).

k2 ⁄ K (corrected) � k2 ⁄ K (observed) · ���S� ⁄ Km NCF� � 1�
(3)

Partition ratios (kcat/kinact [where kinact is the rate constant of enzyme
inactivation]) at 24 h for �-lactamases with avibactam were obtained by
incubating CMY-2 with increasing concentrations of avibactam at room
temperature in 10 mM PBS, pH 7.4. The ratio of inhibitor to enzyme (I:E)
necessary to inhibit the hydrolysis of NCF by �99% was determined.
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FIG 1 Compounds used in this study. A dashed circle represents the carboxamide of avibactam.
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The koff of avibactam for CMY-2 was determined using a previously
published method (4). In these experiments, 3.9 �M CMY-2 was incu-
bated with 19.5 �M avibactam for 5 min at room temperature; the mix-
ture was serially diluted to a final CMY-2 concentration of 390 pM; and
100 �M NCF was added. Progress curves measuring NCF hydrolysis were
collected for 1 h, and the data were fit to equation 2 to obtain koff. CMY-2
alone and avibactam alone were used as controls.

ESI-MS. To discern the nature of the intermediates of inactivation
by avibactam in the reaction pathway with the CMY-2 �-lactamase,
electrospray ionization (ESI) mass spectrometry (MS) was performed
on an Applied Biosystems (Foster City, CA) QStar Elite quadrupole
time-of-flight mass spectrometer equipped with a TurboIonSpray
source. The CMY-2 �-lactamase was incubated with avibactam for a
set time (i.e., 5 min or 24 h) at room temperature in 10 mM PBS, pH
7.4. The ratios of the inhibitor (I) (avibactam) to the enzyme (E)
(CMY-2) were approximately 1:1. The reactions were terminated by
the addition of 0.2% formic acid. All samples were desalted and were
concentrated by using a C18 ZipTip pipette tip (Millipore, Billerica,
Massachusetts) according to the manufacturer’s protocol. Eluted pro-
tein samples were diluted with 50% acetonitrile and 0.2% formic acid
to a concentration of 10 �M and were infused at a rate of 0.5 �l per
min, and data were collected for 2 min. The source temperature was set
at 300°C with an ion spray voltage of 5,500 V and with declustering
potential 1 (DP1) at 70 V and DP2 at 10 V. Spectra were deconvoluted
using the Applied Biosystems Analyst program.

Molecular modeling. The crystal structure of CMY-2 (PDB identifi-
cation [ID] 1ZC2) was used to construct Michaelis-Menten and acyl-
enzyme complexes with avibactam as described previously using Discov-
ery Studio, version 3.1 (DS 3.1) (Accelrys, Inc., San Diego, CA), molecular
modeling software (26). Avibactam was constructed using Fragment
Builder tools and was minimized using a Standard Dynamics Cascade
protocol of DS 3.1. The compound was automatically docked into the
active site of CMY-2 by using the CDOCKER module of DS 3.1. This
protocol uses a CHARMm-based molecular dynamics scheme to dock
ligands into a receptor-binding site.

Molecules were automatically typed by the CHARMm force field us-
ing the Momany-Rone partial charge estimation method (27). This
method uses an algorithm that attempts to match atoms in the molecule
with those defined by the force field atom templates. When a match is
found, the force field types and partial charges from the template are
assigned to those atoms in the molecule. CHARMm was chosen because it
is a general-purpose all-atom force field with wide coverage for proteins,
nucleic acids, and general organic molecules.

The best conformations were automatically aligned to polar and apo-
lar active-site “hot spots,” and the best-scoring poses were reported. At
this step, the hydrogen atoms were not maintained. To further optimize
the docked poses (i.e., to add hydrogens and prevent clashes between the
receptor and ligand), a CHARMm minimization step was used. Here, the
SMART (simultaneous multiplicative algebraic reconstruction tech-
nique) minimization algorithm was employed (i.e., 1,000 steps of steepest
descent with a root mean square [RMS] gradient tolerance of 3 Å, fol-
lowed by conjugate gradient minimization, with an RMS deviation
[RMSD] minimization gradient of 0.001 Å). For the final minimization of
the avibactam conformations docked into the active site of CMY-2, an
RMSD cutoff of 1 Å was chosen.

