
An Ontological Framework for Opportunistic Composition of IoT Systems

Vatsala Nundloll, Yehia Elkhatib, Abdessalam Elhabbash, Gordon S. Blair
Distributed Systems Lab, School of Computing and Communications, Lancaster University, UK

Email: y.elkhatib@lancaster.ac.uk

Abstract—As the number of connected devices rapidly inc-
reases, largely thanks to uptake of IoT technologies, there is
significant stimulus to enable opportunistic interactions be-
tween different systems that encounter each other at run time.
However, this is complicated by diversity in IoT technologies
and implementation details that are not known in advance. To
achieve such unplanned interactions, we use the concept of a
holon to represent a system’s services and requirements at a
high level. A holon is a self-describing system that appears as a
whole when viewed from above whilst potentially comprising
multiple sub-systems when viewed from below. In order to
realise this world view and facilitate opportunistic system
interactions, we propose the idea of using ontologies to define
and program a holon. Ontologies offer the ability to classify
the concepts of a domain, and use this formalised knowledge
to infer new knowledge through reasoning. In this paper, we
design a holon ontology and associated code generation tools.
We also explore a case study of how programming holons using
this approach can aid an IoT system to self-describe and reason
about other systems it encounters. As such, developers can
develop system composition logic at a high-level without any
preconceived notions about low-level implementation details.

1. Introduction

Facilitated by decreasing device costs, increasing con-
nectivity reach and capacity, and a wide range of emerging
applications (in business, health, security, etc.), the number
of IoT devices has been rising increasingly and incessantly.
A relatively early estimate [1] of the number of connected
devices was to rise from 1 billion in 2009 to more than 26
billion by 2020. More recent figures [2] indicate that we
already passed the figure of 26 billion connected devices in
2019. Further execution units, such as fog devices [3], are
also being deployed to provide support roles closer to the
end users [4].

This huge swarm of devices is made up of different
systems (e.g. smart vehicles, smart cities, digital health, etc.)
that are of varying technologies and operators. They co-
exist in shared environments where the need for interaction
between them is sometimes unplanned. Such opportunistic
composition is needed to build more complex applications,
i.e. ones that cross the boundaries of any single system,
making future IoT applications more adaptable and, as such,
more efficient and scalable.

However, developments in IoT systems have largely

Holon A

Holon B

(a) Discovery

Holon C

Holon A

Holon B

(c) Composition(b) Reasoning

Holon A

Holon B

Figure 1. An overview of how holons opportunistically compose to form
a more complex holon.

been intra-system, i.e. focusing on machine to machine
communication (M2M) within the confines of a single IoT
system. Little work has been done on enabling opportunistic
inter-system interaction. An example of this is composing
a system out of autonomous sub-systems, one managing a
smart vehicle and another a smart house that had no a priori
plan of interaction.

For such opportunistic interactions to take place, systems
need to be managed at a high level in order to facili-
tate abstract system intentions. We previously introduced
the concept of a holon [5], [6]: a self-describing system
that appears as a whole when viewed from above (i.e. by
the developer) whilst potentially comprising multiple sub-
systems when viewed from below (i.e. by the runtime).
This reduces the level complexity that a developer has to
deal with, allowing them to focus on a system as a first-
class programmatic abstraction that adapts to its operating
environment without necessarily being impeded by the low-
level internal details of the system and its components. In
this manner, the holon concept forms the basis of an ecology
where systems are able to opportunistically interact based on
context and compose to create more complex holons arising
spontaneously in a bottom-up manner (Fig. 1).

In this paper, we formalise this concept by presenting
an ontology for developing holons, which in turn facilitates
inter-IoT system composition through the 3 stages depicted
in Fig. 1: discovery, reasoning, and finally composition. The
ontology is defined in order to represent all system entities
and use them to form holons, and to use such holons to
compose higher level systems of systems, i.e. super-holons.
The contributions of this paper are as follows:

1) Design of a domain ontology to represent a holon,
using recognised ontologies for adaptive interaction in
heterogeneous environments;

2) Means to generate relevant UML and Java interfaces;
3) Detailed presentation of how our ontological frame-

work would work in a proof of concept IoT application.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/341307326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The remainder of the paper is structured as follows: Sec-
tion 2 presents a background on IoT ontologies; Section 3
details our ontology and how to use it to define a holon;
Section 4 describes how to program a holon; Section 5
presents a proof of concept of how to use our ontology to
build a complex application for the care of disabled patients;
Section 6 discusses the presented work and its implications;
and Section 7 concludes.

