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Abstract
Interoperability remains a fundamental challenge when connecting heterogeneous systems which en-
counter and spontaneously communicate with one another in pervasive computing environments. This
challenge is exasperated by the highly heterogeneous technologies employed by each of the interacting
parties, i.e., in terms of hardware, operating system, middleware protocols, and application protocols.
The key aim of the CONNECT project is to drop this heterogeneity barrier and achieve universal inter-
operability. Here we report on the activities of WP1 into developing the CONNECT architecture that will
underpin this solution. In this respect, we present the following key contributions from the second year.
Firstly, the intermediary CONNECT architecture that presents a more concrete view of the technologies
and principles employed to enable interoperability between heterogeneous networked systems. Sec-
ondly, the design and implementation of the discovery enabler with emphasis on the approaches taken
to match compatible networked systems. Thirdly, the realisation of CONNECTors that can be deployed
in the environment; we provide domain specific language solutions to generate and translate between
middleware protocols. Fourthly, we highlight the role of ontologies within CONNECT and demonstrate
how ontologies crosscut all functionality within the CONNECT architecture.

Keyword List
Interoperability, middleware, middleware heterogeneity, service discovery heterogeneity, service in-
teraction heterogeneity, application-level heterogeneity, data heterogeneity, non-functional properties,
software architecture, connectors, semantics, ontologies.

CONNECT 231167 3/108



CONNECT 231167 4/108



Document History

Version Type of Change Author(s)

1 Document creation Paul Grace
2 Added complete Chapter 1 (Introduction) Paul Grace
3 Added Initial Content for Chapter 3 Daniel Sykes
4 Added Initial Content for Chapters 2 and 5 Paul Grace
5 Added Initial Content for Chapter 6 Vatsala Nundloll
6 Added Section 7.1 to Chapter 7 Paul Grace
7 Revisions and new content to Chapter 3 Daniel Sykes
8 Added Content for Sections 2.1 and 2.2 Paul Grace
9 Revisions and new content for Chapter 6 Massimo Paolucci
10 Revised Chapter 2 and added Content for Sec-

tion 4
Paul Grace

11 Added Initial Content for Chapter 5 Franck Chauvel
12 Revisions to Chapter 3 Daniel Sykes
13 Added content for sections 4.3.1 and 4.3.2 Franck Chauvel
14 Added section 6.3 Massimo Paolucci
15 Added chapters 8 and 9 Paul Grace
16 Revisions to document (Internal Draft Version) Paul Grace
17 Restructure of Chapter 6 Massimo Paolucci
18 Added content to section 3.2 Amel Bennaceur
19 Added content for Chapter 8 Paul Grace
20 Revisions to chapter 3 and 5 Amel Bennaceur,

Rachid Saadi
21 Added abstract and revised chapter 1 to follow

common format for all deliverables
Paul Grace

22 Completed content for chapter 3 Amel Bennaceur,
Rachid Saadi

23 Revised version according to reviews Paul Grace, Mas-
simo Paolucci

24 Final version

Document Review

CONNECT 231167 5/108



Date Version Reviewer Comment

28th January
2011

21 Illaria Matteucci
(CNR)

1) In the introduction identify
that the document focuses on
discovery and synthesis. Ex-
plain why non-functional proper-
ties are not addressed here.
2. Fig 2.10 doesn’t include
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1 Introduction
The CONNECT project is investigating a fundamental requirement of pervasive computing systems; that
systems developed independently from one another must be able to interoperate. Interoperability is de-
fined as the ability of two systems to exchange, understand and use data from one another. Importantly,
pervasive computing is typically composed of systems and applications that are highly heterogeneous in
terms of the software and protocols employed. In the previous Deliverable D1.1 [6] we identified five types
of heterogeneity in such systems that are a barrier to achieving interoperability:

• Discovery protocol heterogeneity. Different protocols are used to advertise and search for services,
e.g., Service Location Protocol (SLP), Jini, Universal Plug and Play (UPnP), and Lightweight Direc-
tory Access Protocol (LDAP).

• Interaction protocol heterogeneity. Services use different protocols to exchange and use data, e.g.,
Remote Method Invocation protocols such as SOAP, Java RMI and IIOP; or different messaging
protocols such as Java Message Service (JMS) or Microsoft Message Queuing (MSMQ).

• Data heterogeneity. Applications may use data that is represented in different ways and/or have
different meanings.

• Application heterogeneity. The application interfaces may be different in terms of the descriptions
of operations, e.g., the behaviour provided by one operation in one interface may be provided by
multiple operations in the other interface. Interfaces are also heterogeneous in terms of the order in
which operations must/should be called.

• Heterogeneity of Non-functional properties. Systems may have particular non-functional properties,
e.g., latency of message delivery, dependability measures and security requirements that must be
resolved with respect to the connected system.

Our survey of existing academic/research and industrial solutions [6] showed that no solution from
either the middleware or semantic interoperability fields addressed all of these heterogeneity dimensions.
Hence, CONNECT aims to go beyond these approaches and resolve the interoperability challenge in a fun-
damentally different way; the behaviour of networked systems is discovered, monitored and learned and
based upon this a CONNECTor is dynamically synthesized that will ensure two systems will interoperate.

1.1 The Role of Work Package WP1

The aim of WP1 is to provide an overall architecture for CONNECT, defining and documenting the com-
mon architectural principles behind the CONNECT approaches to achieving extremely long-lived (eternal)
networked systems. The original three tasks of WP1 as described in the description of work [13] are as
follows:

Task 1.1: CONNECT architecture. Elaborating a technology-independent and eternal architectural
framework for emergent CONNECTors.

Task 1.2: Eternal system semantics. Eliciting an ontology-based characterization of the semantics of
connected systems.

Task 1.3: CONNECT realization. Developing key underlying systems principles and techniques to
support the development of a practical, efficient and a self-sustaining CONNECT prototype.

Hence, this work package performs a central role for CONNECT as a whole: acting as a point of
integration for the specialized work from each of the work packages [14] [18] [17] [15]; and providing the
system prototypes to directly support the experimentation and evaluation work of the project.

1.2 Summary of Achievements in Year One: The Initial CONNECT
Architecture

In the first year of the project, the following key contributions where achieved [6]:
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• Based upon analysis of typical complex pervasive systems, we identified the five important dimen-
sions of heterogeneity (described previously) that are encountered and must be resolved by CON-
NECT.

• We produced a state of the art of middleware and data interoperability solutions; this showed that
no solution achieves the interoperability proposed by CONNECT; and hence highlighted the key
contributions that this project can make to the field.

• A description of the initial technology-independent and eternal architectural framework and architec-
tural principles was presented; this was validated against a small number of case studies.

1.3 Challenges for Year Two

This initial architecture was the first step on the road to achieving future proof interoperability; and with this
first step there were naturally a number of open questions raised with corresponding recommendations
by the project reviewers.

Becoming Concrete. The initial architecture was deliberately abstract, in order to allow us to refine
the architectural principles without being tied to any earlier defined assumptions about networked systems
and interoperability. An important concern is: how is the intent of networked systems expressed? Here
we document the concrete details of the Networked System Model and emphasize its central role within
the CONNECT architecture; it is discovered/produced by the discovery and learning enablers and then
used by the synthesis and dependability enablers to synthesize CONNECTors. Another challenge related
to the integration of enablers, concerns the identification of the specific information they exchange and
process. The enabler architecture is presented in this document, focusing solely on the behaviour in terms
of the concrete information received and produced by each enabler (the details of the functionality of the
enablers is provided in the specialised deliverables).

The Role of Ontologies A further important challenge is to define the role of ontologies within the
CONNECT architecture. Interoperability cannot be achieved without semantic matching and mapping of
information from one networked system to another. The initial CONNECT architecture was not specific
about how ontologies are to be used within the functionality of CONNECT. Here, we emphasize further the
important role of ontologies, and describe how they cross-cut the CONNECT architecture: at a high-level
(application-level) ontologies are used within the discovery and synthesis enablers to match equivalent
networked systems and then produce a mapping from one system to another; at lower-levels (i.e., the
middleware/protocol level) ontologies classify new protocol behaviour (e.g., this is an RPC protocol mes-
sage) and also seek bridges from one middleware protocol to another.

1.4 Achievements in Year Two

In the previous deliverable [6], the initial version of the CONNECT architecture was presented. The objec-
tive of this report is to provide a refined version of this architecture, and in particular illustrate both the
concrete design and the initial implementation of prototype software that composes the architecture. In
particular, we concentrate here on the core functionalities of the architecture: discovery, learning and syn-
thesis; these provide the building blocks of the architecture, which will then be extended with functionality
to handle non-functional properties in the third year of the project.

In this report we highlight the following key contributions:

• The CONNECT architecture is presented in Section 2. This focuses on three important elements: i)
the CONNECT Networked System Model, which offers a rich semantic description of individual sys-
tems in terms of their role, interface syntax, behaviour and non-function properties; ii) the Enabler
Architecture, which integrates the individual enablers that carry out particular roles within the CON-
NECT process; and iii) the CONNECTor architecture that describes how the software to connect two
networked system is constructed.

• The Discovery Enabler is presented in Section 3 along with the associated prototype implemen-
tation. This enabler forms the important role of initially discovering networked services that are
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advertised using heterogeneous discovery technologies. A case study is presented to highlight the
operation of the discovery enabler and illustrate the features of the software prototype.

• The realisation of CONNECTors is presented in Section 4; we document how concrete communica-
tion protocols are implemented within the CONNECTor architecture. An important feature is the use
of high-level models (domain specific languages that describe middleware protocols) to generate the
required middleware code; this allows CONNECT to be easily extensible for future middleware proto-
cols. Two case studies demonstrate how the realised CONNECTors successfully bridge application
and middleware protocols.

• The Deployment enabler is documented in Section 5; here we describe how the CONNECTors are
deployed in the environment in order to connect the systems.

• The role of ontologies within the CONNECT architecture is discussed in Section 6. This investigates
how ontologies cross-cut the architecture, and in particular how they are specified, also how they are
utilised by the individual enablers. Two case studies involving communication protocols (vehicular
ad-hoc networks) and system architectures are used to highlight the application of ontologies.
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2 Intermediary Connect Architecture
2.1 Introduction

The CONNECT Architecture defines the underlying architectural principles that underpin the work of each
of the specialised work packages. The objective is to integrate this work in order to deploy long-lived, uni-
versal CONNECTors that resolve interoperability problems between networked systems. The description
and definition of the CONNECT Architecture is a living document that is continuously refined during the
lifetime of the CONNECT project. In this section, we highlight the enhancements that have been made dur-
ing the second year. To do this, we first provide a short reminder of the key elements that were described
in the Initial CONNECT Architecture [6] at the end of the first year. Subsequently, we provide a roadmap
of the refinements that have been made during the second year. These refinements document the key
contributions of WP1 in the second year, and point the reader towards more detailed coverage of these
contributions in the later chapters of this report, and indeed the other deliverables.

2.2 Overview of the Initial Connect Architecture

In the initial version of the CONNECT architecture [6], we opted for an approach that made the fewest pos-
sible assumptions and reflected the CONNECT vision as identified in the project’s Description of Work [13].
In this section we shortly summarise the key elements of this version, which continue to form the architec-
tural principles, before then discussing the refinements we have made to this architecture in Section 2.3;
the objective of these refinements is to make concrete the earlier abstract concepts and features.

2.2.1 CONNECT Actors
The key actors involved in the CONNECT process were identified as follows (these remain central to the
continued refinement of the architecture):

• Networked systems are systems that manifest the will to connect to other systems for fulfilling some
intent identified by their users and the applications executing upon them.

• Enablers are networked entities in the environment of networked systems that incorporate all the in-
telligence and logic offered by CONNECT for enabling connection between heterogeneous networked
systems. Enablers constitute the CONNECT enabling architecture.

• CONNECTors are the emergent connectors produced by the action of enablers.

• CONNECTed systems are the outcome of the successful creation and deployment of CONNECTors.

A high-level view of these actors is shown in Figure 2.1. It can be seen that networked systems mani-
fest their will to connect. This will, along with information about the networked systems, is communicated
in the form of some input to the enablers. One or more enablers collaborate to synthesize and deploy a
CONNECTor that enables networked systems to connect and fulfill their individual intents.

2.2.2 Networked System Model
The original Networked System Model as seen in Figure 2.2 aimed to model the external interaction
behaviour of a networked system. For this, two levels of interaction were considered: middleware-layer in-
teraction and application-layer interaction. The application component describes: an intent, what external
behaviour it requires, and what external behaviour it provides. The essential feature here is the interface,
that is, a description of the set of functionalities of the component made accessible to (but also required
from) its environment. Typically, this description comes in the form of a set of data inputs and associated
outputs following a specific data type system.

Regarding middleware-layer interaction, we identified both the provided (by the system) and the re-
quired (from other systems) behaviour. Such behaviour was characterized by the following features:
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Figure 2.1: Actors in the CONNECT architecture

• Process specifies the supported interaction protocol, e.g., in the form of sequences of exchanged
messages and states.

• Coordination patterns characterize the role semantics in an interaction, such as client-server or
peer-to-peer, orchestration or choreography.

• Interaction patterns characterize the semantics of interaction protocols, such as message-based,
event-based or shared-memory-based, synchronous or asynchronous.

• Data transfer protocol specifies the representation of data and control in the messages conveyed by
the interaction protocol.

• The Addressing scheme specifies the naming and referencing convention employed to uniquely
identify a networked entity.

• The Data type system specifies the representation of data types applied to all the data conveyed by
the data transfer protocol.

• Data is the actual data information conveyed by the data transfer protocol.

Regarding application-layer interaction, we identified a subset of the features described above for the
middleware-layer interaction. These features have similar meanings at the application layer. In general,
applications rely on middleware for their external interaction, which means that they incorporate the se-
mantics of the underlying middleware, and add their own semantics on top of that. For example, a process
specifies the logic of an application more or less independently of the underlying middleware, and an ap-
plication that uses shared memory can implement many different coordination and interaction patterns
on top of this middleware. In addition to the functional features, the networked system model aims to
include non-functional properties of networked systems, which are orthogonal to the functional aspects.
In this view, we considered provided and required non-functional properties, their description, and their
enforcement, that is, how they are functionally implemented by the networked system.

2.2.3 Phases of the CONNECT Runtime
In accordance with the overall view of the CONNECT open environment and architecture we identified the
following phases of the CONNECT runtime:
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Figure 2.2: The original CONNECT Networked System Model

• Discovery enables networked systems to manifest their will to connect to other networked systems
and to discover mutually interested networked systems, while at the same time allows the CONNECT
enabling architecture to retrieve initial information on likely-to-be-associated networked systems.

• Learning is performed by enablers upon networked systems for completing the initial information
about the latter provided by discovery. The outcome of combined discovery and learning should be
a sufficiently good Networked System Model of a networked system.

• Synthesis is performed by enablers for generating and deploying an appropriate CONNECTor that
will successfully bridge the heterogeneous systems and establish a CONNECTed system.

• Verification & validation is performed by enablers during and after the synthesis phase for ensuring
the correctness of the CONNECTor and the running CONNECTed system with respect to the require-
ments and intents of the involved networked systems.