The resulting conformations of CMY-2–avibactam complexes were
analyzed; the most favorable positioning of avibactam was chosen (i.e.,
the C-7 carbonyl of avibactam oriented toward the amide backbones of
Ser64 and Ser318); and the complexes between the enzyme and inhibitor
were created, as described previously (28). To check the stability of the
complexes, 6-ps molecular dynamics simulations (MDS) were conducted
for the CMY-2–avibactam Michaelis and acyl-enzyme complexes (28).
During the heating/cooling, equilibration, and production stages of MDS,
a temperature of 300 K and a constant pressure were maintained. The
long-range electrostatic interactions were treated with the Particle Mesh

Ewald method and explicit solvation with Periodic Boundary Conditions.
The MDS and the production step of MDS for CMY-2–avibactam com-
plexes were run without any constraints.

RESULTS AND DISCUSSION
CMY-producing E. coli strains are genetically diverse. We de-
tected blaCMY-2 in 27 of the 28 isolates tested; 1 isolate possessed
blaCMY-69. In addition, five isolates carried blaTEM, and two
strains possessed blaSHV. blaTEM and blaSHV PCR amplicons
were not subjected to DNA sequencing. PFGE analysis of the 28
clinical E. coli isolates carrying blaCMY-2 or blaCMY-69 revealed that
these strains made up a genetically heterogeneous population (Ta-
ble 1).

Avibactam combined with ceftazidime restores the suscepti-
bility of E. coli carrying blaCMY to ceftazidime. AST was con-
ducted on the E. coli clinical strains carrying blaCMY-2 or blaCMY-69,
and the results are summarized in Table 1. Ceftazidime MICs
ranged from 16 to �128 mg/liter. The ceftazidime-avibactam
combination lowered MICs to 0.5 mg/liter against all isolates
tested in this collection of diverse E. coli strains carrying blaCMY-2.
The ceftazidime-avibactam combination displayed a higher MIC
(i.e., 2 mg/liter) against a single isolate (strain 9592) possessing
blaCMY-69 than against the blaCMY-2-producing isolates.

Compared to CMY-2, the CMY-69 �-lactamase contained a
single amino acid substitution, A295P. To determine the contri-
bution of blaCMY-69 to the ceftazidime and ceftazidime-avibactam
MIC results, blaCMY-2 was altered to produce blaCMY-69, which was
expressed from the pBC SK(�) phagemid in an E. coli DH10B
background. The MICs of ceftazidime and ceftazidime-avibac-
tam were determined by the agar dilution method, and differ-
ence in ceftazidime-avibactam MICs was not observed (Table
1). Thus, the expression of blaCMY-69 was not the determining
factor for the elevated MIC against isolate 9592; porin loss, the
expression of another �-lactamase (the strain possesses TEM),
and/or the expression of an efflux pump may potentially play a
role. A previous study showed that porin loss in Enterobacter
cloacae can contribute to elevated ceftaroline-avibactam MICs
(29).

CMY-2 is inactivated by avibactam and maintains a stable
acyl-enzyme complex. The inhibitory ability of avibactam com-
pared to other �-lactamase inhibitors against CMY-2 was deter-
mined and is presented in Tables 2 and 3. Progress curves measur-
ing NCF hydrolysis were obtained for CMY-2 by using increasing
concentrations of avibactam (range, 0.5 to 10 �M) as a competitor
(Fig. 2A). Progress curves were fit using equation 2 to obtain kobs

values. kobs values were plotted against avibactam concentrations.
The results indicated fast acylation and weak encounter complex
binding for avibactam and CMY-2 (Fig. 2B) (4). The correspond-
ing k2/K value obtained for CMY-2 revealed that CMY-2 was in-
activated with a second-order rate constant of (4.9 � 0.5) � 104

M�1 s�1. The koff value of (3.7 � 0.4) � 10�4 s�1 suggested that
avibactam deacylated from CMY-2 slowly (Fig. 2C).