2. Background on IoT Ontologies

This section introduces ontologies, followed by an
overview of ontologies for IoT and similar systems.

2.1. What are ontologies?

An ontology is a formal descriptive notation given to
concepts that constitute a particular domain. Ontologies of-
fer a simple but powerful notion used to classify concepts of
a domain in the form of a superclass-subclass model and also
to define the relationships that exist among these different
concepts. Ontologies can describe the knowledge found in
a domain and act as a structural framework in classifying
and interpreting information. In addition to making domain
assumptions explicit, ontologies also permit analysis and po-
tential reuse of this domain knowledge. Enabling classified
information to be shared as a common vocabulary across
people and applications, ontologies are consequently paving
the way towards building a supportive infrastructure for
information exchange and discovery. Examples of ontology-
based solutions are the Semantic Desktop [7], and Semantic
Security Web Services (SSWS) [8].

2.2. Relevant ontologies

In search for an appropriate ontology to design a holon,
we have considered a number of existing sensor and obser-
vation ontologies1, namely OntoSensor, SWAMO, MMI De-
vice, SensorML, A3ME, Sensei Observation and Measure-
ment, and IoT-Lite. Observation ontologies have a similar
set of concepts such as entity/feature of interest, measure-
ments, and a context where these measurements apply. In
the following, we give a brief overview of these ontologies.

OntoSensor builds a knowledge base of sensor data, their
capabilities and measurements. However, it has not been
updated since 2008 and its concepts and properties are quite
disorganized, rendering the ontology unsuitable for use in
other applications. SWAMO focuses on a sensor domain,
and the processes to control sensors. Although it is actively
maintained, few concepts look mixed, for example accel-
eration seems to be part of a position class. MMI Device
is designed to model oceanographic devices, their measure-
ments and capabilities, but does not seem to be a complete
ontology. SensorML serves as a starting ontology for the

1. https://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor
_and_Observations_Ontologies

MMI Device, but is no longer maintained. Sensei Obser-
vation and Measurement annotates sensor observation data,
but it is not actively maintained either, and the properties do
not seem to be clearly defined. The A3ME ontology [9] has
been found suitable for the holon design due to its simple
classification for self-description and discovery of devices
and their capabilities in heterogeneous networks including
resource-constrained sensor nodes. Another ontology called
CoDAMOS [10] seems suitable to capture the requirements
of a holon. The ontology is actively maintained, is simple
and extensible.

Another interesting class of ontologies consists of onto-
logies created specifically for IoT systems. A representative
example of this class is IoT-Lite, a lightweight ontology
to represent IoT concepts, properties and services. It is an
instantiation of the Semantic Sensor Network (SSN) [11]
ontology, which describes different concepts of an IoT net-
work and the relationships therein. These ontologies are very
specific to IoT deployments whilst holons present a much
wider notion that can include IoT and other system types.
As such, we did not use these ontologies, but instead used
A3ME and CoDAMOS as starting points as they better suit
our holon needs.

3. Defining Holons

A holon is a unitary first-class programmatic entity that
can be used to model any distributed system. This simple
concept enables a developer to specify, manipulate, and
reason about systems in a programmatic manner. It also
enables the construction of new holons – i.e. systems of
systems – through holon composition.

We now describe how to specify a holon from a se-
mantic point of view, and then we outline how to use the
CoDAMOS and A3ME ontologies in the design of a holon.

3.1. Specifications of a Holon

Below we specify a holon through describing its funda-
mental services and properties.

HOLON: has parent another holon; has children some
other holon; supports service(s).
Membership properties of Holon: has Children, is
Member. Physical Properties of Holon: power level
(infinite/finite); location; mobile; OS; root access.
SERVICE: requires properties; desires properties;
guarantees properties; may provide properties; has an
/ exposes API (public URI).
PROPERTY: At Least Once is Better Than Best Effort;
At Most Once is Better Than Best Effort; Exactly Once
is Better Than At Least Once; Exactly Once is Better
Than At Most Once. At Least Once is Exactly At Most
Once (this constraint is subjective).

The subsequent sections show how the CoDAMOS and
A3ME ontologies have been used to model the holon.