These phases composed the initial CONNECT enabling architecture. The behaviour of a typical life
cycle pass through this architecture (when connecting two systems) is illustrated in Figure 2.3. Here,
triggered by one or more networked systems manifesting their will to connect, interoperable discovery
and matching identifies the networked systems that are likely to be associated based on their a priori
descriptions, and communicates this information to learning (Step 1). Learning infers the interaction be-
haviour of the identified networked systems and completes their a priori descriptions, thus eliciting - as
precisely as possible - their Networked System Models, which it feeds into synthesis (Step 2). Synthesis
generates a CONNECTor model able to bridge the heterogeneous systems (Step 3). By successive model-
to-model transformations (Step 4), synthesis generates appropriate models of the CONNECTor required
by verification & validation (V&V) (Step 5). V&V evaluates the CONNECTor offline and provides feedback
to synthesis, which may lead to reconfiguration or resynthesis of the CONNECTor model (Step 6). At the
end of this synthesis and evaluation cycle, synthesis performs a model-to-code transformation to gener-
ate an executable CONNECTor (Step 7). Synthesis then deploys the CONNECTor code accomplishing a
CONNECTed system, which executes; during this execution, the CONNECTor is able to self-reconfigure to
respond to changes in its environment (Step 8). All along the CONNECTed system execution, V&V mon-
itors and evaluates it (including networked systems and CONNECTor) online (Steps 9, 10). At the same
time, learning also monitors the CONNECTed system to update and improve its learned models of the
constituent networked systems (specifically, V&V and learning apply similar monitoring and model-based
testing mechanisms) (Step 11). An evaluation of the networked systems or an update of the learned net-
worked system models will be shared between V&V and learning (Step 12). In case of negative evaluation
of the CONNECTed system, or some problem detected during its execution, or some significant update of
the learned networked system models, or some change of the networked systems or their environment,
V&V provides feedback to synthesis triggering a resynthesis of the CONNECTor model and consequently
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Figure 2.3: The Runtime Phases of the CONNECT Enabling Architecture

re-execution of all the steps that follow (Step 13). This puts in place a continuous CONNECT process that
takes account of change and evolution towards enabling eternal systems.

These phases make up the behaviour executed by the CONNECT enablers. We describe more con-
cretely how the enablers perform this functionality in the refinement of the CONNECT architecture.

2.3 Refinements Roadmap

Overall, three important architectural principles were identified in the original CONNECT architecture:

1. The role of models. Models are essential to the CONNECT process. Models are communicated,
learned, synthesized, transformed, verified and reconfigured throughout the CONNECTed system
lifecycle. Models are compositional and reusable. Such models constitute the shared knowledge
among CONNECT actors in the CONNECT environment. Accumulating and reusing this knowledge
is essential in CONNECT. A knowledge base of models and operations on models is envisioned in
CONNECT, accessible and shared among CONNECT enablers.

2. Enablers. An extensible set of functions that provide the necessary behaviour to implement an
interoperability solution. Importantly, this is an extensible set to allow richer functionality to be added
in the future.

3. CONNECTors. Dynamically generated software to execute interoperability between two heteroge-
neous systems; importantly, these are transparent to the legacy networked systems.

The focus of this report is to make the CONNECT architecture sufficiently concrete such that initial
prototype software can be developed and then evaluated to measure the effectiveness of the architectural
choices. Here we specify the key refinements to the above architectural principles in order to reach this
objective.

• First, and most importantly, we specify the CONNECTor architecture, i.e., how a CONNECTor is cre-
ated, implemented and deployed. CONNECTors are the key requirement to enable interoperation,
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and hence their concrete specification is fundamental to defining the other elements of the architec-
ture.

• The model of a network system is the common information that is utilised and exchanged between
CONNECT enablers. Here we refine the Networked System Model to a set of core descriptions and
present the specification languages to support this.

• The Enabler Architecture is refined to explain how enablers are deployed and communicate with one
another.

It is important to identify that we do not (at this stage) refine the architecture with respect to i) non-
functional requirements of the networked systems, ii) the dependability of the solution, and iii) advanced
synthesis and learning behaviour. These are described further in Section 7.2 and will be included in the
subsequent deliverable (D1.3) describing the next version of the CONNECT architecture, as was originally
planned in the project.

2.4 CONNECTors

Figure 2.4: The CONNECTor Architecture

2.4.1 The Architecture of CONNECTors

We define the software elements that make up an individual CONNECTor and also how they interact in
order to achieve interoperability. This CONNECTor architecture is illustrated in Figure 2.4. The software
elements are described as follows:

• A Listener receives network messages (from the network engine) in the form of data packets and
parses them according to the message format employed by the protocol that this message is spec-
ified by. Hence, each Listener parses messages from a single protocol, e.g., the SOAP listener
parses SOAP messages. A listener produces an Abstract Message that contains the information
found in the original data packet, providing a uniform representation that can be manipulated and
understood by the other elements in the CONNECTor architecture. The API of the listener in Java is
shown in Figure 2.5, the packet in a byte array is passed to the MessageParse method and a Java
Object (AbstractMessage) representing the Abstract Message is produced.
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• An Actuator performs the reverse role of a listener, i.e., it composes network messages according to
a given middleware protocol, e.g., the SOAP Actuator creates SOAP messages. Actuators receive
the Abstract Message and translate this into the data packet to be sent on the network via the
network engine. The API of the actuator in Java is shown in Figure 2.5, a byte array is produced
when the AbstractMessage object is passed to the MessageCompose method.

• The Mediator forms the central co-ordination element of a generated CONNECTor. Its role is to trans-
late the content received from one protocol (using Abstract Message) into the content required
to send to the corresponding protocol. The mediator therefore addresses the challenges of: different
message content and formats, and different protocol behaviour, e.g., sequence of messages.

• The Network Engine provides a library of transport protocols with a common uniform interface to
send and receive messages. Hence, it is possible to receive messages and send messages from
multicast (e.g. IP multicast), broadcast and unicast transport protocols (e.g. UDP and TCP). The
uniform interface provided by the network engine is illustrated in Figure 2.6.

• The Mediation engine is an optional element of the architecture depending upon the implementation
approach taken for mediator. The behaviour of the mediator is determined by a high-level model
determining the operations to take. In the case where this model is generated directly into code there
is no need for a mediation engine. In the case where the mediator model is an executable model
(e.g., a BPEL specification, or an alternative CONNECT mediator model) then it is the mediation
engine which executes these scripts. This flexibility in the intermediary architecture allows us to
investigate the benefits of the two approaches, i.e., to investigate the performance gains of direct
code generation, versus the ability to easily adapt the behaviour of the CONNECTor at runtime using
the mediation engine.

• Then Event Notification Interface outputs all important events that occur during the operation of the
CONNECTor, e.g., the receiving of a network packet, the completion of parsing, etc. Other elements
of the CONNECT architecture can then subscribe to receive these events; this behaviour is closely
related to the monitoring and dependability enablers (as discussed in the Deliverable 5.2 [15]).

• The Runtime Model Interface is a Meta-Object Protocol based interface that supports introspection
of the software elements that compose an individual CONNECTor, i.e., it is possible to observe at
runtime what listeners, actuators and mediator are in operation. Furthermore, the interface sup-
ports the runtime adaptation of the CONNECTor architecture through the replacement of the prior
described elements.

Figure 2.5: Listeners and Actuators API

2.4.2 Abstract Messages
A network message is organized as a sequence of text lines, or of bits, for a binary protocol, containing
both fixed elements (typically found in message headers) and elements specific to a given message (e.g.,
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1 public inter face INetworkTranspor t {
2
3 public enum Pro toco l {TCP, UDP}
4
5 /∗ ∗
6 ∗ Create a network socket f o r the given parameter i n f o rma t i on .
7 ∗
8 ∗ @param IPAddress The address o f the socket
9 ∗ @param por t The po r t number f o r the socket

10 ∗ @param pro to The p ro toco l type to use {TCP or UDP}
11 ∗ @param isMcast i s i t a m u l t i c a s t socket ( t ) or un icas t ( f )
12 ∗ @return The ISocket i n t e r f a c e to the created socket
13 ∗ @see ISocket
14 ∗ /
15 public ISocket newSocket ( S t r i n g IPAddress , i n t por t , P ro toco l proto ,
16 boolean isMcast ) ;
17
18 /∗ ∗
19 ∗ Receive a Packet ob jec t from the socket ( b lock ing rece ive ) .
20 ∗ @param socket The socket to rece ive a msg from
21 ∗ @return The Packet data − from address and byte ar ray
22 ∗ @see Packet
23 ∗ /
24 public Packet Receive ( ISocket socket ) ;
25
26 /∗ ∗
27 ∗ Send a msg to the given socket .
28 ∗ @param socket The socket to send a msg on .
29 ∗ @param msg The byte ar ray con ta in ing the network message
30 ∗ @see Packet
31 ∗ /
32 public void Send ( ISocket socket , byte [ ] msg) ;
33 }

Figure 2.6: The Network Engine Interface

in the message body). A CONNECTor must extract relevant elements from the received message and
use them to create one or more messages according to the target protocols. Similarly, it must extract
relevant elements from the received responses and ultimately create a response according to the source
protocol. Hence, the design of CONNECTors is based upon these message-based events; and the key
design principle is to derive information from network messages and then describe them in a protocol
independent manner. We term this protocol independent description the Abstract Message. Received
network messages are converted to an Abstract Message, correspondingly the Abstract Message is used
to build the network message to be sent.

The schema for the Abstract Message content is illustrated in Figure 2.7. This shows that an Abstract
Message consists of a set of fields; a field can be either primitive or structured. A primitive field is
composed of a label naming the field, a type describing the type of the data content, a length defining the
length in bits of the field, a boolean stating if this is a mandatory or optional field, and the value of the field,
i.e., the data content. A structured field is composed of multiple primitive fields. For example, a URL field
is composed of four primitive fields: the protocol, the address, the port, and the resource location.

Abstract Messages then represent the interface between the Listeners, Actuators and the Mediator,
and the underlying network messages. In order to achieve interoperability dynamically, the CONNECTor
receives network messages from a networked system (in the format of the protocol employed by this
legacy system). This event will trigger the execution of the Mediator, whose behaviour will determine the
sequence of actions that manipulate the listeners and actuators. For example, it may receive one or more
messages in the Abstract Message format and it may send one or more messages by composing a new
Abstract Message and sending this to an Actuator to be delivered to the target networked system.
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1 <xsd : schema>
2 <xsd : element name= ” F ie l d ”>
3 <xsd : complexType>
4 <xsd : sequence>
5 <xsd : element name= ” l a b e l ” type= ” xsd : s t r i n g ” />
6 <xsd : element name= ” leng th ” type= ” xsd : i n t e g e r ” />
7 <xsd : element name= ” type ” type= ” xsd : s t r i n g ” />
8 <xsd : element name= ” mandatory ” type= ” xsd : boolean ” />
9 <xsd : element name= ” value ” type= ” xsd : any ” />

10 <xsd : element r e f = ” F i e l d ” minOccurs= ” 0 ” maxOccurs= ” unbounded ” />
11 </xsd : sequence>
12 </xsd : complexType>
13 </xsd : element>
14
15 <xsd : element name= ” AbstractMessage ”>
16 <xsd : complexType>
17 <xsd : sequence>
18 <xsd : element name= ”Name” type= ” xsd : s t r i n g ” />
19 <xsd : element r e f = ” F i e l d ” minOccurs= ” 0 ” maxOccurs= ” unbounded ” />
20 </xsd : sequence>
21 </xsd : complexType>
22 </xsd : element>
23 </xsd : schema>

Figure 2.7: The Abstract Message Schema

2.5 CONNECT Networked System Model

Interface Networked System

Affordance Behaviour

Functionality Input Output

0..n0..n1

1

0..n

1

Figure 2.8: Overview of the Networked System Model

In this section we introduce and provide a short overview of the refined Networked System Model,
emphasizing the central role it plays in the CONNECT architecture; the full model and its complete details
are provided in Section 3.2 of this document and richly covers the description languages created for
CONNECT to specify a networked system. Figure 2.8 highlights the key points of the model (with the full
model illustrated in Figure 3.1):

• The affordance is a macroscopic view, or the quality of a feature, of a networked system. Essentially
the affordance describes the high-level roles a networked system plays, e.g., ‘prints a document’, or
‘sends an e-mail’. This allows semantically equivalent action-relationships/interactions with another
networked system to be matched; in short, they are doing the same thing. A detailed definition of
affordance is given in Section 3.2.2, along with the reasons for embracing it within the CONNECT
project.

• Interfaces provide a refined or a microscopic view of the system by specifying finer actions or meth-
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ods that can be performed by/on the networked system, and used to implement its affordances.
Each networked system is associated with a unique interface. The xDL language used to specify
interfaces in CONNECT is introduced in Section 3.2.1 of this document.

• The Behaviour description documents the application behaviour in terms of how the actions of the
interface are co-ordinated to achieve the system’s affordance, and in particular how these are related
to the underlying middleware functions. A BPEL-based specification language is employed to specify
this behaviour; further details of this description is documented in Section 3.2.2. of this document

There have been many approaches and languages proposed for the description of services; how-
ever, these typically focus on a particular angle, e.g., the interface syntax, data formats, co-ordination, or
the semantic meaning of data. To achieve interoperability there is a need for proper integration of these
concepts. Hence, the role of the Networked System Model is to provide a formally-grounded, central
specification that describes the syntax, behaviour and semantics of a networked system in a common
description language. This common model then enables the CONNECT enablers to achieve their objec-
tives. Importantly, we identify that ontologies are the pillar to establish a common understanding of the
specification of networked systems. We see the role of ontologies as crosscutting the CONNECT architec-
ture; rather than using ontologies to simply discover and match service descriptions, the ontologies are
novelly employed down to the matching and mapping of communication protocols. We highlight the use
of ontologies in the CONNECT architecture in greater detail in Section 6 of this document.

2.6 The CONNECT Enabler Architecture

The Enabler architecture is the configuration of the enabler components which are deployed in the network
environment. Figure 2.9 illustrates how these combine to achieve the particular goal of CONNECT, i.e.,
to take two networked systems whose heterogeneity denies them from interoperating with one another,
and then deploying the required CONNECTor. We discuss the individual enablers in turn, and then finally
describe how they communicate in order to reach the goal.

2.6.1 The Discovery Enabler

Output to Learning Enabler: Networked System Model of one networked system.

Output to Synthesis Enabler: Matched Networked System Models of two networked systems to create
a CONNECTor for.

The Discovery Enabler receives both the advertisement messages and lookup request messages that
are sent within the network environment by the networked systems. The enabler obtains this input by
listening on known multicast addresses (used by legacy discovery protocols). These messages are then
processed; information from the legacy messages is extracted and the Networked System Models of
the systems in the environment are produced. Further information about this extraction is given in Sec-
tion 3.4.3. At this stage the model is composed of the affordance and the interface description. Initial
matching is then performed to determine whether two networked systems are candidates to have a CON-
NECTor generated between. On a match, the CONNECT process is initiated; first the current model is sent
to the Learning enabler, which adds the behaviour description to the model. On completion of the model,
the Discovery Enabler sends the model to the Synthesis enabler.

A richer description of the Discovery Enabler is presented in Section 3 of this document.

2.6.2 The Learning Enabler

Input from Discovery Enabler: Networked System Model of one networked system (with no or partial
behaviour specification).

Output to Discovery Enabler: Networked System Model of one networked system (with completed
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Figure 2.9: The CONNECT Enabler architecture

behaviour specification).

The Learning Enabler uses active learning algorithms to dynamically determine the interaction be-
haviour of a networked system from its intermediary representation and produces a model of this be-
haviour in the form of a labeled transition system (LTS); this employs methods based on monitoring and
model-based testing of the networked systems to elicit their interaction behaviour. The implementation of
the enabler is built upon the LearnLib tool [55]. It utilises the semantic annotations of the interface de-
scription from the Networked System Model as an input, and an LTS describing the interaction behaviour
is produced and added to the behaviour section of the Networked System Model, and the outcome is a
complete - as far as possible - instantiated networked system model. This is sent back to the Discovery
Enabler to complete the discovery of the description of networked systems.