Analysis using mass spectrometry showed that the CMY-2–
avibactam acyl-enzyme complex was stable for as long as 24 h (Fig.
2D). Avibactam is a reversible inhibitor; thus, even if avibactam
deacylates from the CMY-2 �-lactamase during the 24 h, avibac-
tam remains in an active form. Thus, given the rapid acylation rate
of avibactam for CMY-2, free CMY-2 would not be observed using
mass spectrometry. In addition to the expected increase in mass as
a result of avibactam (
264 � 5 atomic mass units [amu]), the

4292



addition of another 
184 � 5 amu was observed in the avibactam
incubations, and the fixed proportion of this mass peak from 5
min to 24 h suggests that it is a mass spectrometry ionization
artifact (6, 30).

Insights and hypotheses about the potent inhibition profile
of avibactam against CMY-2. To obtain a broader perspective on
the inhibition of class C �-lactamases by avibactam, a molecular
model using the crystal structure of the CMY-2 apoenzyme
with avibactam docked into the active site was compared to the
crystal structure of the P. aeruginosa PAO1 AmpC enzyme
PDC-1 with avibactam (31). We chose PDC-1 because it is the
only class C �-lactamase that was characterized kinetically and

that possessed a solved avibactam acyl-enzyme structure (PDB ID
4HEF) (5, 6).

Intact avibactam was docked into the active site of the apo-
CMY-2 crystal structure (PDB ID 1ZC2) (Fig. 3A). The C-7 car-
bonyl of avibactam was positioned within the oxyanion hole
formed by residues Ser64 (2.9 Å) and Ser318 (3.0 Å). We recognize
that the general base involved in the acylation of avibactam is
debated for class C �-lactamases (32); Tyr150 and Lys67 are
hypothesized to be involved in the deprotonation of Ser64 (33–
40). The molecular representation generated here revealed that
both Tyr150 (3.0 Å) and Lys67 (2.8 Å) can form hydrogen-
bonding interactions with the hydroxyl side chain of the nu-
cleophilic residue Ser64, suggesting that either residue may be
involved in the acylation mechanism of avibactam. In addition,
a water molecule observed within hydrogen-bonding distance
of Tyr150 (3.0 Å) and Ser64 (2.8 Å) may play a role in proton
transfer for acylation.

Our simulation next revealed that the oxygen of the carboxam-
ide of avibactam was within hydrogen-bonding distance of Lys67
(2.6 Å). As anticipated, a dynamic hydrogen-bonding network
consisting of residues Thr316, Gly317, Ser318, Thr319, Ser343,
Asn346, and Arg349 (with Ser318 [2.7 Å], Thr319 [3.0 Å], and
Ser343 [3.0 Å] interacting directly with avibactam) was formed

TABLE 1 MICs of ceftazidime and ceftazidime-avibactam for the various E. coli clinical isolates containing blaCMY

E. coli strain CMY
Presence of
TEM or SHV

PFGE
resulta

MIC (mg/liter)b

Ceftazidime Ceftazidime-avibactam

DH10B No ND 0.12 �0.06
DH10B/pBC SK(�) blaCMY-2 CMY-2 No ND 32 0.12
DH10B/pBC SK(�) blaCMY-69 CMY-69 No ND 64 0.12
134 CMY-2 TEM 1 32 �0.06
660 CMY-2 No 2 64 �0.06
9592 CMY-69 TEM 3 �128 2
9292 CMY-2 No 4 128 0.12
9310 CMY-2 No 5 32 �0.06
9461 CMY-2 No 6 16 �0.06
9614 CMY-2 TEM 7a 32 �0.06
9790 CMY-2 No 8 64 0.12
10689 CMY-2 No 9 32 �0.06
10924 CMY-2 No 10 �128 0.5
10927 CMY-2 TEM 11a 64 0.12
11356 CMY-2 No 12 64 0.12
11521 CMY-2 No 3 64 �0.06
11584 CMY-2 No 11b 32 �0.06
11813 CMY-2 No 13 32 �0.06
8793 CMY-2 SHV 7b �128 0.5
2728 CMY-2 SHV 14 16 �0.06
2758 CMY-2 No 15 16 �0.06
3113 CMY-2 No 16 16 �0.06
3288 CMY-2 No 17 32 �0.06
3464 CMY-2 No 18 32 0.12
4139 CMY-2 No 19 �128 0.25
5275 CMY-2 No 20 16 �0.06
5336 CMY-2 No 21 32 0.12
6968 CMY-2 No 22 16 �0.06
7673 CMY-2 No 23 32 �0.06
8117 CMY-2 TEM 24 32 �0.06
8218 CMY-2 NO 25 16 �0.06
a Isolates with the same number and no letter are identical. Isolates with the same number and “a” or “b” are closely related. ND, not determined (control strains).
b Avibactam was maintained at a constant concentration of 4 mg/liter in the ceftazidime-avibactam combinations. MICs were measured in triplicate, and the mode is presented.