3.2. Holon design using CoDAMOS

This section shows the different concepts of the
CoDAMOS ontology, and highlights the different ontology
entries that have been extended in order to accommodate the
definition of a holon. The CoDAMOS ontology is divided
under four basic concepts: User, Environment, Platform
and Service. The User concept denotes a profile, a role,
a mood; can make use of an I/O device; and defines a
task. The task executes an activity, and uses a service. The
Environment concept defines a location, a time period, and
an environmental condition. The location can be relative/ab-
solute, and can be an address. Examples of environmental
conditions are temperature, pressure, humidity, lighting and
noise. The Platform concept provides a service that is used
by the User, and is related to the Environment concept
through the hasEnvironment property. The Service concept
has a service profile, a service model, and a service ground-
ing. A Software concept links to Service through a property
called providesService, whilst a Task concept makes use
of that Service. Other resources such as memory, network,
power or storage can also be modelled, and the Software
concept can be differentiated as middleware, OS, rendering
engine or virtual machine.

Figure 2. Holon Concepts

Fig. 2 demonstrates how the node and holon concepts
have been defined in the ontology. Fig. 2(a) shows the Node
concept, which is categorized as an abstract or a physical
node. Fig. 2(b) depicts the Holon concept, classifiable as a
Root_Holon, which has no parent but has a number of child
holons; a Parent_Holon that can also be a root or have a
number of children; and a Leaf_Holon with no children
and cannot be a root. As such, root and parent holons are
classified as abstract nodes as they can be further defined by
a child node. A leaf holon is classified as a physical node
as it does not have children.

Like any system, a holon has its own characteristics,
among which are its routing properties. These are classified
as Service Properties, as shown Fig. 2(c). This Rout-
ing_Properties concept is further been classified under 3
concepts: Delay, Reliability and Ordering, each of which

has a profile namely Delay_Profile, Reliability_Profile and
Ordering_Profile respectively. The above profiles are shown
in Fig. 3(c). The Delay_Profile concept is defined as Indefi-
nite or Finite. The Finite concept has been formulated with
a relationship like hasTime some Time, and imposes some
restrictions such as it has a minimum time limit of 1 Time
unit and a maximum time limit of 4 Time units. This concept
is displayed in Fig. 3(d). The Reliability_Profile, displayed
in Fig. 3(e), is defined as At_Least_Once, At_Most_Once,
Best_Effort and Exactly_Once. The concept At_Least_Once
means that it is better than a Best_Effort profile, and
can either be equivalent to an At_Most_Once effort de-
pending on the requirements of a system. The concept
At_Most_Once is better than a Best_Effort profile while
the concept Exactly_Once is better than At_Least_Once and
At_Most_Once.

Figure 3. Profile Concepts

Finally, Fig. 2(d) displays how we can model the Hard-
ware concept for a leaf holon, given that a leaf holon
represents a physical node with various resources.

3.3. Holon design using A3ME

Given the similarities between the A3ME and
CoDAMOS ontologies, and also given that A3ME details
certain concepts better compared to CoDAMOS, we de-
cided to further augment the CoDAMOS ontology using the
A3ME ontology. The aim is to enhance the descriptions of
certain concepts. Fig. 4 describes how the latter concepts
have been enhanced. In Section 3.2, we mentioned that
the leaf holon is defined as a physical node as it does
not have any children. Fig. 4(a) shows that the Physi-
cal_Node concept from CoDAMOS can be extended using
the Device concept from the A3ME ontology. Enabling the
Physical_Node concept to become an equivalent class with
the Device concept implies that this concept inherits all the
properties of the Device concept, as shown below.



providesSoftware some OperatingSystem
providesHardware some NetworkResource
providesHardware some MemoryResource
providesHardware some PowerResource
providesHardware some StorageResource
providesHardware some CPUResource
providesHardware some IODevice
hasLocation some AbsoluteLocation

Similarly, the Storage concept from CoDAMOS can
be extended using the equivalent Storage concept from
A3ME, as shown in Fig. 4(b), thus inheriting concepts
like Flash, HD, ROM and RAM. The Power_Resource
concept from CoDAMOS – which is divided only into
Infinite and Finite Power concepts – has also been ex-
tended through the A3ME Energy concept into subclasses
like Renewable, Not_Limited, Other_Energy, Passive and
Battery (Fig. 4(c)). The API_Public concept is extended
into Global_Address, Local_Address, Other_Address from
the Address concept in the A3ME ontology (Fig. 4(d)).
Likewise, the Service concept can be further described using
the Service concept from A3ME, thus inheriting subclasses
like Real_world service, Hardware service, Other service
and Software service (Fig. 4(e)).

Figure 4. Enhanced Concepts

3.4. Holon ontology metrics

The result of developing the holonic ontology in the pre-
defined manner is outlined through some metrics in Table 1,
namely: the number of classes denoting the different created
concepts; the number of object properties representing the
relationships between different concepts; and the magnitude
of data properties of numerical relationships the classes may
hold. In summary, the resultant holonic ontology is consid-
erably manageable especially considering the generality of
its purpose.