The learning enabler will build on the technologies developed in WP4 as discussed in Deliverable
D4.2 [17] and folded into the architecture as results mature.

2.6.3 Synthesis Enabler

Input from Discovery Enabler: Matched Networked System Models of two networked systems to create
a CONNECTor for.

Input from Dependability Enabler: Dependability assessment of a CONNECTor specification.

Output to Deployment Enabler: Constructed CONNECTor in one of the deployment formats (generated
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code or executable model).

Output to Dependability Enabler: CONNECTor specification (LTS model).

The role of the synthesis enabler is to take the Networked System Models of two systems and then
synthesize the mediator component that is employed by the CONNECTor. For this it performs automated
behavioural matching (as opposed to functional matching) and mediation of the two models [62]. This uses
the annotated ontology information from the models to say where a sequence of messages is equivalent;
based upon this, the matching and mapping algorithms determine an LTS model that represents the me-
diator. The synthesis enabler can then output two alternatives (depending upon the style of CONNECTor
in use):

• Mediator code. The synthesis enabler generates the Java executable code that can be deployed
directly as part of a CONNECTor configuration.

• An LTS model. The LTS model can be sent directly, in order for it to be used by the mediation engine
of a CONNECTor.

Either of these two outputs is sent to the deployment enabler in order to complete the construction of the
CONNECTor.

Further information about the operation of the Synthesis enabler created by WP3 is found in Deliver-
able D3.2 [18].

2.6.4 Deployment Enabler
Input from Synthesis Enabler: Constructed CONNECTor in one of the deployment formats (generated
code or executable model).

The Deployment Enabler receives as input the mediator code and the original Networked System
Models; its objective is to finalise and then deploy the CONNECTor in this case. In order to do this, the
enabler executes two important roles:

• It composes the required functionality to ensure that CONNECTors will communicate with the legacy
networked systems, i.e., it will add the listeners and actuators to the mediator generated by the
Synthesis Enabler. We discuss how the listeners and actuators are realised in Section 4 of this
Deliverable.

• It deploys and manages the executable code of the CONNECTors in the network. For this, the enabler
utilises OSGi techniques; more information about the deployment solution is provided in Section 5
of this document.

2.6.5 Dependability and Performance Analysis Enabler
Input from Synthesis Enabler: CONNECTor specification (LTS model) and Networked System Models
(non-functional properties description).

Output to Synthesis Enabler: Dependability assessment of a CONNECTor specification.

Input from Monitoring Enabler: Data derived from real-time execution of CONNECTors.

Once a CONNECTor specification has been produced by the synthesis enabler it sends it to the depend-
ability and performance analysis enabler to determine if the non-functional requirements (as described in
the Networked System Model of each networked system) are satisfied. If so, the enabler tells the synthesis
enabler to go ahead and deploy; otherwise, the dependability enabler creates a set of enhancements to
the specification and returns these to the synthesis enabler. The dependability enabler also continuously
determines if the CONNECTor maintains its non-functional requirements. It receives monitoring data from
the monitoring enabler and in the case where there is no longer compliance, the dependability enabler
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sends a new specification to the synthesis enabler to initiate redeployment of a suitable CONNECTor in
the current conditions.

A full description of the behaviour of the dependability and performance analysis enabler created by
WP5 is given in Deliverable D5.2 [15].

2.6.6 Security and Trust (SXT) Enabler

Input from Synthesis Enabler: CONNECTor specification (LTS model) and Networked System Models
(non-functional properties description).

Output to Synthesis Enabler: Security and Trust CONNECTor specification.

Input from Monitoring Enabler: Data and messages derived from real-time execution of CONNECTors.

Once a CONNECTor specification has been produced by the synthesis enabler it sends it to the security
and trust enabler (SXT) to determine if the non-functional requirements (as described in the Networked
System Model of each networked system) are specified. If so, the enabler creates a set of enhancements
to the specification and returns these to the synthesis enabler. The SXT enabler also continuously de-
termines if the CONNECTor maintains its non-functional requirements. It receives monitoring data from
the monitoring enabler and in the case where there is no longer compliance, the enabler sends a new
specification to the synthesis enabler to initiate redeployment of a suitable CONNECTor in the current
conditions.

A description of trust and security requirements are given in Deliverable D5.2 [15], whereas a full
description of the SXT enabler will be addressed in future work.

2.6.7 Monitoring Enabler

Input from CONNECTors: Raw data concerning state information of CONNECTors.

Input from Dependability Enabler: Request to monitor a deployed CONNECTor.

Output to Dependability and Performance Analysis Enabler: Data derived from the real-time execution
of CONNECTors.

The monitoring enabler receives requests concerning which CONNECTors to monitor and then col-
lects raw information about the CONNECTors by monitoring data that this CONNECTor published to the
monitoring channel. The derived data is passed to the dependability enabler to determine if the original
non-functional requirements are being matched.

A full description of the behaviour of the Monitoring enabler created by WP5 is given in Deliverable
D5.2 [15].

2.6.8 The CONNECT Message Bus

The enablers and CONNECTors use a simple message-based communication model to exchange infor-
mation with one another. In this intermediary architecture, we use the Java Messaging Service (JMS)
implementation from Oracle1 to implement the Message Bus. The reason for the choice of communica-
tion model is that two styles of communication are important to CONNECT and are both provided by the
technology:

• Point-to-Point exchange between enablers. As described earlier, the enablers send content (e.g.,
models and code) to be processed by a specific party, e.g., the discovery and learning enabler
communicating to build the Networked System Model. JMS allows the behaviour to be achieved
using a message queue as illustrated in Figure 2.9.

1http://www.oracle.com/technetwork/java/index-jsp-142945.html
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• Publish-Subscribe communication of CONNECTor behaviour. The CONNECTors produce events in
order for them to be monitored; enablers can subscribe to the channels that the CONNECTors publish
these events to. For example, in Figure 2.9 the monitoring enabler subscribes to this channel in order
to monitor CONNECTor events.

2.7 Conclusion

To summarise, this section has identified the significant progress that has been made in the second year
towards realising a more concrete architecture. The specification of the CONNECT Networked System
Model offers the central model around which the CONNECT architecture is described. There is also a
clear picture of how the enablers collaborate in order to realise the actual CONNECTors. Yet there remains
the important issue of non-functional properties; initial work on considering interoperability solutions that
takes into account non-functional requirements has begun, cf., the dependability, security and trust, and
monitoring enablers in the enabler architecture, and also the monitoring features of the deployed CON-
NECTors themselves. However, this remains clearly work in progress and further integration of the work
carried out in WP5 is a key objective in the work to be carried out in the third year.
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3 The Discovery Enabler
3.1 Introduction

In order to achieve interoperability between independently-developed systems, it is imperative, before
any further communication can occur, that pairs of systems, which are potentially compatible—by virtue
of their complementary functionality—can be mutually discovered. The CONNECT discovery enabler is
specifically responsible for enabling compatible networked systems to discover each other, assuming
networked systems make use of some resource discovery protocol (a.k.a. service discovery protocol) to
advertise their presence in the network and also receive the advertisements of peers.

In its most basic form, a Service Discovery Protocol (SDP) decomposes into:

• The Directory node that is an optional, logically centralized node that caches service advertise-
ments;

• The Client nodes that seek provided networked services by issuing dedicated requests in the net-
work;

• The Provider nodes that advertise provided services in the networks they join.

Two other core constituents of an SDP are the language used for describing service advertisements and
requests, and the matchmaking that sets the conditions under which an advertisement is compatible with
(or matches) a request. Then, the design of an SDP may vary in the following dimensions [39]:

• Service description language and associated matchmaking, which respectively define the service
meta-model for the description of service requests and advertisements, and associated matching
relations. The service description may range from a simple list of (attribute, value) pairs to detailed
definitions specifying the service’s interface signature, behavior and quality of service.

• System structure, which may be centralized (single directory node), decentralized (no directory
node, leading to peer-to-peer discovery) or hierarchical (structured, distributed directory nodes).

• Discovery method, which may be push-based (i.e., the provider nodes pro-actively advertise their
presence towards directory or client nodes), pull-based (i.e., provider nodes react upon requests by
client nodes), or symmetric (both client and provider nodes pro-actively contribute to the discovery
process).

According to the above, the literature is rich with SDPs whose design is customized according to the tar-
get networking environment. For instance, we refer the interested reader to: UDDI for Web services [53],
Jini for intranets [1], UPnP/SSDP for home networks [34], Ariadne for MANET [58], EASY for pervasive
semantic Web services [47], and energy-efficient SDP for multi-radio networks [11]. Furthermore, several
projects have investigated interoperability solutions for SDPs so that nodes in common networks or in
bridged networks, but belonging to distinct discovery domains (i.e., using heterogeneous SDPs), are able
to locate each other. These include in particular solutions from the consortium partners such as REMMOC
[28] from Lancaster University, and INDISS [8] and MUSDAC [57] from INRIA. However, while existing SDPs
allow addressing a large variety of networking environments, they target rather homogeneous networked
systems from the standpoint of their interaction paradigms. Indeed, to the best of our knowledge, most of
the existing SDPs are concerned with client-service based systems where interaction is message-based.
Furthermore, matchmaking is often associated with simple descriptions of networked systems, i.e., a list
of (attribute, value) pairs for the simplest case [31] or interface signatures when the SDP is coupled with
an overall middleware solution for distributed computing [1]. More complex service descriptions have
been considered as part of open pervasive networking environments, such as Web services and perva-
sive computing environments. Solutions then include semantic service description using Semantic Web
technologies [43, 32] as well as behavioral specification using concurrent models [29]. However, while
matchmaking of semantic service descriptions has been extensively studied [37], few discovery protocols
integrate semantic service matchmaking [48]. Similarly, while behavioral matchmaking of networked ser-
vices has deserved significant attention over the last years [29], its integration within dynamic discovery
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protocols remains the exception [52]. Last but not least, few protocols consider the combined exploitation
of semantic and behavioral knowledge about networked systems [9].

Nevertheless, in the CONNECT context, the discovery enabler requires a detailed description of net-
worked systems so as to enable their CONNECTion despite heterogeneity in the protocols used for inter-
action, from the application down to the middleware layers. Indeed, as detailed in Deliverable D3.2 [18],
CONNECTor synthesis relies on the description of networked systems in terms of interface signatures to-
gether with affordances and the associated behavior. Even if this requirement can hardly be fulfilled by
current SDPs, thanks to the various CONNECT enablers networked system descriptions may be partly
learned, hence enabling the CONNECTion of legacy systems, provided that they advertise their presence
in the network by way of a legacy SDP.

This section introduces the design of the CONNECT discovery enabler together with its first prototype
implementation, which enables matching/compatible networked systems to be located, where matching/-
compatibility is defined with respect to the mediation patterns supported by the CONNECTor synthesis
process [18]. The proposed enabler builds upon the extensive literature in the area of service discovery
protocols, including their interoperability. However, the CONNECT discovery enabler distinguishes itself
by (i) dealing with the discovery of highly heterogeneous networked systems, and further by (ii) integrat-
ing advanced semantic and behavioral matchmaking according to the matching relations introduced in
Deliverable D3.2 [18]. Specifically, the CONNECT discovery enabler:

• Defines an ontology-based language for the abstract, yet precise, description of networked systems’
observable behavior, by building upon methodologies of the Semantic Web Services domain [37]
and of concurrency theory to reason about the interoperability of networked systems. Compared
to state-of-the-art networked system descriptions, the proposed language in particular allows the
definition of interface signatures and behavioral (process) descriptions of highly heterogeneous net-
worked systems by handling different coordination models corresponding to different types of mid-
dleware. Indeed, existing interface description languages target client-service based systems and
hence lack the expressiveness required by today’s networking environment. This is for instance
witnessed by the ad hoc extensions of WSDL to deal with other interaction paradigms (e.g., publish-
subscribe extension of WSDL by REMMOC in [28]), beyond traditional RPC-like communication.

• Features ontology-based behavioral matchmaking regarding the functional and non-functional prop-
erties of networked systems, as well as their respective interaction behaviors. However, the current
version of the discovery enabler focuses on functional and behavioral matchmaking, while non-
functional matchmaking is area for future work, which will build upon WP5 results.

• Provides an extensible solution for universal discovery using protocol plugins to manage legacy
discovery protocols, in a way similar to state-of-the-art middleware solutions for discovery protocol
interoperability [48, 56]. Plugins further include a custom plugin for CONNECT-aware nodes so as to
enable networked system advertisements using our ontology-based description language.

• Integrates with the other CONNECT enablers so as to support the CONNECTion of compatible/match-
ing networked systems. Precisely, integration with the learning enabler allows the learning of the
interaction behaviors of networked systems, as they are in general not readily available from the
interface descriptions used by legacy discovery protocols. Integration with the synthesis enabler
then enables the actual CONNECTion of CONNECTable systems through the synthesis of appro-
priate mediators, while the dependability enablers enforce matching with respect to non-functional
properties.

The next section introduces the CONNECT Networked System Description Language, simply called
NSDL, for the ontology-based description of networked systems’ observable behavior. Associated match-
making is presented in Section 3.3, which builds upon the matching relations introduced in Deliverable
D3.2 for the sake of CONNECTor synthesis [18]. The architectural design of the CONNECT discovery en-
abler follows in Section 3.4, in particular: (i) dealing with the discovery of both CONNECT-aware networked
systems (i.e., systems that use NSDL to advertise their presence in the network) and networked systems
using legacy SDPs to join networks, and (ii) discussing integration with other CONNECT enablers such as
the learning and synthesis enablers. The first prototype implementation of the discovery enabler is then
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presented in Section 3.5. Finally, conclusions are drawn in Section 3.6, summarizing the status of the
discovery enabler development and ongoing and future work towards completing integration within the
CONNECT architecture.

3.2 CONNECT Networked System Description Language

As stated in Deliverable D1.1 [6], tremendous research effort is taking place on ensuring interoperability
in open, pervasive networking environments. Building upon results of the Semantic Web Service do-
main, we posit that ontologies are the fundamental basis for establishing a common understanding of the
specification of networked systems, while the behavioral specification of networked systems is central to
analysing interoperability, including possible mediation. Then, in a manner similar to ontologies for Web
services, i.e., OWL-S [43] and WSMO [32], a networked system is described in terms of the following
elements (see Figure 3.1):

InterfaceSignature

xDLInterfaceSignature : URI 1

<<enumeration>>
AffordKind

required  

<*>

provided  

Affordances

Affordance

name : String 1

1 kind : AffordKind 

1 functionalConcept  : URI 

NSDL

name : string 1

Inputs Outputs

Input

inputConcept : URI 1

Output

outputConcept : URI 1

Behaviour

behaviourURI : URI 1

NFP

nfpURI : URI 1

1
0..11

1..*

1

0..* 0..*

0..1 0..1

Figure 3.1: Networked system description

• Interface signature (simply called interface): There is one interface associated with each networked
system. The interface defines the observable actions of the networked system. Then, as prompted
by the Future Internet vision [20] that includes the Internet of Content, Things, Services and even
People, we need to address CONNECTion among highly heterogeneous networked systems. In
particular, networked systems rely on different coordination paradigms depending on their target
domains (e.g., sensors networks rely on data-centric communication while information systems are
more likely to be client/service-based). Such diversity is part of the observable behavior of networked
systems although this is in general hidden in classical service/interface description language due
to close coupling with the underlying middleware and its interaction paradigms. As a result, the
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description of networked systems must make the interaction paradigms assumed for any interaction
explicit. The definition of interface signatures is further detailed in Section 3.2.1.