TABLE 2 Kinetic parameters for CMY-2 �-lactamase

Parameter CMY-2

NCF Km (�M) 11 � 1

Ki (�M)
Clavulanic acid 4,365 � 471a

Tazobactam 50 � 10a

Sulbactam 101 � 8a

a Data from reference 14.
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avibactam was still within hydrogen-bonding distance of Lys67
(2.5 Å) but now also was able to form hydrogen-bonding in-
teractions with Ser318 (2.8 Å). In addition, the sulfate rotated
90° toward Asn346 and was within hydrogen-bonding distance
of Ser318 (3.0 Å) and Asn346 (2.9 Å). In this pose, the complex
hydrogen-bonding network consisting of residues Thr316,
Gly317, Ser318, Thr319, Ser343, Asn346, and Arg349 was again
present.

Much as with acylation, the mechanism of deacylation of class
C �-lactamases is uncertain; however, Tyr150 is believed to be the
general base, with Lys67 involved in proton shuttling (32, 37, 41).
Continuing our analysis, we observed a water molecule within
hydrogen-bonding distance of Tyr150. Thus, potential for hydro-
lytic deacylation exists. However, the mass spectrometry studies
that we performed revealed that avibactam is not hydrolyzed ef-
fectively by CMY-2. The identity of the general base that removes
a proton from the secondary amine of avibactam in order for
recyclization (4–6) to occur is unclear, because no such residues
are within 3 Å of this proton. Thus, since neither hydrolysis nor
recyclization are likely events, the low koff value of CMY-2 is sup-
ported by our model.

Last, we compared the molecular representation of the CMY–
avibactam acyl-enzyme complex to the crystal structure of PDC-1
with avibactam (PDB ID 4HEF) (Fig. 3C). The observable differ-
ences between the structure and the model are that (i) the carbox-
amide of avibactam in complex with PDC-1 was within hydrogen-
bonding distance of Gln120 (3.0 Å) and Asn152 (3.0 Å); (ii) the
sulfate was more buried in the active site of PDC-1 than in that of
CMY-2 in our model as a result of hydrogen-bonding interactions
with the side chains of Lys315 (3.0 Å) and Thr316 (2.6 Å); and (iii)
there were more water molecules within the active site of PDC-1
than in that of CMY-2 (5).

Conclusion. Previous studies have reported that ceftazidime-
avibactam was effective against strains with complex �-lactamase
backgrounds (1, 2, 15, 16, 26, 30, 42–49). In our analysis, ceftazi-
dime-avibactam was a potent antibiotic combination against a
diverse collection of clinically derived E. coli strains bearing CMY
�-lactamase. Specifically, when avibactam was combined with
ceftazidime, ceftazidime MICs against E. coli strains producing
blaCMY-2 and blaCMY-69 were lowered. In addition, purified CMY-2
was rapidly inactivated by avibactam; deacylation of the acyl-en-
zyme complex was slow; and the complex was stable for as long as

24 h. These observations were supported by molecular modeling
of CMY-2 with avibactam, since the acyl-enzyme complex ap-
peared stable; however, the questions of why deacylation hydro-
lysis would not occur and how recyclization of avibactam would
take place remain to be determined.

Overall, our data show why avibactam will be a significant ad-
dition to the antibiotic armamentarium against E. coli strains pro-
ducing blaCMY-2 and blaCMY-69. Despite the diversity of these
strains, we note that the size of this bacterial collection limits the
results obtained. However, the clinical implications of these find-
ings are significant, since the dissemination of plasmidic AmpC
enzymes in E. coli is a major clinical threat. These studies provide
important findings that support the future development of novel
�-lactamase inhibitors.
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