TABLE 1. ONTOLOGY METRICS

Ontology Metric Count
Class 66
Object property 28
Data property 18

4. Programming Holons

In order to create and manipulate a holon in a program-
matic way, the concepts formalised by the above ontology
need to be transformed into programming tools. In this
section, we review two contrasting methods. First, in Sec-
tion 4.1, we describe how we generated UML and Java inter-
faces from the ontology. Then, in Section 4.2, we describe a
method of converting the ontology into a Domain Specific
Language (DSL), which is intended for non-specialists to
be able to program at a high-level in a specific application
domain. We present both approaches as alternative routes to
the task of holon implementation.

4.1. Converting ontologies into UML

The holon ontology has been designed using the widely
used Protégé editor [12], which provides a few plugins
to generate the UML and Java code that correspond to
a given ontology. Whilst the A3ME ontology was found
to work only with version 5.0 of Protégé, the CoDAMOS
ontology was found to be compliant only with prior versions.
Given that most of these plugins are compatible with older
Protégé versions, the holon ontology using CoDAMOS only
has been considered for this section. The used plugins are
summarised in Table 2.

TABLE 2. PROTÉGÉ PLUGINS

Plugin Compatible Protégé version
OWL2UML 4.0
Generate Protégé-OWL Java Code 3.4.7
Java Schema class 3.4.7
EMF Java Interfaces 3.4.7
Kazuki Java classes 3.4.7

All these plugins generate the corresponding Java code
representing the ontology and can help programmers in their
software development task. OWL2UML generates UML
diagrams; Protégé-OWL Java Code generates Java Code;
Java Schema class generates the Java schema class; EMF
Java Interfaces generate Java interfaces; and Kazuki Java
classes generate the schema of the ontology.

4.2. Converting ontologies into a DSL

On the other hand, DSLs are high-level programming
languages that capture the behaviour specific to a certain
application domain. DSLs are typically intended to allow
non-programmers to create and edit software design spec-
ifications in an easy and clear way. As such, the domain



specialist can focus on what they want to achieve by ex-
pressing through the DSL, then the DSL code is parsed to a
lower-level programming language to specify how to carry
out the expressed logic. Recent application modelling DSLs
include MixT [13] and CadaML [14].

We used OWL2GRA2 [15] to convert the ontology into a
DSL. OWL2GRA transforms an ontology to DSL grammar
that can be used to capture and manage concepts in this
domain. This model has three different modules:

1) Onto2OWL: creates an ontology file in OWL/XML for-
mat from a simple DSL language called OntoDSL [16],
which provides a simple way to create ontologies.
The resulting ontology can then be fed to software
like Protégé to edit, manage, and further enhance the
ontology.

2) OWL2DSL: generates a grammar specification (as well
as an associated DSL parser) to describe domain ele-
ments.

3) DDesc2OWL: populates the ontology that was used to
generate the grammar.

Of these modules, we only used OWL2DSL to convert
our ontology into a DSL. Since we created our ontology
using Protégé, we did not have a need to use Onto2OWL.
We also did not need to use DDesc2OWL, however it might
be useful for further experimentation.

5. Proof of Concept

We present and discuss a case study to illustrate how
holons enable opportunistic system composition in IoT en-
vironments.

5.1. Background and challenges

DisabledCare is a system of IoT sub-systems that man-
ages the living conditions of disabled patients in domestic
environments. Each sub-system collects some data about the
patient and their environment. For instance, one sub-system
would collect measurements of ambient temperature and
humidity. Another measures the levels of oxygen and carbon
monoxide, etc. A further sub-system monitors the patient’s
body temperature and blood pressure. Another sub-system
would track the patient’s limited mobility patterns, and so
on.

The DisableCare super-system (or system of systems)
would analyse the data collected by all sub-systems, act-
ing when necessary; e.g. to maintain certain environmental
aspects or alert medical authorities. With the current ad-
vancements in digital health and the role of enabler the
IoT plays in this field, it is no longer reasonable to assume
such systems to be easily manageable by humans. In other
words, the classical approach of deploying a system like
DisabledCare by manually linking devices of distinct de-
ployments is not practically feasible, certainly not at scale.
Such classical approach requires IoT engineers to be familiar

2. http://www4.di.uminho.pt/~gepl/OWL2GRA/

with (or spend significant time and effort to learn) the low-
level details of the different devices and the services they
each provide.