• Affordance: The affordances specify the high-level functionality of the networked system and are
implemented as protocols over the system’s observable actions. The notion of affordance corre-
sponds to that of capability from the Semantic Web service domain. However, we use another term
to stress that we deal with interoperability beyond the Web service domain, although acknowledging
that we build upon the state of the art of the domain. The definition of affordances is further detailed
in Section 3.2.2.

• Non-functional properties (NFP): Expressing the non-functional properties of networked systems
is one of the CONNECT challenges that is addressed in WP5. To the best of our knowledge, the
literature lacks a generic framework in which properties such as dependability, performance, security
and trust have been considered together. Therefore, a Property MetaModel has been defined (see
Deliverable D5.2 [15]) to express all these properties. In short, the meta-model decomposes in
five parts: (i) Property Specification that mainly provides the name and the type (i.e., Quantitative
or Qualitative) of a given property; (ii) Metric Specification that defines the method to assess a
property; (iii) Metric Template that expresses the way to compute metrics; (iv) Event Specification
that describes, if needed, specific time events when the properties have to be monitored; and finally
(v) Metrics Domain for which a property is relevant or needs to be verified or guaranteed.

For illustration, in the following, we consider the photo sharing scenario that is also used in Deliverable
D3.2 [18]. Briefly stated, the photo sharing scenario concentrates on ad hoc photo sharing within a public
space and more specifically on the ad hoc CONNECTion between two mobile versions of the photo sharing
application. Both versions allow upload, download and commenting on photo files. However, the two
versions differ as follows: (i) one implements peer-to-peer photo sharing using tuple-space-based shared
memory and (ii) the other implements centralized photo sharing through interaction with a dedicated
server and distinguishes between clients that upload and those that download photos so that the former
operation is performed only by authorized users.

3.2.1 Interface Signature and Binding Definition

As discussed previously, the networked system’s interface defines the observable actions performed by
the system for interaction with its environment and hence for implementing its affordances. Compared to
existing interface definition languages, the proposed XML-based schema for interface signature definition,
called xDL (extensible Description Language), tackles different coordination models so as to account for
the diversity of today’s networking environment.

In detail, the definition of xDL is inspired by WSDL and its extension SAWSDL1; it is thus composed of
three parts, all including semantic annotations (see Figure 3.2):

• Types: Serve to define the interface’s data types (i.e., set of Type elements) in a way similar to
SAWSDL to which the interested reader is referred for detail.

• Primitives: Enable the characterization of the observable actions of the networked system. An
action (or primitive) is defined by both the corresponding application-specific and communication
actions, the latter relating to the communication model implemented by the underlying middleware.
The description of primitives is further detailed in the following Sections 3.2.1 to 3.2.1.

• Bindings: Define the data format and protocol details supporting the defined primitives. Precisely,
a binding named name, gives: the URI where the specific encoding of data is defined through the
data item, the URI of the protocol used for executing the primitive through the primitive item, and the
address of the networked system as a URI. There may be a number of bindings for a given primitive,
depending on the specific middleware used.

1http://www.w3.org/TR/sawsdl/
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xDL

Types
Primitives Bindings

type

element : XSDElement 1

SemanticAnnotation 

modelReference: URI

I

1

1

1

loweringSchemaMapping : URI

liftingSchemaMapping : URI

CSMPrimitives PSPrimitives SMPrimitives

Message

name : string 1

Input

name : string 1

Output

name : string 1

Send

Receive

Invoke

Solicit

CSMPrimitive 

name: String

I

1

Topic

name : string 1

Event

name : string 1

Subscribe

GetEvent

Publish

PSPrimitive 

name: String

I

1

SData

name : string 1

Template

name : string 1

Write

Read

SMPrimitive 

name: String

I

1

Binding

name : string 1

1 data : string 

1 primitive : string 

1 address : string 

1
1 1

0..1 0..10..1

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1
1
1
1

1..*
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1..*

1..*

1..*

1..*

1..*

1..*

1 1 1 1 1 1

1 1 1

1..*

CSMD

PSD

SMD

1..*

Figure 3.2: Networked system interface signature and binding
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Regarding semantic annotations, we use modelReference to specify the association between an xDL at-
tribute and a concept in a given ontology, as well as liftingSchemaMapping and loweringSchemaMapping
to define the transformation from (to) the XML Schema of the attribute to (from respectively) its associated
semantic description. Concretely, we rely on a description-logic-based ontology language, namely OWL2

(Web Ontology Language), to describe formally the concepts used by the interacting parties.
As discussed above, the primitives executed by networked systems depend on the application-specific

actions that are implemented together with related middleware-specific communication actions. In gen-
eral, middleware-specific communication actions are hidden from the SDP’s interface definition language
because either actual interaction with the service is considered to be beyond the scope of the SDP (e.g.,
SLP [31]) or the SDP is closely tied to a middleware platform and hence middleware-specific communi-
cation actions may be automatically inferred (e.g., Jini [1]). However, in today’s networking environment
where networked systems are highly heterogeneous and may need to be composed on the fly, the inter-
face definition of networked systems must make explicit the communication paradigms associated with
application-specific actions. The definition of the communication paradigms then derives from that of ref-
erence coordination models. According to the classification of connectors given in [64] and the related
reference middleware ontology introduced in Deliverable D3.2 [18], we identify the following reference
coordination models for the definition of xDL: client-service, message-orientation, publish-subscribe and
shared memory. This leads us to introduce dedicated descriptions as part of xDL (see Figure 3.2), where
we merge client-service and message-oriented communication paradigms, as defined below.

CSMD: Client/Service and Message-oriented Description

The CSMD description firstly allows the definition of one-way message-based communications:

• Send (message, output): denotes the sending of a message with output as content.

• Receive (message, input): denotes the receipt of a message with input as content.

In the above definition, the application-specific semantics of the action (or primitive) is given by the on-
tology concepts (i.e., semantic annotations) associated with the message and its content, while the se-
mantics of the communication action is given by that of send /receive. Note that in the above, a message
may denote an operation in the context of the client-service coordination model, in which case the oper-
ation is called asynchronously and the output of the send function corresponds to the operation’s input
parameters.

Further, with regard to the client-service communication paradigm, the CSMD description additionally
defines:

• Invoke (message, input, output): denotes the synchronous invocation of an operation, characterized
by message, with input and output parameters;

• Solicit (message, input, output): denotes the matching counterpart of Invoke on the service provider
side;

whose application-specific semantics also derives from the concepts associated with message, inputs
and outputs while the communication semantics is that of invoke/solicit.

PSD: Publish/Subscribe Description

Under the the publish/subscribe model, networked systems communicate asynchronously [49, 10]: sys-
tems acting as publishers produce events on certain topics; other systems acting as subscribers receive
the published events that match the topics to which they subscribe. Then, the application-specific seman-
tics of actions under the publish/subscribe model is defined by that of the topics and events, while the
semantics of communication relies on the following middleware functions:

• Subscribe (topic): denotes the subscription to a topic so as to receive asynchronous events that
match the topic expression.

2http://www.w3.org/TR/owl2-overview/
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• getEvent (topic, event): denotes the consumption of a received asynchronous event that matches
the given topic.

• Publish (topic, event): denotes the publication of an event matching a given topic.

SMD: Shared Memory Description

Using the shared memory coordination paradigm, networked systems communicate by reading and writing
data into some shared data space, which may be centralized or distributed. Then, the application-specific
semantics of actions under the shared memory model is given by the data being manipulated, while the
semantics of the communication is given by the operation performed on the shared data space, i.e.:

• write (data): denotes the writing of data into the shared data space.

• read (template, data): denotes the reading of data matching template from the shared data space.

Example

As an illustration, Appendix 8.1 gives the xDL description of the interfaces of the two photo sharing appli-
cations under consideration, which are respectively based on the client-service and shared memory inter-
action paradigms, while Figures 3.3 and 3.4 give their graphical representation. In the figures, we note the
semantically annotated descriptions of the communication actions, which specify the application-specific
semantic of actions performed via the given primitives. The centralized photo sharing implementation in
Figure 3.3 is specified using CSMD. Therefore, the client-side application actions are invoked though the
Invoke function, while they are processed on the server side using the Solicit function. The producer
first authenticates by invoking the Authenticate operation then calls the UploadPhoto operation in order
to upload a photo. The consumer searches for photos based on criteria over their metadata using the
SearchPhoto operation, then he can download a photo (DownloadPhoto) or a comment about this photo
(DownloadComment). The consumer can also comment a photo through the CommentPhoto operation.
Finally, the actions of the Photo Sharing server are complementary to the client actions. The binding is
performed using SOAP. The peer-to-peer-based implementation in Figure 3.4 is specified using SMD and
defines a single interface signature, as all the peers feature the same observable actions. The peers
producing a photo, Write the corresponding metadata and file tuples in the tuple space. Then other peers,
can search for photos matching some criteria by performing a Read over the tuple space. They can then
select one photo and Read the corresponding file or comment. Note that the PhotoMetadata, PhotoFile,
and PhotoComment associated with the same Photo have the same photoID. The binding is based on
LIME.

3.2.2 Affordance Definition
While networked systems interact through the observable actions defined in their interface signatures,
they actually CONNECT according to high-level functionality that they provide and require within the net-
work. We call such functionalities affordances, while acknowledging the similar meaning of the notion of
capability from the Semantic Web service domain. As depicted in Figure 3.1, page 35, and according to
the networked system model introduced in Deliverable D3.2 [18] and recalled in Section 2, an affordance
is specified in terms of:

1. The ontology-based semantic characterization of the high level functionality implemented by the
affordance, i.e., the ontology concepts associated with its functionality (functionConcept), and inputs
(set of inputConcept) and outputs (set of outputConcept) parameters. In addition, the kind item
serves defining whether the affordance is required or provided in the network.

2. The affordance’s behavior, that is, the process or protocol executed by the networked system to
coordinate with its environment to realize the given high-level functionality. In a first step, we assume
that the coordination takes place with a single peer while the implementation of affordance through
composition of multiple networked systems is an area for future work. Likewise, we do not consider
affordance nesting.
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Figure 3.3: CSMD-based photo sharing interface

According to the definition of the overall CONNECT architecture, the specification of the affordance
behavior may be automatically learned by the CONNECT learning enabler. However, CONNECT-aware
networked systems may alternatively publish the specification of their behavior so as to ease their CON-
NECTion. This leads us to introduce a supporting language for the user-friendly specification of the af-
fordance’s behavior, for which we build upon BPEL3. Indeed, BPEL allows the specification of concurrent
processes while being supported by tools for user-friendly editing as well as translation into formal con-
current models (e.g., WS-Engineer4). However, BPEL, being tightly coupled with Web services, supports
limited communication primitives and remote interface description (i.e., WSDL). Nevertheless, the base
language can be extended with new activities, which are called extension activities (EAs). We thus exploit
this feature to introduce the elements of the different coordination models supported by xDL. Further-
more, by building upon the flexibility of XML5, these extensions can be generic and be refined later in
unlimited ways according to concrete middleware platforms. Figure 3.5 gives the definition of the BPEL
EAs associated with xDL, which are direct from the xDL definition of Figure 3.2.

As an illustration, Appendix 8.2 gives the BPEL specification of the behavior of the two photo sharing
affordances under consideration, which respectively interact using the client-service (CSMD-based) and
shared memory (SMD-based) models, while Figure 3.6 gives their graphical representations. In the SMD-
based description, there is a single affordance to realize photo sharing: each networked system acts as
a peer that may read and write photo files as well as annotate shared photo files with comments. On
the other hand, the CSMD-based description introduces three affordances, which relate to the centralized
photo sharing service (or server) at the bottom of the figure and to the photo sharing clients that may either
download and comment (top right of the CSMD description), or upload (top left of the CSMD description)
photos.

3http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
4http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/
5http://www.w3.org/TR/xmlschema11-1/
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Figure 3.4: SMD-based photo sharing interface

3.3 CONNECT Matchmaking

Given the NSDL description of networked systems, their matchmaking follows from the specification of the
matching relations introduced in Deliverable D3.2 [18]. Briefly stated, the matchmaking of networked sys-
tems towards their CONNECTion is first determined according to the ontology-based semantic matching
of their affordances. Then, if two networked systems implement semantically matching affordances, the
enabler checks whether the actions they perform for the realization of the affordances match semantically,
by mapping their interfaces according to base mediation patterns. If so, it is ultimately verified whether the
protocols/processes defining the behaviors of the affordances may indeed coordinate given the computed
interface mapping. Then, in the case of successful behavioral matchmaking, the two networked sys-
tems may be CONNECTed and the associated CONNECTor shall implement a mediator that performs the
elicited interface mapping. As part of WP3, we are currently investigating efficient algorithms for on-the-fly
computation of interface mapping and associated behavioral matchmaking.

Within WP1, as a first step to the implementation of the CONNECT enablers within the CONNECT archi-
tectural framework, we have implemented behavioral matchmaking assuming 1-to-1 semantic mapping of
actions, i.e., any application-specific action executed as part of the realization of an affordance maps to a
single application-specific action of the peer’s matching affordance.

The following section recalls the ontology-based semantic matchmaking of affordances introduced
in Deliverable D3.2 [18]. Then, Section 3.3.2 details behavioral matchmaking under 1-to-1 ontology-
based semantic mapping of application-specific actions and taking as input the behavioral specification of
affordances using the BPEL specification introduced in the previous section.

3.3.1 Ontology-based Semantic Matchmaking of Affordances

Matching on the basis of the ontology-based semantics of affordances permits the efficient selection of
potentially compatible systems from the wide range of networked systems known to the discovery enabler.
Systems that have semantically matching affordances then have their interface and behaviors analyzed in
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Figure 3.5: Extension activities associated with xDL communication paradigms

detail to determine if they do indeed match at this lower level.
Matching of a pair of affordances is performed according to the rules defined in D3.2 [18]. Given a pair

of affordances:

Aff 1 =< Required, f1, I1, O1 > and Aff 2 =< Provided, f2, I2, O2 >

where fi∈1,2 refers to the function concepts, Ii∈1,2 are the input concepts, and Oi∈1,2 are the output
concepts);

Aff 1 semantically matches Aff 2 iff:
f1 is subsumed by f2, I2 is subsumed by I1 and O1 is subsumed by O2, according to the given ontology,

where a concept C is subsumed by a concept D in a given ontology O, written C ≤onto D, if in every
model of O the set denoted by C is a subset of the set denoted by D.

Only pairs of semantically matching affordances are worth considering further for behavioral matching
and possible CONNECTOR synthesis as defined in D3.2 [18], although weaker matching could be consid-
ered in the case when degenerate behavior is acceptable in the given application context.

3.3.2 Behavioral Matchmaking of Affordances

Given semantically matching affordances, their associated protocols must be checked for the potential
to coordinate, possibly under some mediation implemented by the supporting CONNECTOR. Advanced
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Figure 3.6: Behavior of the photo sharing affordances

matching relations and supporting algorithms are being investigated within WP3 so as to facilitate CON-
NECTion between heterogeneous systems while not sacrificing dependability. In particular, WP3 investi-
gates CONNECTor synthesis and related matching relations in a way that supports most mediation patterns
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(i.e., merge/split, missing/extra and reordering of actions) [18]. However, in order to enable early exper-
imentation, we have been implementing behavioral matchmaking considering basic mediation patterns
with respect to application-specific actions, as presented below.