An alternative approach is to equip the IoT devices with
capabilities that enable them to self-advertise their function-
alities and self-discover neighbouring device functionalities.
This consequently enables ad hoc interaction. The proposed
ontology equips IoT systems with the means to harness such
interaction towards automated composition. This case study
shows how the proposed ontology can be utilised for this
goal.

5.2. Architecture

Fig. 5 shows the architecture of DisabledCare, which
consists of the following main components:

Figure 5. Architecture of the DisabledCare system

5.2.1. Patient sensors. These are a set of devices that read
various vital signs from the patient’s body. We show in
Listing 1 part of the ontology of the Temperature device,
which reads the temperate of the patient. As shown in the
listing, this device has a service which can be invoked
to obtain the temperature. The ontology shows also some
of the context information in which the device operates
correctly. For example, this device is designed to operate in
an environment where the temperature falls between -10°C
and 60°C. This information might be useful for applications
using the Temperature device so that they identify when not
to rely on the readings of this device.

Listing 1. Part of Temperate sensor’s ontology
<owl:NamedIndividual rdf:about="#Temprature">
<rdf:type rdf:resource="#Holon"/>
<rdf:type rdf:resource="#Software"/>
<Dionasys:providesService rdf:resource="#
getTemprature"/>

</owl:NamedIndividual>

5.2.2. Environment sensors. These devices read data about
the environment where the disabled patient exists. The
device readings are useful to identify situations when the
patient might need support or urgent medical attention.
Listing 2 shows the ontology of the Carbon Monoxide
Reader device, which provides the functionality getLevel
that returns the carbon monoxide level of the location where
the patient exists.



Listing 2. Part of Carbon Monixide devices’s ontology
<owl:NamedIndividual rdf:about="#
CarbonMonoxide">
<rdf:type rdf:resource="#Holon"/>
<rdf:type rdf:resource="#Software"/>
<Dionasys:providesService rdf:resource="#
getCarbonMonoxideLevel"/>

</owl:NamedIndividual>

5.2.3. Controller. This device hosts the application that
reads the data from the patient and environment sensors,
analyses them, and performs suitable actions. Listing 3
shows part of the ontology that describes the controller,
focusing on its services (e.g. functionalities).

Listing 3. Part of the Controller’s ontology
<owl:NamedIndividual rdf:about="#Controller">
<rdf:type rdf:resource="#Holon"/>
<rdf:type rdf:resource="#Software"/>
<Dionasys:providesService rdf:resource="#
alertDoctor"/>

<Dionasys:providesService rdf:resource="#
analyse"/>

<Dionasys:providesService rdf:resource="#
discover"/>

<Dionasys:providesService rdf:resource="#
generateReport"/>

<Dionasys:providesService rdf:resource="#
pushToCloud"/>

<Dionasys:providesService rdf:resource="#
read"/>

</owl:NamedIndividual>

5.3. Controller realisation

We now comment on the benefits of the proposed onto-
logy in realising the functionality of the Controller device.
We first describe the classical approach, then contrast it with
the proposed approach using holons.

5.3.1. Classical approach. In this approach, IoT system
engineers are expected to learn and understand the services,
APIs, and properties of each of the patient and environment
devices listed in Fig. 5. They then need to implement the
read component of the Controller to manually connect to
each of the services, which means that they need to design
and develop the composition of the services provided by the
devices. It is worth mentioning that IoT engineers will need
to re-design or develop the composition in case any device
needs to be replaced (e.g. in case of failure or an upgrade).

5.3.2. Envisioned approach. Here, IoT system engineers
are just expected to implement the discover component of
the Controller so that it discovers the sensors, reads their
ontologies, identifies their service, and connects them to the
read component. The Controller will then automatically
add the service to its ontology as services it can provide

indirectly by connecting to the devices. Listing 4 shows
the services the Controller can provide after discovering
the sensor services. In case of a device replacement, the
discover component can detect the new device and connect
it to the system in the fashion just described.

Listing 4. Part of the Controller’s ontology after discovering devices
<owl:NamedIndividual rdf:about="#Controller">
<rdf:type rdf:resource="#Holon"/>
<rdf:type rdf:resource="#Software"/>
<Dionasys:providesService rdf:resource="#
alertDoctor"/>

<Dionasys:providesService rdf:resource="#
analyse"/>

<Dionasys:providesService rdf:resource="#
discover"/>

<Dionasys:providesService rdf:resource="#
generateReport"/>

<Dionasys:providesService rdf:resource="#
getBloodPressure"/>

<Dionasys:providesService rdf:resource="#
getBloodSugarLevel"/>

<Dionasys:providesService rdf:resource="#
getBreathingRate"/>

<Dionasys:providesService rdf:resource="#
getCarbonMonoxideLevel"/>

<Dionasys:providesService rdf:resource="#
getHeartRate"/>

<Dionasys:providesService rdf:resource="#
getHumidityLevel"/>

<Dionasys:providesService rdf:resource="#
getOxygenLevel"/>

<Dionasys:providesService rdf:resource="#
getRoomTemprature"/>

<Dionasys:providesService rdf:resource="#
getTemprature"/>

<Dionasys:providesService rdf:resource="#
pushToCloud"/>

<Dionasys:providesService rdf:resource="#
read"/>

</owl:NamedIndividual>

5.4. Reflection

The proposed ontological approach offers the ability for
each sub-system of the DisabledCare system to richly de-
scribe itself. It also enables each sub-system to reason about
its existence and how it fits into the bigger integrated system.
In addition, the proposed approach provides the potential
to relieve IoT engineers from the onus of developing and
manually adapting IoT applications. Engineers will need to
focus on the behaviour of the IoT application instead on
being exhausted in learning the low level details of the used
IoT devices.



6. Discussion

The holon notion sprang from the need to represent a
system as an entity that expresses what its functionalities
are, and also what it requires from other entities in order
to provide added services. This is different from other
approaches as we do not need to have an overarching
ontology for all devices, e.g. [17], [18]. Holons are each self-
described, facilitating the composition of systems into more
complex systems of systems. We have demonstrated this
using the digital health application presented in Section 5.
Moreover, our approach allows complex applications to be
built using pre-existing deployments, instead of trying to
build and deploy a whole new system that spans various
tasks (such as, in the case of digital health, environmen-
tal and patient-specific factors). This is encouraging for
digital health IoT applications where multimodal sensing
is of increasing significance [19], [20], but also for IoT
applications in general as they share spaces in smart cities,
homes, agricultural and manufacturing plants, etc.

Let us consider how overlays can be used in the context
of IoT networks. If the interfaces of particular data sources
from one IoT network can be discovered and used by other
IoT systems, then this opens up the possibility of creating
cross-IoT-deployment behaviour that was not possible be-
fore. For example, let us consider the case of three separate
environmental IoT deployments: a weather monitoring net-
work of devices with a GPRS connection, a soil moisture
monitoring IoT and an ad hoc mobile IoT network of devices
on sheep (cf. [21]). Questions that arise in this case are:
What kind of overlay(s) can emerge from such networks?
What should be the properties of the holon(s) representing
each system? What type of composition, if any, should occur
between a sheep tracking network overlay and a soil sensing
network overlay, or between a sheep tracking network and
a weather monitoring one? Through the composition of
overlay structures, one can envisage a scenario where the
sheep IoT can ferry data packets from the soil moisture
IoT to the weather station as it comes into opportunistic
contact with different weather stations endowed with data
uplinks. The data collected and carried by the sheep IoTs
can inherently be of use to particular weather station IoTs as
they seek to correlate their own weather data with the sensor
data from the soil moisture IoT. The use of semantically-
enhanced data and ontologies will allow the weather station
IoTs to make sense of the soil moisture data through an
indirect source.

As powerful as it is, the holon notion also presents
additional challenges. One such challenge is interoperability.
For instance, to compose heterogeneous network overlays
into a multi-overlay network [22], one needs to address
issues such as connectivity and network interoperability.
The fact that each overlay can potentially use different
algorithms to maintain node membership need not be an
obstacle but can be abstracted over. The challenge then
involves how to dynamically manage members of different
overlays and to designate a node acting on behalf of each
overlay in forwarding data or implementing a type of com-

munication pattern. In essence, these gateway nodes become
the enablers of our ‘system of overlays’ at the network
interoperability level [23], [24].

The design of these gateway nodes clearly requires a
knowledge of systems involved, and also of potential sys-
tems encountered dynamically. It is inevitably a tedious job
to design them, but we believe that the synthesis of these
overlays becomes easier if they are modelled using high-
level domain-specific languages enhanced using semantic
technologies such as ontologies. All these queries lead us to
investigate the enhancement of DSLs using ontologies such
that we not only make our DSL more expressive, but also
include some reasoning into our holon design.

7. Conclusion

Opportunistic composition of systems is required for
unplanned and meaningful interaction between the myriad of
systems including IoT deployments of all colours. The holon
programming notion was proposed to facilitate opportunistic
system composition through raising the level of abstraction
when designing systems that could be made up of different
individual sub-systems. However, an isolated programming
notion is of little use if it is not easy to express program-
matically and reason about, thus unfolding and managing
composition opportunities.