Supported Mediation Patterns
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1..*
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name : string 1

1

1..*

1..*

Inputs 
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1
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loweringSchemaMapping : URI 1

liftingSchemaMapping : URI 1

Output 

modelReference : URI 1

loweringSchemaMapping : URI 1

liftingSchemaMapping : URI 1

1..*

1 1

CADL 

Figure 3.7: CONNECT Action Definition Language

The behavioral matchmaking implemented in the current CONNECT discovery enabler accounts for the
following mediation patterns:

• Mapping between middleware-specific communication actions of heterogeneous coordination mod-
els. According to Deliverable D3.2 [18], such mapping relies on making the networked systems’
actions middleware-agnostic, that is, middleware-specific communication actions are mapped onto
abstracted input and output communication actions. The resulting actions are characterized using
the XML-based CADL (CONNECT Action Definition Language) language given in Figure 3.7. Then,
following the mapping introduced in Deliverable D3.2 [18], Figure 3.8 defines the mapping of xDL
primitives to CADL input and output actions. The Solicit, Send, Write, and Publish functions are
mapped onto output actions while the Invoke, ReceiveMessage, and Read functions are translates
into input actions. The sequence of a Subscribe function followed by a GetEvent function is mapped
to an input action. The rationale behind this mapping is that the output actions represent the pro-
duction of an application action whereas the input actions are meant for it consumption. CADL
hence offers a uniform view of the observable actions since it specifies for each action from the
interface the xDL primitive, the middleware-agnostic action, IOAction which can either be of type
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Figure 3.8: From xDL actions to middleware-agnostic CADL actions

input or output and the associated Inputs and Outputs parameters. Each constituent of the action is
associated with a ModelReference referring to its semantic concept, LoweringShemaMapping and
LiftingSchemaMapping that specify the transformations between the syntactic (XML-based) types
and the associated semantic concepts.

• Mapping between application-specific actions according to their ontology-based semantics, where
we consider only one-to-one mapping: such mapping derives from the is-a relation (a.k.a. subsump-
tion) defined over concepts in the corresponding ontology.

Following the above, any protocol defining an affordance behavior may be translated into a middleware-
agnostic protocol where communication actions are defined in terms of CADL actions. In addition,
application-specific actions are matched against each other according to their semantics and subsump-
tion relationships holding in the related ontology. Note that given the definition of CADL in Figure 3.7, the
original xDL definition is referred to in the description of the middleware-agnostic action using the xDL
primitives item so as to keep track of the translation; this information will subsequently be used by the
mediator synthesis process as implemented by the synthesis enabler.

Ontology-based Model Checking for Behavioral Matchmaking

Given the above, an appealing analysis technique to reason about behavioral matching of networked
systems is model checking. Considering two networked systems, NS1 and NS2, and assuming that NS1

requires the semantically matching affordance provided by NS2, verifying that NS1 behaviorally matches
with NS2 amounts to setting the traces of NS1 as legitimate traces that must be achieved by NS2.

Among relevant formal models, Foster [25] provides a method and associated tool to translate BPEL
into the FSP (Finite State Processes) process algebra whose semantics is given in terms of labeled tran-
sition systems (LTS) [41]. However, this translation abstracts away input/output data, which are of great
relevance to the behavioral matchmaking process since they give the semantics of actions. Therefore, we
enhance the obtained FSP, which we call OFSP (Ontological FSP), with details from the CADL description
of actions. However, to avoid the URIs included in the CADL description interfering with the FSP syntax,
CADL actions are encoded in base 32 (see Figure 3.9). Hence, BPEL protocols defining the behavior of
affordances in terms of xDL actions are translated into OFSP processes whose actions are semantically
annotated using CADL actions. Although another process algebra would have worked equally well, we
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OFSP actionOFSP actionCADL actionCADL action

< Action>

<xDLPrimitive>

<modelReference> URI of the OWL </modelReference > 

</xDLPrimitive>

<IOAction>

<type> “input" or “output" </type>

< modelReference> URI of the OWL </modelReference> 

</IOAction>

<inputs>

<input>

< modelReference> URI of the OWL </modelReference>

<liftingSchemaMapping>  URI of the XSLT</liftingSchemaMapping>

<loweringSchemaMapping>  URI of the XSLT</ loweringSchemaMapping>

</inputs>

<outputs>

<output>

<modelReference> URI of the OWL </modelReference>

<liftingSchemaMapping>  URI of the XSLT</liftingSchemaMapping>

<loweringSchemaMapping>  URI of the XSLT</ loweringSchemaMapping >

</outputs>

</Action>

moiBASE32(URI)

.aoiBASE32(URI)

.imiBASE32(URI)

.omiBASE32(URI)

Figure 3.9: Encoding OFSP

chose FSP for its simplicity, emphasis on compositional analysis, and existing LTSA6 (Labeled Transition
System Analyzer) tool support.

Given the OFSP specification of affordance behaviors, behavioral matchmaking may be reasoned
upon using safety analysis since a safety property specifies acceptable behavior, in terms of legitimate
traces, for the process it is composed with. A system S will satisfy a property P if S can only generate
sequences of actions (traces) which, when restricted to the alphabet of P , are acceptable to P [12]. LTSA
performs safety analysis by computing the safety property, which is also an FSP process, composing
the property with the process to be checked; then, if there is a trace from the initial state to an error
state, the system is unsafe. However, LTSA compares the actions of processes against syntactic equality
only, whereas we need them to be compared semantically using the CADL annotations embedded in the
OFSP specification. Therefore, we have modified the safety analysis in order to introduce the subsumption
relation between actions, as presented below.

Let:

• αP be the ontological alphabet of a process P , i.e., the set of all the actions P can execute, which
are specified using CADL,

• P/a be the function describing the behavior of P after it has engaged in an action a ∈ αP , and

• ∗ be the non-process representing an isolated node.

• a trace s = 〈a1, a2, ..., an〉 denotes the sequence of actions ai ∈ αP in which process P engages
and represents the communications with its environment,

• P/s represent the behavior of P after engaging in the whole sequence s of actions, one after the
other.

• the set of all traces of P be defined as [33]:

traces(P )
def
= {s | P/s 6= ∗}

Then, a process Q satisfies a property P if every trace of Q is also a trace of P :

P v Q def
= traces(Q) ⊆ traces(P )

Note that this definition is similar to the one of refinement [33]. Indeed, a convenient way to check
refinement in LTSA is by using safety analysis. However, while the original definition of trace inclusion
relies on the syntactic equality of embedded actions, we extend the definition considering ontology-based
semantic actions. Specifically, we evaluate the semantic compatibility of actions using the ontology-based
notion of subsumption, noted ≤onto. We recall:

6http://www.doc.ic.ac.uk/ltsa/
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a1 =< required, op1, input1, output1 > ≤onto a2 =< provided, op2, input2, output2 > iff
(op1 ≤onto op2) ∧ (input2 ≤onto input1) ∧ (output1 ≤onto output2)

Accordingly, two traces s1 = 〈a1, a2, ..., an〉 and s2 = 〈b1, b2, ..., bn〉 semantically match iff each required
action of s1 (s2) is subsumed by a provided action of s2 (respectively s1) sequentially, hence the semantic
matching of two traces is formalized as:

s1 ↪→onto s2
def
= ai =< required, opi, inputi, outputi > ≤onto bi =< provided, op′i, input

′
i, output

′
i >

∧bi =< required, op′i, input
′
i, output

′
i > ≤onto ai =< provided, opi, inputi, outputi > (1 ≤ i ≤ n)

Furthermore, using the semantic matching relation between traces, a process Q ontologically satisfies a
property P (P vonto Q) if each trace of Q semantically match a trace of P , i.e., formally:

P vonto Q
def
= ∀sQ ∈ traces(Q), ∃sP ∈ traces(P ) such that sQ↪→onto sP

Subsequently, the fact that a process Q does not satisfy a property P (noted 6vonto) is defined as follows:

P 6vonto Q
def
= ∃sQ ∈ traces(Q) such that ∀sP ∈ traces(P ) sQ 6↪→onto sP

The sequence sQ is, in fact, a counterexample that can be used to adapt the behavior of Q to P ’s behavior.
This leads us to introduce the following behavioral matching relations between networked systems, NS1

and NS2, which provide or require semantically matching affordances:

• Exact matching: assesses compatibility for symmetric interactions such as peer-to-peer communi-
cation where both networked systems provide and require the same affordance.

NS1 == NS2 ⇔
(NS1 vonto NS2) ∧ (NS2 vonto NS1) under mediation

• Plugin matching: evaluates compatibility for asymmetric interactions such as client-server commu-
nication where NS1 is providing an affordance and NS2 requiring it.

NS1 >> NS2 ⇔
(NS1 vonto NS2) ∧ (NS2 6vonto NS1) under mediation

• Mismatching: identifies behavioral mismatch as:

NS1 !! NS2 ⇔
(NS1 6vonto NS2) ∧ (NS2 6vonto NS1)

under mediation.

OLTSA for Automated Ontology-based Model Checking

In order to support automated ontology-based model checking, we have extended the LTSA tool with
an OWL-based reasoner to achieve semantic behavioral matchmaking; we call the resulting tool OLTSA
(Ontological LTSA).

LTSA is a free Java-based verification tool that automatically composes, analyzes, graphically ani-
mates FSP processes and checks safety and liveness properties against them. There are several ver-
ification tools such as CADP7 that provide similar functionality as LTSA. We adopted LTSA since it is a
free Java-based tool, it emphasizes composition, and provides a plugin (LTSA-WS [25]) to translate BPEL
specifications to FSP processes automatically.

Figure 3.10 depicts the class diagram of the OLTSA extension to LTSA, which includes:

• ManipulatingOntologies: is a utility class to manipulate ontologies using OWL API8; it allows on-
tologies to be loaded either using a URL or locally by specifying a path to the ontology. It manages a
Vector of loaded ontologies to avoid loading the same ontology many times. Then, the parameter
forceUpdate makes it possible to update the reference to an ontology through the getClasses
method. It offers the possibility of pre-loading all the classes of an ontology. It also permits a rea-
soner to be associated with a loaded ontology. We use HermiT9 but since we are accessing the

7http://www.inrialpes.fr/vasy/cadp/
8http://owlapi.sourceforge.net/
9http://hermit-reasoner.com/
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ManipulatingOntologies

+DEGREE_MATCH_EQUIVALENT : int = 0
+DEGREE_MATCH_SUBCLASS : int = 1
+DEGREE_MATCH_SUPERCLASS : int = 2
+DEGREE_MATCH_HAVE_COMMON_CLASS : int = 3
+DEGREE_MATCH_NOTHING : int =4
-manager : OWLOntologyManager = OWLManager.createOWLOntologyManager()
- openedOntologies : Hashtable<String, OWLOntology> = new Hashtable<String, OWLOntology>()
- reasoners : Hashtable<OWLOntology, OWLReasoner> = new Hashtable<OWLOntology, OWLReasoner>()
- singleton : ManipulatingOntologies = new ManipulatingOntologies()

- ManipulatingOntologies()
+ManipulatingOntologies getInstance() : ManipulatingOntologies
+OWLOntology loadFromWeb(url : String) : OWLOntology
+OWLOntology loadFromFile(path : String, boolean forceupdate) : OWLOntology
+getClasses(OWLOntology onto) : Vector<OWLClass> 
+initReasoner(OWLOntology ontology) : OWLReasoner
+getLeastCommonSuperClass(OWLReasoner reasoner, OWLClass class1, OWLClass class2) : OWLClass
+degreeOfMatch(OWLReasoner reasoner, OWLClass class1,OWLClass class2) : int
+degreeOfMatch(OWLReasoner reasoner, classPath1 : String, classPath2 : String) : int

SemanticAnalyser
+SemanticAnalyser(cs : CompositeState, output : LTSOutput, eman : EventManager, ontologyPath : String, strictMatch : boolean)
+SemanticAnalyser(cs : CompositeState, output : LTSOutput, eman : EventManager, ia : boolean, ontologyPath : String, strictMatch : boolean)
+ analyse() : int
-compare(system1Op : String, system2Op : String , strictMatch : boolean) : String 
~eligibleTransitions(int[] state) : List<int[]> 

MatchingCheck

+MATCHING_EQUIVALENT : int = 1
+MATCHING_GREATER: int = 2
+MATCHING_SMALLER: int = 3
+MATCHING_DIFFENRENT: int =4
ontologyPath : String 

+MatchingCheck(output : LTSOutput, ontologyPath : String)
+Matching(ns1 : CompactState, ns2 : CompactState, strictMatch : boolean) : int
+getAllProcesses(String text) : Hashtable<String, CompactState> 

singleton

1

1 semanticManip

LTSA

Analyser

Figure 3.10: OLTSA class diagram

reasoner through the OWL API, any reasoner implementing the OWLReasonerFactory interface
(such as FaCT++, HermiT, Pellet and Racer) would have worked equally well. Finally, it compares
two OWL concepts class1 and class2 either using the references to these classes, if they are
pre-loaded, or directly using their respective paths. The result can be:

– DEGREE MATCH EQUIVALENT if they are equivalent,

– DEGREE MATCH SUBCLASS if class1 is subsumed by class2,

– DEGREE MATCH SUPERCLASS if class1 subsumes class2,

– DEGREE MATCH HAVE COMMON CLASS if there exists a class other than owl:Thing that sub-
sumes both of them, in which case the method getLeastCommonSuperClass allows to have
this class, or

– DEGREE MATCH NOTHING if there is no semantic relationship between the two.

• SemanticAnalyser: performs a semantic safety analysis on the composition of a process and a
property represented in one CompositeState passed to the constructor. It extends the Analyser
class of LTSA responsible for syntactic safety analysis by implementing a semantic comparison of
the labels constructed as <required/provided, operation, input, output>.

• MatchingCheck: uses the SemanticAnalyser in both directions to return the behavioral matching
between the two networked systems, each of which specified by a process, which is a CompactState.

In addition to the above, the GUI of LTSA has been modified in order to include the OLTSA support for
semantic behavioral matchmaking.

Note that the proposed semantic behavioral matchmaking may possibly be extended to cope with the
reordering mediation pattern. Indeed, this may be achieved by making data-independent actions con-
current, either by using data-flow optimization of the BPEL process describing the behavior of the affor-
dance [66], or by relying on automated partial order reduction [35] implemented in most model checkers,
including LTSA. However, such an extension is an area for future work.

3.4 CONNECT Discovery Enabler

The design of the universal CONNECT discovery enabler builds upon the analysis of existing interoper-
ability platforms for service discovery protocols, and in particular solutions developed by the consortium
partners and experience learned from them. We have more specifically designed the CONNECT discovery
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enabler upon the MUSDAC [56] discovery platform, which was further extended with semantic service ca-
pabilities in order to enhance the supported matchmaking [47]. Basically, in MUSDAC10, the environment
is viewed as a dynamic composition of independent networks in which services use different protocols
for discovering and accessing services. Then, MUSDAC relies on specific plugins to interact with legacy
service discovery protocols, manages the efficient dissemination of the service information between the
different networks, and enables clients to locate all the networked services in them.

However, the MUSDAC platform is dedicated to service-oriented systems and does not deal with
behavioral matchmaking. We have thus revisited this base solution in an extensive way to support the
discovery of heterogeneous networked systems and their matchmaking, using NSDL and associated
matchmaking introduced in the previous sections. Last but not least, the discovery enabler integrates with
the other CONNECT enablers according to the CONNECT architectural design discussed in Section 2.

3.4.1 Architecture
Building upon the MUSDAC [56] design, the architecture of the CONNECT Discovery Enabler decomposes
into (see Figure 3.11):

Figure 3.11: Discovery enabler architecture

• Discovery manager: Coordinates the various parts of the Discovery Enabler, interacting with
the plugin manager and repository to store discovered networked system descriptions and initiate
matchmaking.