This paper presented an OWL-defined ontological
framework to support the holon programming abstraction
by providing a conceptual structure that defines the domain
of interest, with particular focus on IoT deployments, and
describes the different concepts, relations, and rules therein.
The ontology facilitates knowledge management in a holonic
world, which in turn benefits interoperability, reuse and
sharing. Such accessibility to information can be used to
decide whether composition is possible between holons
representing IoT and other types of systems. Moreover, the
ontology also enables reasoning, such as analysing why
and how specifically composition is possible (which is our
immediate next step).

The paper also identified the benefits of merging such
ontology with a DSL to define a holon. Existing ontolog-
ies can be used to initiate DSL development, which we
have validated through the use of OWL2GRA to convert
our ontology into a high-level language that models the
holonic domain. What is of significance here is that such
a conversion helps to stipulate reasoning, which is missing
through manual DSL design methods. The ability to define
classes, their properties and restrictions, and to handle in-
complete knowledge through reasoning distinguishes OWL
from class-based modelling languages like UML. We thus
believe that our ontology can increase the expressiveness of
the metamodeling language.

Whilst we have highlighted the role of using ontologies
in enhancing a DSL, we have also pointed out how to
represent the concepts of an ontology in form of a UML. A
question arises here: whether a UML representation and a
generated DSL are mutually exclusive, or if it is possible
(and indeed beneficial) to combine them in order to get



the best out of both. This is an interesting future research
direction.

We intend to expand on this work by enabling reasoning
of the holon concepts using OWL-based reasoning engines,
and incorporating this into a DSL model. The will enable
SoS developers to describe their elementary systems, includ-
ing functionalities and properties, using high-level ontolog-
ical concepts. The elementary systems will then utilise their
descriptions to dynamically construct SoSs at run-time. We
plan to apply it to an IoT scenario and see how the OWL-
enriched DSL can help in better defining holons and in com-
posing different holons to suit the application needs. We also
aim to use simulations (using IoTNetSim [25]) to investigate
the suitability of our approach as IoT deployments grow in
size and complexity.

Acknowledgments

This work was supported by the CHIST-ERA Dionasys
project via EPSRC grant reference EP/M015734/1. The
authors thank Laurent Réveillère and Etienne Rivière for
their feedback on an earlier version of this work.

References

[1] Gartner, “Forecast: The internet of things, worldwide,” http://www.
gartner.com/document/2625419, 2013.

[2] Statista, “Internet of things (IoT) connected devices installed base
worldwide from 2015 to 2025,” https://www.statista.com/statistics/
471264/iot-number-of-connected-devices-worldwide/, 2019.

[3] Y. Elkhatib, B. F. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir,
and E. Rivière, “On using micro-clouds to deliver the fog,” Internet
Computing, vol. 21, no. 2, pp. 8–15, Mar. 2017.

[4] Y. Elkhatib, “Building cloud applications for challenged networks,”
in Embracing Global Computing in Emerging Economies, ser. Com-
munications in Computer and Information Science, R. Horne, Ed.
Springer International Publishing, 2015, vol. 514, pp. 1–10.

[5] G. Coulson, G. S. Blair, Y. Elkhatib, and A. Mauthe, “The design of
a generalised approach to the programming of systems of systems,”
in Workshop on Autonomic and Opportunistic Computing (AOC), ser.
WoWMoM. IEEE, Jun. 2015.

[6] G. Blair, Y.-D. Bromberg, G. Coulson, Y. Elkhatib, L. Réveillère,
H. B. Ribeiro, E. Rivière, and F. Taïani, “Holons: Towards a sys-
tematic approach to composing systems of systems,” in Workshop on
Adaptive and Reflective Middleware (ARM). ACM, Dec. 2015.

[7] M. Siebert, P. Smits, L. Sauermann, and A. Dengel, “Increasing
search quality with the semantic desktop in proposal development,” in
Practical Aspects of Knowledge Management. Springer, Nov. 2006,
pp. 279–290.

[8] G. Denker, S. Nguyen, and A. Ton, “OWL-S semantics of security
web services: a case study,” in European Semantic Web Symposium
(ESWS). Springer, May 2004, pp. 240–253.

[9] A. Herzog, D. Jacobi, and A. Buchmann, “A3ME - an agent-based
middleware approach for mixed mode environments,” in Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies
(UBICOMM), Sep. 2008, pp. 191–196.

[10] D. Preuveneers, J. V. den Bergh, D. Wagelaar, A. Georges, P. Rigole,
T. Clerckx, Y. Berbers, K. Coninx, V. Jonckers, and K. D. Bosschere,
“Towards an extensible context ontology for ambient intelligence,” in
Ambient Intelligence. Springer, 2004, pp. 148–159.

[11] M. Compton et al., “The SSN ontology of the W3C semantic sen-
sor network incubator group,” Web semantics: science, services and
agents on the World Wide Web, vol. 17, pp. 25–32, 2012.

[12] M. A. Musen et al., “The Protégé Project: A look back and a look
forward,” AI Matters, vol. 1, no. 4, pp. 4–âĂŞ12, Jun. 2015.

[13] M. Milano and A. C. Myers, “MixT: A language for mixing consis-
tency in geodistributed transactions,” SIGPLAN Not., vol. 53, no. 4,
pp. 226–241, Jun. 2018.

[14] A. Jumagaliyev and Y. Elkhatib, “A modelling language to support
evolution of multi-tenant cloud data architectures,” in Conference
on Model Driven Engineering Languages and Systems (MODELS).
ACM/IEEE, Sep. 2019.

[15] J. M. Sousa Fonseca, M. J. Varanda Pereira, and P. R. Henriques,
“Converting ontologies into DSLs,” in Symposium on Languages,
Applications and Technologies (SLATE), 2014.

[16] T. Walter, F. Silva Parreiras, and S. Staab, “Ontodsl: An ontology-
based framework for domain-specific languages,” in Conference on
Model Driven Engineering Languages and Systems (MODELS).
ACM/IEEE, 2009.

[17] R. Agarwal, D. G. Fernandez, T. Elsaleh, A. Gyrard, J. Lanza,
L. Sanchez, N. Georgantas, and V. Issarny, “Unified IoT ontology to
enable interoperability and federation of testbeds,” in World Forum
on Internet of Things (WF-IoT), Dec 2016, pp. 70–75.

[18] M. I. Ali, P. Patel, S. K. Datta, and A. Gyrard, “Multi-layer cross
domain reasoning over distributed autonomous IoT applications,”
Open Journal of Internet Of Things (OJIOT), vol. 3, no. 1, pp. 75–90,
2017.

[19] F. Kaddachi, H. Aloulou, B. Abdulrazak, P. Fraisse, and M. Mokhtari,
“Technological approach for early and unobtrusive detection of possi-
ble health changes toward more effective treatment,” in Smart Homes
and Health Telematics, Designing a Better Future: Urban Assisted
Living, M. Mokhtari, B. Abdulrazak, and H. Aloulou, Eds. Springer,
2018, pp. 47–59.

[20] H. Aloulou, M. Mokhtari, and B. Abdulrazak, “Deployment of an
IoT solution for early behavior change detection,” in How AI Impacts
Urban Living and Public Health, J. Pagán, M. Mokhtari, H. Aloulou,
B. Abdulrazak, and M. F. Cabrera, Eds. Springer, 2019, pp. 27–35.

[21] V. Nundloll, B. Porter, G. S. Blair, B. Emmett, J. Cosby, D. L.
Jones, D. Chadwick, B. Winterbourn, P. Beattie, G. Dean, R. Shaw,
W. Shelley, M. Brown, and I. Ullah, “The design and deployment of
an end-to-end IoT infrastructure for the natural environment,” Future
Internet, vol. 11, no. 6, p. 129, 2019.

[22] L. M. Vaquero, F. Cuadrado, Y. Elkhatib, J. Bernal-Bernabe, S. N.
Srirama, and M. F. Zhani, “Research challenges in nextgen service
orchestration,” Future Generation Computer Systems, vol. 90, pp. 20–
38, Jan. 2019.

[23] A. E. Khaled and S. Helal, “Interoperable communication framework
for bridging RESTful and topic-based communication in IoT,” Future
Generation Computer Systems, vol. 92, pp. 628 – 643, 2019.

[24] R. C. Gomez, Y.-D. Bromberg, Y. Elkhatib, L. Réveillère, and
E. Rivière, “Emergent overlays for adaptive manet broadcast,” in
International Symposium on Reliable Distributed Systems (SRDS).
IEEE, Oct. 2019.

[25] M. Salama, Y. Elkhatib, and G. S. Blair, “IoTNetSim: A modelling
and simulation platform for end-to-end IoT services and networking,”
in Conference on Utility and Cloud Computing (UCC). ACM, 2019,
pp. 251–261.