• Matchmaking engine: Implements matchmaking according to the definition given in Section 3.3
and is thus no longer discussed in this section.

• CONNECT-DP plugin: Implements a customized service discovery protocol, called CONNECT Dis-
covery Protocol (CDP for short). As detailed in Section 3.4.2, CDP may be used by CONNECT-aware
nodes to advertise the networked systems they host using NSDL descriptions or query for other net-
worked systems in the network.

• Legacy SDP plugins: Implements bridging with legacy SDPs so as to enable the discovery of
networked systems that use legacy SDPs to advertise their presence and/or query for networked

10https://www-roc.inria.fr/arles/index.php/software/81-musdac-a-middleware-for-multi-protocol-service-discovery-and-
access.html
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Message Parameters
Hello endpoint
Bye endpoint
Register NDSL
Match list of (affordance, endpoint)
Connect endpoint
Connected endpoint

Figure 3.12: CDP messages.

systems in the network. As presented in Section 3.4.3, Plugins extract legacy networked systems
descriptions (e.g., WSDL, SAWSDL, UPnP, etc.) that they translate into NSDL, with the assistance
of CONNECT enablers and in particular learning. As discussed in Section 3.5 on prototype imple-
mentation, our current prototype bridges with UPnP SSDP and DPWS WSDD.

• Plugin manager: Manages the plugin lifecycle by loading, starting and stopping the set of plugins.

• Repository: Caches networked system descriptions using the NSDL format together with the re-
lated semantic-aware OFSP specification of affordances behavior; the design of the repository is
discussed in Section 3.4.4.

3.4.2 CONNECT Discovery Protocol

By virtue of having been designed with CONNECTor synthesis in mind, the CONNECT Discovery Protocol
(CDP) supports the extraction of all the information needed by the CONNECT enablers, by exploiting NSDL.
The CDP is inspired by WS-Discovery11 (a.k.a. WSDD – Web Service Dynamic Discovery). The CDP
protocol is optimized to reduce the number and the size of the exchanged packets during the discovery
phase.

The main goal of CDP is to enable networked systems that are CONNECT-aware to be discovered and
to provide enriched semantic and behavioral description natively, i.e., the NSDL description that defines
interface, affordances and associated behaviors, and non-functional properties (Section 3.2), although
dealing with non-functional properties is yet to be integrated in our design. CDP functions are currently
accessible as a Web service and may easily be extended to be accessed through alternate protocols.

CDP defines two entities: the CDP server (i.e., the discovery service) that manages the CDP Clients
(networked systems) that are in its network. The protocol further allows the deployment of an arbitrary
number of servers. Using CDP, the CDP server/repository and CDP clients announce their presence on
the network to discover one another; then, CDP clients register both required and provided affordances
with the server. Then, CDP can identify provided affordances that match required ones.

Figure 3.12 lists the messages used by CDP, while Figure 3.13 illustrates the process of CONNECTion
between two CONNECT-aware nodes that use CDP. First, when the Networked Systems (NS) join the
network, they multicast/broadcast a Hello message (Step 1) to advertise their presence and to look for
a Discovery Enabler (i.e., CDP server). When a CDP server receives a Hello message from a CDP
Client, it answers with a unicast Hello message to the CDP client (Step 2). Then, the CDP client knows
the address of the CDP server and can hence register and send its NSDL description using Register,
which leads to storing the advertisement in the discovery enabler’s repository (step 3). After performing a
matchmaking process (i.e., seeking affordances matching the required one in the repository according to
the matchmaking definition of Section 3.3), if the Discovery Enabler finds at least a matching networked
system, a Match message is sent to the requester node (i.e., the one requiring an affordance) with the
list of end points of networked systems that provide matching affordances (step 4). The CDP client sends
a Connect message (step 5) containing the end point of the selected networked system. This leads the
discovery enabler to interact with the synthesis, dependability and deployment enablers so as to generate
the needed CONNECTor. Then, once the required CONNECTor is deployed, the CDP server informs the
networked systems with the Connected message (step 7 ).

11http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
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Discovery Enabler

CDP Plugin
(CDP Server)

CDP Client
(Requested 
Affordance)

CDP Client
(Provided 

Affordance)

7

1-Hello 1- Hello

2- Hello

3- Register

NS NS

Deployment Enabler

6- Deploy

7- Connected

2- Hello

3- Register

4- Match

5- Connect
        

 

Multicast
Message

Unicast
Message

Action

Message
Name

Action
Name

Connector
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Dependability 
Enabler

Synthesis Enabler

Figure 3.13: The CONNECT discovery protocol

3.4.3 Legacy Plugins
The SDP plugins interface with legacy discovery protocols deployed in the network, and further translate
networked system descriptions from the specific legacy format to NSDL descriptions (see Section 3.2).
However, networked systems that implement legacy protocols often provide only their syntactic interface
signature (e.g., WSDL) and do not provide any means to extract their behavior nor their non-functional
properties. Neither do they provide ontology-based descriptions, although this may be eased by lat-
est standards like SAWSDL (Semantic Annotations for WSDL12). This then requires automated learning
about the networked systems’ behavior and properties, as supported by the CONNECT learning enabler
developed in WP4.

CONNECT-aware Legacy
NS Description NS Description

Affordance Provided Inferred
Syntactic Interface Provided Provided
Semantic Interface Provided Inferred
Behavior Provided Learned (WP4)
Non-functional Provided Learned (WP4)
properties

Figure 3.14: NS description extraction

Figure 3.14 summarizes how networked system description is extracted considering both CONNECT-
aware Networked Systems (NS) and legacy ones. In the former case, systems provide NSDL descriptions
by employing CDP while in the latter, a simple interface description is provided via the legacy discovery
protocol. Focusing on legacy service descriptions, ontology-based semantic characterization of affor-
dances and interfaces may be inferred from the name and documentation of primitives, through process-

12http://www.w3.org/TR/sawsdl/
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ing with dictionaries and ontologies [26, 38, 7]. Such a feature is not yet integrated in our prototype and
is part of our ongoing work through collaboration within the context of the EternalS project13. In addi-
tion, active learning, as investigated within WP4 [17], can be used to learn the behavior as well as the
non-functional properties of legacy networked systems given their interface.
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Figure 3.15: Legacy discovery within CONNECT

Figure 3.15 illustrates the discovery of a legacy service that provides some affordance, together with its
connection with a CONNECT-aware nodes (i.e., a node using CDP) requiring a matching affordance. First,
the relevant legacy plugin discovers the legacy networked system using the embedded discovery protocol
(step 1). Then, the legacy plugin extracts the base networked system description and further extends it
by using semantic inference and soliciting the learning enabler in order to compute the associated NSDL
description (step 2), which is then stored in the discovery enabler’s repository. In the case where a
given CDP client (left hand side of the figure) matches a legacy networked system, the client receives a
Match message (step 4) and can start interacting with the networked system after it receives a Connected
message (steps 5-7) in a way similar to the previously discussed CDP-based service discovery. Note that
we are currently extending legacy plugins so as to deal with legacy systems requiring affordances.

3.4.4 Repository

The repository stores the descriptions of networked system, where we exploit the indexing of networked
systems based on their descriptions to include match-based indexing as in [47]. In that work, the repos-
itory is structured as a tree in which services with identical capabilities are assigned to the same node,
and more specific capabilities (with respect to the ontology definition) are stored in child nodes. Utilizing
that work in our context obviates pair-wise matching (O(n2)) since, if no match is found with a root node,
then none of its children need to be checked. However, the repository is still under development, while
the current prototype discussed in the next section implements a simple repository.

13https://www.eternals.eu/

CONNECT 231167 52/108



Figure 3.16: The discovery enabler GUI

3.5 Prototype Implementation

The CONNECT discovery enabler is being implemented in Java. According to the design discussed in the
previous sections and as depicted on the left-hand side of Figure 3.17, each discovery protocol is encap-
sulated within a plugin and interacts with the Plugin manager using a uniform internal plugin structure.
The set of plugins can be updated and extended dynamically by making changes to a configuration file,
which is read by the plugin manager.

At the time of writing, the discovery enabler supports three plugins for the following discovery protocols:
the CONNECT Discovery Protocol (CDP), Simple Service Discovery Protocol (SSDP) of Universal Plug-
And-Play (UPnP)14 and WS-Discovery of Devices Profile For Web Services (DPWS)15. UPnP is designed
for devices on a network to advertise their services and have those services invoked. UPnP includes a
discovery protocol (SSDP), which devices use to send advertisements by multicast (over UDP). Each ser-
vice advertisement contains only an identifier for each service, and so any interested party must request
the full description of each service. The returned XML-based service description contains a list of actions
that can be performed on each service along with the associated arguments and their types. DPWS is a
new emergent standard designed to allow the discovery of networked devices which host Web services.
Hence, unlike UPnP, services are described in WSDL and invoked using the normal Web service invoca-
tion mechanisms. However, as discussed above, only syntactic interfaces are provided by most legacy
discovery protocols. Thus, we have developed an API that provides classes to translate UPnP descrip-
tions, WSDL1.1, WSDL2 and SAWSDL to xDL, while interaction with the other CONNECT enablers allows
the NSDL description to be completed. Still, as these enablers are also under development, we have
introduced a function, called ConnectPrim, which is to be implemented by any legacy system to provide
the semantic and behavioral description of its affordances.

Regarding the matchmaking engine, it is implemented according to the design discussed in Sec-
tion 3.3, using OLTSA to perform behavioral matchmaking.

Figure 3.17 shows the important classes from the JAVA implementation. On the left-hand side are the
plugin manager and the three implemented plugins (which delegate to the associated classes for most of
the computation involved in handling each protocol). The Matchmaker performs matchmaking by using
the HermiT ontology reasoner16 (which is also used by OLTSA), and the DiscoveryEnablerGUI is the

14http://www.upnp.org/
15http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
16http://hermit-reasoner.com/
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Figure 3.17: Discovery enabler implementation classes. Classes which primarily represent state
are shown in dark grey.
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root class of the GUI shown in Figure 3.16. The Repository keeps a list of NSInstance objects which
represent an NS with a state and a description, made up of the two parts below it. The NSInstance
makes calls to a handler to produce each part of the description (normally by parsing a file). This permits
handlers for legacy description formats such as WSDL1.1 to be defined.

Our ongoing work relates to enhancing the implementation of the discovery enabler in particular re-
garding the repository so as to enhance the performance of the discovery process. Also, the matchmaking
implementation will evolve according to the findings of our work on CONNECTor synthesis in WP3, and
in particular the advanced mediation that is targeted. Furthermore, integration with the other enablers
is under way so as to make the CONNECTion of networked systems seamless. However, the discovery
enabler may be used in isolation regarding provided support for universal discovery. Another part of our
ongoing work is to conduct extensive experiments so as to assess the current design and in particular
identify performance bottleneck, including with respect to the use of advanced reasoning tools that signifi-
cantly impact performance. In this direction, evolution of the repository to enable match-based indexing is
a promising approach. Finally, note that in order to be able to perform extensive testing of the Discovery
Enabler, we are currently collecting networked system model instances.

3.6 Conclusion

The CONNECT discovery enabler is a key element of the CONNECT architecture as it initiates CONNECTion
between networked systems, i.e., it enables identifying pairs of networked systems that are behaviorally
compatible and may thus be CONNECTed through a supporting CONNECTOR. Building on the extensive
work in the area of interoperable and semantic service discovery protocols, including by the CONNECT
consortium partners, this section has introduced the base design and early prototype implementation
of the CONNECT discovery enabler. Compared to the relevant state of the art, the proposed enabler
distinguishes itself by dealing with the discovery and behavioral matchmaking of highly heterogeneous
networked systems implementing different coordination paradigms. The proposed solution to behavioral
matchmaking relies on the mapping of communication paradigms to base input and output communication
actions, according to the matching and mapping relations introduced in Deliverable D3.2 [18]. Further-
more, we have introduced an extension to the LTSA tool to support automated behavioral matchmaking
according to both the ontology-based semantics of communication actions and the behavior of networked
systems.

Our ongoing work in the area relates to

• further integration of the implementation with the other CONNECT enablers and in particular the
learning and synthesis enablers,

• enhancement of the NS repository to use efficient methods of storing NS descriptions by exploiting
the matching relationships between affordances and the other components of the complete descrip-
tion, and

• experimental evaluation so that the enabler provides adequate performance.

A more challenging area of future work is in the inference of semantic information from natural-
language content—like method names and documentation comments—in legacy interface description
languages. Through these means, affordances may be automatically extracted, and interface descriptions
annotated with ontological references. This will ultimately enable transparent CONNECTion of systems us-
ing discovery protocols that provide only syntactic descriptions.
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4 Realising CONNECTors
4.1 Introduction

The key objective of CONNECT is to produce CONNECTors. In this section we discuss in more detail what
this entails in terms of realising the CONNECTor architecture (illustrated in Figure 2.4) that was described
in Section 2.4. In particular we focus on how the two important elements of that architecture, have been
designed and implemented (or in some cases, generated):

• We describe how Domain Specific Language (DSL) descriptions of protocols are used to generate
the listeners and actuators that perform the important role of communicating with networked systems
using the legacy protocol that these employ.

• Three alternative designs are then presented for the implementation of mediators. These include
the code-generation approaches as produced by WP3 [18], and also model execution approaches
where the specification of the mediator is executed directly.

To evaluate the CONNECTor architecture in practice we provide two case studies. The first demon-
strates how CONNECTors are generated dynamically in order to allow three discovery protocols to interop-
erate. Discovery protocols were chosen for this case study for two reasons: i) they are simple middleware
protocols that can interoperate without consideration of the application heterogeneity, and hence offer
a good first case for full CONNECTor generation; ii) these protocols are also used within the discovery
enabler, hence, we consider the approaches presented to potentially generate the plug-ins used in the
discovery enabler. The second case study investigates a more application-oriented system, namely multi-
ple instant messaging systems that use heterogeneous protocols (e.g. MSN, Yahoo, XMPP IM protocols).
Here we show how CONNECTors can be created to ensure they interoperate; at this stage these CON-
NECTors are hand-crafted but we are working towards dynamically generating equivalent software.

4.2 Realising Listeners and Actuators

4.2.1 Motivation

CONNECTors employ a simple mechanism to communicate with legacy protocols. Listeners read mes-
sages sent by legacy protocols (these are received as an array of bytes from the network engine) and
then transform these to the Abstract Message representation. Actuators do the reverse to create legacy
protocol messages as a byte array and transmit these using the network engine. Listeners and Actuators
can be implemented using a number of different approaches. We now discuss the benefits and drawbacks
of three potential approaches to implement the Listeners and Actuators within the CONNECT project.

1. Third party middleware wrappers. The middleware binary or library (as implemented by the original
third party developers, i.e., not developed by CONNECT) is directly used by listeners and actuators;
these wrap the middleware code by interfacing with the API provided by the binaries.

2. Connect Specific Plug-ins: Manual Coded. CONNECT developers implement the required listener
and actuator code for a given protocol. That is, they hand-code the extraction of information from
network packets and then translate to the Abstract Message. Note, this is the approach that is
currently employed to implement the plug-ins that are utilised by the discovery enabler.

3. Connect Specific Plug-ins: Automatically Generated. Listeners and actuators are generated and
deployed automatically; each protocol’s behaviour(message sequence) and message format (packet
format) is specified using high-level models. The models are then used to generate the required
software.
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Third party middleware wrappers

The benefits of this approach are:

• Reduced programmer effort. The middleware code does not need to be re-implemented, only the
wrapping to the CONNECT software elements.

The drawbacks of this approach are:

• Duplicated implementation. Each middleware will naturally duplicate implementation found in every
other middleware, e.g., code for network transport, code for marshalling, etc; this will unnecessarily
add to the size of listeners and actuators.

• Unnecessary functionality. A CONNECTor only requires the ability to parse and compose network
messages. However, the middleware binary will likely contain significant other features which will
add to the deployment size of the CONNECTor.

• Complex configuration. Each middleware binary will have its own installation and configuration
routine and hence, heterogeneous deployment strategies will need to be devised and executed.

• Wrapper development is complex. Writing wrappers may involve small pieces of code, but these
will be complex to develop, as they require understanding of the middleware API, the CONNECTor
process, and the relationship between the two. The mappings will also have to consider variations
in programming abstractions, e.g., synchronous and asynchronous middleware APIs mapped onto
the listeners and actuators.

Connect Specific Plug-ins: Manual Coded

The benefits of this approach are:

• Complete control of configuration and deployment of middleware behaviour within CONNECT. The
software is implemented to be easily configurable and deployable within a CONNECTor.

• Required functionality only. CONNECT developers will implement only the necessary middleware
code and hence, the deployment code will be optimised for the CONNECTor process and save re-
sources.

The drawbacks of this approach are:

• Significant development costs for each plug-in. The code to receive, parse, compose and send mes-
sages for each protocol must be individually developed; this must then be integrated into Listeners
and Actuators. This involves the complex task of understanding each protocol and breaking down
its operation to fit within CONNECT.

• Reduces the possibility of being carried out by 3rd party developers. To carry out this implemen-
tation, a strong understanding of how CONNECTors operate and are implemented is required; this
may limit the development to CONNECT developers only, and hence limit the number of protocols
that can feasibly be developed with the project resources.

• Duplicated behaviour. The implementations that are carried out independently by different develop-
ers may still duplicate some middleware functionality (e.g. network transport) leading to unnecessary
resource consumption.

Connect Specific Plug-ins: Automatically Generated

The benefits of this approach are:

• Reduced development costs as only the high-level specifications are required. These can also be
supplied by third-party developers without understanding how CONNECTors are implemented.
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• The automation process produces the required middleware functionality only; further, there is no
duplicated middleware functionality because the code generation approach is built upon re-usable
components.

• Potential for high-level specifications to be learned. Learning enablers in the CONNECT process
generally produce high-level models that can then be used to automatically generate software; this
may also be the case for the important Listeners and Actuators within the architecture.

Any of the three approaches would provide an acceptable implementation for the CONNECTors (in-
deed, due to the low level nature of implementation it might go unnoticed). However, based upon the
potential benefits we decided to undertake the Connect Specific Plug-ins: Automatically Generated
approach. The reduction in development costs, and the potential for the solution to reduce the resource
usage costs of CONNECTors were important factors. However, the deciding factor was that this approach
is the most likely to be future-proof, and as such fit with the general goals of the CONNECT project. The
ability to learn high-level models and then generate the corresponding code from it applies the CONNECT
ideology to the lowest level of implementation.

4.2.2 Message Description Languages
The general philosophy employed for the deployment of Listeners and Actuators is to utilise DSLs to de-
scribe protocol messages. These high-level descriptions are then used to create the software components
that will be deployed in the CONNECTors. A Message Description Language (MDL) is the language used
to describe a message format; the MDL specification for a particular protocol then describes its set of
messages only. Message composers and parsers are implemented as general interpreters that execute
the message description language specifications that are loaded. For example, a parser that interprets
an SLP MDL instance will parse SLP messages into the abstract message representation, i.e., it inter-
prets the incoming message based upon the specification. Hence parsers are specialised to a particular
protocol by associating the protocol specification to produce the Listener. Actuators are created using the
same process to specialise generic message composers for text and binary protocols. An overview of this
process is illustrated in Figure 4.1.

Figure 4.1: The approach for generating Listeners and Actuators

There are a number of languages that can be used to parse network messages, or parse data files.
We investigated each of these as potential languages to be used in CONNECT; the results of this are seen
in Figure 4.2. It can be seen that a number of the tools focus solely on generating software to parse
only data and messages, i.e., BinPac, Datascript and PacketTypes; therefore, these are unsuitable as it is
equally important to be able to generate the composer part of the CONNECTor. Similarly, a number of the
languages only consider binary data (i.e., all except PADS and ASN1.0); however, CONNECT requires the
parsing of heterogeneous protocols which may use text or XML. Hence, the only potential solutions are: i)
PADS which offers the additional benefit of being able to infer data descriptions from received data [24], or
ii)ASN 1.0. The drawback of these two are that they are not specifically designed for network packets, and
we found when creating descriptions of example packet formats for SLP and GIOP that we were unable
to successfully create the correct parsers and composers. Given the results of this investigation, we
decided to develop our own MDLs and corresponding tools in order to first provide a simple mechanism
to parse and compose network packets, and also allow us to easily extend the language as we encounter
heterogeneous protocols.
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Tool Langauge Generate Generate Domain
Parser Composer

ASN 1.0 [63] Java/C x x Many data encodings: binary, text, xml
BinPAC [54] C++ x Binary data and network packets
Datascript [3] Java x Binary data
PADS [23] C/ML x x Binary or Text data
PacketTypes [44] ML x Binary network packets
Melange [40] ML x x Binary network packets

Figure 4.2: Comparison of Data and Message Description Languages

CONNECT is flexible to allow different types of language to be used to specify message formats; each
language can be termed an MDL. This flexibility better supports the parsing and composing of a wide
range of protocols. For example, specialised languages for binary messages, text messages and XML
messages can be utilised. To illustrate the approach we present a language for binary messages, and
then a language for text messages. It is important to identify here that the role of these languages is to
extract the information into a representation that is usable within CONNECT; the languages themselves do
not seek to understand the content of the message, nor are they concerned with the application semantics
of the message. Take for example an RPC request message invoking an operation Foo, these languages
can extract the value ’Foo’ for the label ’operation’ but cannot determine its purpose. In Section 6, we
examine the role of ontologies in understanding labels and the application content such that this can
be used to address: data, application, and middleware heterogeneity; thus going futher than tackling
middleware heterogeneity as presented in this section.

4.2.3 Binary MDL
We use examples to succinctly illustrate the features of the language and how it is used in practice.
Figure 4.3 shows part of the MDL specification for the SLP protocol (a binary protocol). In the specification
there are three important constructs:

• <Types> list the types of each individual field type, e.g., the Version field type is an integer value.
Types are separated from the message specification in order for field types to be reusable across
multiple messages.

• <Header> includes the message format of the header for the binary protocol messages. If a header
specification is present this is common to every message in the protocol (only one Header can be
defined).

• <Message> describes the packet format for the body of a particular message. Each protocol will
typically contain multiple message bodies, for example the SLP protocol here contains message
bodies for two messages: an SLP request message, and an SLP reply message.

Hence,<Header> and<Message> specify the content of the message headers and bodies. These
are both composed of <label:size> entries for each field in the message. The size is the length of
the field content in bits. There is one special label: <rule:field=value>. This is used to relate the
correct message body with the header. For example, the SLP SrvReq message applies when the value
of the FunctionID field in the header equals one.

To underpin the reading and writing of data from messages, pluggable marshallers (a method prefixed
with ‘out’) and unmarshallers (a method prefixed with ‘in’) for each of the types are utilised. For example,
Integer has a plug-in marshaller that writes Java Integers to a byte array, and a corresponding unmar-
shaller that transforms a byte array to a Java Integer. When the “Integer” value is found as the type of a
field it executes the inInteger method to read values from the byte array and the outInteger method
to write values to a byte array. This mechanism allows the language to be dynamically extended to in-
corporate complex types (with no need to re-implement a compiler) that may be specific to a particular
protocol. For example the FQDN type is a format for domain names (Fully Qualified Domain Name) that
is employed by the DNS protocol; to add the FQDN type to this language, we simply plug-in marshallers
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1 <Types>
2 <Version : In teger><Funct ion−ID : In teger>
3 <MessageLength : I n tege r [ f−MsgLength]>
4 <Next−Ext−Of fse t : In teger><XID : In teger>
5 <SRVTypeLength : In teger><SRVType : S t r ing>
6 <URLLength : I n tege r [ f−l eng th ( URLEntry )>
7 <URLEntry : S t r ing>
8 <EndTypes>
9

10 <Header : SLP>
11 <Version:8><Funct ion−ID:8><MessageLength:24><reserved :16>
12 <Next−Ext−Of fse t :24><XID:16><LanguageTagLen:16><Language−Tag : LanguageTagLen>
13 <End : Header>
14
15 <Message : SrvReq>
16 <Rule : Funct ion−ID=1><PRLength:16><PRString : PRLength>
17 <SRVTypeLength:16><SRVType : SRVListLength><PredLength:16>
18 <Preds t r i ng : PredLength><SPILength:16><SPIs t r i ng : SPILength>
19 <End : Message>
20
21 <Message : SLPSrvReply>
22 <Rule : Funct ion−ID=2><ErrorCode:16><URLEntryCount:16>
23 <URLEntry : URLEntryCount>
24 <End : Message>

Figure 4.3: Partial view of the SLP message description

that map FQDN byte arrays to a Java String. The marshaller and unmarshaller for FQDN are illustrated in
Figure 4.4. This feature provides us with an advantage over the alternative DSL methods (e.g. PADS) in
Figure 4.2 where extending the type system is complex and unwieldy and cannot be done at runtime.

Another feature of the <Types> specifications are functions. Functions can be defined on types using
the [f-method()] construct e.g. [f-length(URLEntry)] in Figure 4.3. They are generally useful for
calculating values that must be composed when creating a message (rather than parsing), i.e., the named
f-method is executed by the marshaller to get the value that must be written. Importantly the function can
take other message fields as parameters, e.g., to compose the value of the URLLength field, you need
to obtain the length of the URLEntry field. Hence, the marshaller takes the value of the URLEntry field,
calculates the length and then composes this as the URLLength field value.

4.2.4 Text MDL

Text based protocols are different from binary protocols and therefore, a new MDL is required to generate
the Listeners and Actuators. We again use an example specification to highlight the features of the Text
MDL; a subset of the messages within HTTP is specified in Figure 4.5. Like the binary approach there
is a list of field labels with their corresponding types in the <Types> section and again <Header> and
<Body> are used to describe the individual messages. The key difference in this language is that we
utilise field deliminators rather than bit lengths to distinguish the length of the fields. For example in the
<Header>, <Method:32> means that the field is terminated by the ‘32’ ASCII character, i.e., a space.
In the case where multiple characters are used to delimit we employ commas to list the character values
e.g. <Version:13,10> is a backslash r followed by a backslash n.

Another important feature of text protocols is that they are typically self-describing, i.e., the field label
as well as the value will form the content of the message. For example, a HTTP message may contain
“Host:www.lancs.ac.uk”; this defines a field with a label Host and a value www.lancs.ac.uk. Hence, text
protocols are not rigidly defined in terms of the fields and their order. To support this property we employ
the <Fields: > construct; this will parse/compose a list of free form self-describing fields into their label,
size and values. For example, <Fields:13,10:58> splits fields using the 13,10 delimitor, then it uses
the 58 value (a colon) to split the field into its label and value. The label must relate to a type specified in
the <Types> section.
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1 /∗ ∗
2 ∗ Covert a byte ar ray o f FDQN format to a Java S t r i n g . FDQN i s where
3 ∗ a zero terminated byte ar ray conta ins the number o f l e t t e r s between ’ . ’ s
4 ∗ e . g . 3www5lancs2ac2uk0 parsed to ”www. lancs . ac . uk ”
5 ∗ /
6 public S t r i n g inFDQN( byte [ ] bytes ) throws DataNotOfTypeException{
7 S t r i n g query= ” ” ;
8 i n t index =0;
9 while ( index<bytes . leng th ) {

10 i n t por t ionLength = bytes [ index ++ ] ;
11 byte [ ] p o r t i o n = new byte [ por t ionLength ] ;
12 System . arraycopy ( bytes , index , por t i on , 0 , por t ionLength ) ;
13 index+=por t ionLength ;
14 query +=(new S t r i n g ( p o r t i o n ) ) ;
15 i f ( index<bytes . leng th )
16 query+= ” . ” ;
17 }
18 return query ;
19 }
20
21 public byte [ ] outFDQN( S t r i n g Value , i n t Size ) {
22 St r ingToken ize r s t = new St r ingToken ize r ( Value , ” . ” ) ;
23 byte [ ] r e s u l t = new byte [ Value . leng th ( ) + 2 ] ;
24 i n t index =0;
25 while ( s t . hasMoreTokens ( ) ) {
26 S t r i n g del im = s t . nextToken ( ) ;
27 r e s u l t [ index ++] = ( byte ) del im . leng th ( ) ;
28 byte [ ] del imBytes = del im . getBytes ( ) ;
29 for ( i n t j =0; j<del imBytes . leng th ; j ++){
30 r e s u l t [ index ++]= del imBytes [ j ] ;
31 }
32 }
33 r e s u l t [ Value . leng th ( ) +1]=0;
34 return r e s u l t ;
35 }

Figure 4.4: Java implementation of plugabble marshalling and unmarshalling methods for FQDN
fields

4.3 Mediators

We are currently investigating three different approaches to implement mediators, which perform the cen-
tral translation role within a CONNECTor; effectively these co-ordinate the required behaviour between the
Listeners and Actuators. These three approaches are as follows:

• Code generation. The complete mediator behaviour is synthesized from the Networked System
Model. There is no need for a mediator engine because all functionality is included in the synthesis.

• BPEL based mediators. The mediator behaviour is modelled using the BPEL co-ordination lan-
guage; the corresponding mediator engine is a BPEL engine that executes the BPEL scripts.

• Interpretation of LTS models. We extend the LTS model with: i) colours (to describe how the media-
tor interacts with the network), and ii) message translations to describe how fields from one message
of a protocol are translated into the corresponding message(s) of the protocol to be interoperated
with.

4.3.1 Code Generation

The objective of code generation is to build an ad-hoc CONNECTor that can be directly deployed and run.
The code is generated from the CONNECTor model outputted by the synthesis. This model is an LTS and
is first translated into a Mealy machine where each transition is labelled with a trigger event and a list of
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1 <Types>
2 <Method : S t r ing><URI : S t r ing><Version : S t r ing>
3 <From : St r ing><Host : S t r ing><Referer : S t r ing>
4 <TE: St r ing><User−Agent : S t r ing><CONTENT−TYPE: St r ing>
5 <CONTENT−LENGTH: St r ing><DATE: St r ing>
6 . . .
7 <Body : Octets>
8 <EndTypes>
9

10 <Header :HTTP>
11 <Method:32><URI:32><Version :13 ,10>
12 <F ie lds :13 ,10:58>
13 <End : Message>
14
15 <Message :HTTP GET>
16 <Rule : Method=GET>
17 <End : Message>
18
19 <Message : HTTP Response>
20 <Rule : Method=HTTP/1.0>
21 <Body :CONTENT−LENGTH>
22 <End : Message>

Figure 4.5: Partial view of the HTTP message description

actions to perform. The resulting Mealy machine can be seen as a function which selects the actions to
execute with respect to the current state of the automaton and with respect to the last event that occurred.

One of the simplest way to implement a Mealy machine is to use the nested switch strategy, which
advocates the use of two nested conditional branching statements: the first one selecting the current
state of the machine, and the second one selecting the current message. The following code excerpt
illustrates this strategy:

1 while (!stopped) {
2 Message message = getLastMessage();
3 switch(currentState) {
4 case State1:
5 switch(message.getType()) {
6 case Msg1:
7 // Perform the actions triggered by Msg1 received in State 1
8 break;
9 case Msg2:

10 // Perform the actions triggered by Msg2 received in State 1
11 break;
12 default:
13 // Illegal message in state 1
14 }
15 break;
16 case State2:
17 switch(message.getType()){
18 // idem than for state 1
19 }
20 break;
21 default:
22 // Illegal state
23 break;
24 }
25 }

A more complete description of the code generation process, which further motivates the use of the
nested switch pattern can be found in the Deliverable D3.2 [18].

The code generation does not only output some Java source files, but it also outputs two additional
resources needed to compile and package the CONNECTor into an OSGi bundle: the manifest file and the
build file. The Manifest file explicitlt identifies the dependencies that the CONNECTor may have on other
bundles, and also contains other information needed to properly package the CONNECTor. The Ant Build
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file describes the rest of compilation process, and specifies how to compile the Java source files, how to
wrap them into a Jar file compliant with the OSGi platform, and where to move that file so the CONNECTor
can properly start.

The code generator has been implemented using the JET toolkit (Java Emitter Templates). JET en-
ables the definition of code templates that can be used to specify the code generators. A template rep-
resents the piece of source code that is expected; this consists of the parts that may vary depending on
the model, which will be replaced by some Java code. The code generators which produce the different
artifacts result from separated templates.

4.3.2 BPEL

One alternative to the generation of an ad hoc connector is the generation of a service orchestration. Ser-
vices orchestrations are similar to CONNECTors, since they both aim at coordinating remote entities that
communicate by exchanging messages. The main advantage of the generation of a service orchestration
is the gain in flexibility which comes from the fact that service orchestration models are models that are
dynamically executed.

The defacto standard used to implement service orchestrations by the both academics and industry
is the BPEL language. BPEL is a block structured language whose programs are sequences of state-
ments including remote service invocation, conditional branching, data manipulation, etc. However, BPEL
is based on the assumption that all the services involved in the orchestration are homogeneous: they
all exchange SOAP requests to communicate. From this perspective, CONNECTors may be seen as a
generalization of service orchestrations, made to compose heterogeneous services. The use of BPEL
to capture such compositions of heterogeneous services implies however to extend the behavior of the
underlying execution engine (such Active BPEL or Apache ODE) in order to enable communication with
versatile middleware technologies. This will be investigated in the third year of the CONNECT project.

Since BPEL is a block structured language, including most of the statements that are commonly found
in imperative languages such as C or Java, it is therefore possible to reuse the same code generation
strategy to obtain a BPEL orchestration. The code generator has been hence also implemented using the
JET toolkit and merely outputs a BPEL file, which mimics the behavior of the LTS using the nested switch
statements strategy aforementioned.

4.3.3 Interpretation of LTS Models

The key philosophy behind this mediation approach is to interpret the high-level models as produced by
CONNECT directly. However, the LTSs require extensions in order to interoperate at a low level with legacy
protocols. These extensions are as follows:

• k-Coloured LTS The behavior of a protocol is described by an LTS where transitions represent
message exchanges. However, protocols vary in their interaction with the network, in terms of
the transport protocol used, whether requests are sent by unicast or by multicast, and whether
responses are received synchronously or asynchronously. We introduce the concept of k-coloured
LTS to capture the network properties of a protocol by a colour k.

• Merged LTS. When several protocols need to interoperate, it is necessary to express the relation
among them and to describe the message translation logic, which defines how to translate mes-
sages from one protocol to another. Protocol interoperability is defined in a merged LTS that de-
scribes how to combine the k-coloured LTS of the protocols involved and produce the final mediator
to be interpreted.

• Translation Logic. The role of the translation logic is to describe the translation of data and behaviour
where messages are semantically equivalent. One key operator of the language is the assignment
operation. Assignment allows the content of one or more fields of a particular message, to be
translated to the fields of a different message.
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?SLP_SrvReq

!SLP_SrvReply

transport_protocol="udp"
port=427
mode="async"
multicast="yes"
group="239.255.255.253"
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Figure 4.6: SLP coloured LTS

!SSDP_Search

?SSDP_Resp

transport_protocol="udp"
port=1900
mode="async"
multicast="yes"
group="239.255.255.250"
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Figure 4.7: SSDP coloured LTS

!HTTP_GET

?HTTP_OK

transport_protocol="tcp"
port=80
mode="sync"
multicast="no"

s3
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s3
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s3
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Figure 4.8: HTTP coloured LTS

k−Coloured LTS

Acknowledgement. We acknowledge the collaboration between Lancaster University and the University
of Bordeaux (specifically David Bromberg and Laurent Réveillère) in creating and implementing the ideas
of k−Coloured LTS.

Protocols may not only differ in their behavior but also in the the way they use the network, in terms of
the transport protocol used, whether requests are sent by unicast or by multicast, and whether responses
are received synchronously or asynchronously. For instance, as illustrated in Figure 4.6 and Figure 4.7,
although SLP and SSDP protocols are both asynchronous and multicasted, they differ from their multicast
address and port number which are 239.255.255.253 : 427 for SLP and 239.255.255.250 : 1900 for SSDP.
Note that, sent messages are not necessary received asynchronously, it depends of the underlying net-
work details. In order to capture these low level network semantics, we use colouring which consists
of assigning labels called colours to states of the LTS. An LTS can pass successfully from one state to
another, following either a receive-transition or a send-transition, without any network issues, only if the
concerned states share the same colour. For instance, as described in Figures {4.6, 4.7, 4.8}, according
to their transport protocol, port, mode, multicast and group attributes, a specific and different colour has
been affected for the SLP, SSDP, and HTTP LTS.

Merged LTS

Interoperability requires that when one legacy system L1, relying on a protocol P1, sends a sequence of
messages −→m to another legacy system L2 that relies on a different protocol P2, then L2 must be willing
to receive these messages after a set of transformations to resolve mismatch issues at both the network
layer and at the message layer in terms of message format, content and sequence. However, there is

CONNECT 231167 65/108



?SLP_SrvReq
!SSDP_M-Search

?SSD
P_R

esp

!HTTP_GET:[URL,@IP,IP_Port]

set_host(

?HTTP_OK:[URL]!S
LP

_S
rv

R
ep

ly

URL .SLP_SrvReply 

2 3

456

.SLP_SrvReq ServiceType .SSDP_M-Search ST
 

.HTTP_OK =

SSDP_M-Search  SLP_SrvReq

HTTP_OK  SLP_SrvReply
HTTP_GET SSDP_Resp

|=
�

|=

|=

s2
0 s2

1

s2
2s3

1
s3
2 s3

0

s1
0 s1

1

s1
1

� �s2
0 =s1

1

s1
1 s3

2

1

 
  

=� URL

=� IP

=�PORT

s2
2 �.SSDP_Resp URL

s2
2 �.SSDP_Resp IP

s2
2 �.SSDP_Resp PORT

.HTTP_GETs3
0

.HTTP_GETs3
0

.HTTP_GETs3
0

s2
2 �.SSDP_Resp IP,s2

2 �.SSDP_Resp PORT)

=.SLP_SrvReply�XID .SLP_SrvReq�XID s1
1 s1

1

Figure 4.9: A merged k-Coloured LTS for SLP, SSDP and HTTP protocols

a prerequisite to successfully apply these transformations: there is a need to reason about the meaning
of messages that are willing to be transformed. For instance, it appears from Figure 4.6, and Figure 4.7
that a SSDP service should be able to understand what kind of services are requested by a SLP client
if at least a SLP SrvReq request is semantically equivalent to a SSDP Search request. Still, a semantic
equivalence is not always as simple as a one to one mapping among two messages. In the most general
use case, there are several patterns of semantic mismatches hampering interoperability. A protocol P1

may require a single message to perform a particular task, while in another protocol P2, a similar task is
performed by receiving several messages. Alternatively, another type of mismatch occurs if the protocol
P1 needs to receive several messages to perform a particular task, while in the protocol P2 the same task
is achieved with only one message.

Intuitively, protocols are interoperable if there is a way to merge their respective coloured LTS. Fig-
ure 4.9 illustrates a merged LTS for SLP, SSDP and HTTP. States that are linked by a δ−transition are
represented by bicoloured nodes such as nodes ·, ¹ and ». The initial state of each LTS, which are
expected to be merged, are reached by a δ−transition. Hence, a SSDP M SEARCH is sent as soon as a
SLP SrvReq sent by a client is received. Then a HTTP GET request is sent at the reception of a SSDP
Resp message. Finally we send back to the SLP client a SLP SrvReply after having received a HTTP
OK response. In other terms, δ−transitions enable to chain SLP, SSDP and HTTP LTS through a directed
path that both starts and ends in the same LTS.

Translation Logic

Figure 4.9 shows examples of how the translation logic is applied at the bridging states between two
protocols. At node · (the first bridge between SLP and SSDP), as SrvReq |= M-Search, we assign the
ST field of the SSDP M SEARCH message with the ServiceType field from the received SLP SrvReq
message. Similarly, at node », we assign the resulting URL from the received HTTP OK message to the
URL field of the SLP SrvReply message to be sent.

δ−transitions are also used to define additional behaviour required by the LTS that is guided by the
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content of messages. For example, in order to connect to a HTTP server to perform a GET message
request in Figure 4.9 we need to know the address and port. However, this information is only obtained
from the content of the SSDP Resp message. Thus, node ¹ uses a keyword operator setHost that takes
the fields host and port from the message and sends them to the underlying network engine to point the
next TCP connection.

The Mediator Engine

The Mediator Engine, like the listeners and actuators, interprets the merged LTS. This engine is imple-
mented to read these models from XML content (the merged k-Coloured LTS is produced in XML). To
give a flavour of the concrete operation of the framework we briefly summarise the behaviour that occurs
at the different state types: receiving, sending, and bridge.

At a receiving state R1, the mediator engine listens for messages using the network engine for the
protocol address and port (of the state); when a message is received it is parsed by the listener. If the
abstract message’s name label matches one of the transition labels then the automata moves to the
pointed to state S1, and then pushes the Abstract Message onto the message queue at R1.

At a sending state S1, the mediator engine reads the label of the transition and then constructs
this message using a message composer before using the network engine to send it correctly with the
required network transport semantics of the protocol. In the case where content has been translated by a
prior state, the state S1 retrieves the message to be sent from the queue of a prior state before composing
and sending.

A bridge state B1, represents an intermediary state from the bi-coloured states (e.g. ·, ¹ and » in
Fig. 4.9). These states do not send and receive messages, they only translate content from one abstract
message to another or perform logic required to underpin interoperability. The XML content in Figure 4.10
shows an example of such a state (for the SLP SrvReq to SSDP M-SEARCH translation), presenting only
the translation logic. For field assignments, the engine reads the value from the second field (as pointed to
by the XPath expression), this equates to reading the value from the Java object of the abstract message,
and then writes the content to the abstract message whose field is pointed to by the first field node in the
XML <Assignment> content.

1 <Bridge>
2 . . .
3 <Trans la t ionLog ic>
4 <Assignment>
5 <Fie ld>
6 <Message>SSDP Search</Message>
7 <Xpath>/ f i e l d / p r i m i t i v e F i e l d [ label= S T ] / value </Xpath>
8 </ F ie ld>
9 <Fie ld>

10 <Message>SLPSrvRequest</Message>
11 <Xpath>/ f i e l d / p r i m i t i v e F i e l d [ label= SRVType ] / value </Xpath>
12 </ F ie ld>
13 </Assignment>
14 </ T rans la t ionLog ic>
15 . . .
16 </Bridge>

Figure 4.10: Translation logic expressed in XML

4.4 Creating a Prototype CONNECTor: Interoperation between SLP,
UPnP and Bonjour

4.4.1 Goals
The overall goal of this experiment is to achieve interoperability between three protocols that are hetero-
geneous in terms of their behaviour and message format, but perform similar tasks (this offers an ideal
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first case due to the semantic similarities between the protocols). The three protocols selected are: SLP,
UPnP and Bonjour which all perform the discovery and advertisement of services. We hypothesize that
we can create a CONNECTor for each protocol pair using only high-level models of these communication
protocols, i.e., there is no implementation or deployment of legacy code that is specific to the behaviour
of an individual protocol. Not to be confused with the previously documented discovery enabler, this is a
separate self-contained experiment that seeks to highlight that we can achieve protocol interoperability;
however, there is also the potential of this experiment to have wider impact across the project, i.e., that
the results themselves can be used to broaden the intoperability of the discovery enabler. In the enabler,
only a couple of protocols have been implemented as plug-ins; generating these plug-ins from high-level
models may offer a good approach to populate the enabler behaviour.

The overall objective of this experiment is to develop the CONNECT models for each of the protocols
such that we can take the legacy applications implemented upon the three protocols and ensure they
can interoperate with one another, i.e., that an SLP application’s lookup request can be answered by
either a UPnP service or a Bonjour Service by deploying the CONNECTor in the network. There are six
particular cases: SLP to UPnP and Bonjour, UPnP to SLP and Bonjour, and Bonjour to SLP and UPnP.
For conciseness, we discuss only two cases in detail:

• SLP to Bonjour. These two protocols are both binary protocols and their message sequences are
similar. They differ in message content and network addresses.

• SLP to UPnP. In this case, there is heterogeneity of the protocol messages and the behaviour
message sequence. SLP employs binary messages, while UPnP uses text-based messages. SLP
is a simple request response, whereas UPnP involves multiple requests to the service.

4.4.2 Methodology
The first step of the experiment was to develop simple legacy applications to lookup a simple test ser-
vice, and respond to lookup requests for the simple service. For SLP we used the OpenSLP protocol
implementation1; for UPnP we used the Cyberlink Java implementation2; and for Bonjour we employed
the Apple Bonjour SDK for Windows3.

We chose to develop CONNECTors which use the coloured LTS mediator engine (as described in
Section 4.3.3).

SLP to Bonjour

For the SLP to Bonjour case, we created five different specifications that are loaded into the CONNECT
deployment enabler: i) an MDL specification of SLP messages as previously illustrated in Figure 4.3, ii)
an MDL specification of Bonjour messages, as illustrated in Figure 4.11 (Bonjour uses DNS messages
so this MDL describes DNS questions and responses), iii) a coloured LTS of SLP (see Figure 4.6), iv) a
coloured LTS of Bonjour as shown in Figure 4.12, and v) a merged LTS as shown in Figure 4.13.

SLP to UPnP

UPnP utilises two protocols to perform service discovery: SSDP messages are sent with the original
lookup request, an SSDP response gives information about a device hosting that service. A further HTTP
request is then needed to retrieve the URL of the service from this device. Hence, in this case seven
models were loaded into the framework: i) the SLP MDL, ii) the SLP coloured automaton, iii) the SSDP
MDL, iv) the SSDP coloured LTS, v) the HTTP MDL, vi) the HTTP coloured LTS, and vii) the merged LTS
for the three protocols. An important difference here is that SSDP and HTTP are text messages and as
such require a different type of MDL and corresponding parser and composer. Fig. 4.14 shows the content
of the SSDP MDL, this identifies the general boundaries of fields “e.g.\r\n” (chars 13,10) because there is
no fixed layout or ordering of fields. The inner field boundary (e.g. the ‘:’ split - char 58) then takes the field
label from the left and the field value from the right to build a field in the abstract message. When the SLP

1http://www.openslp.org/
2http://www.cybergarage.org
3http://developer.apple.com/opensource/
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1 <Types>
2 <ID : In teger><QR: Boolean><Opcode : In teger><AA: Boolean><TC: Boolean>
3 <RD: Boolean><RA: Boolean><Z : In teger><Rcode : In teger>
4 <NoQuestions : In teger><NoAnswers : In teger><NoAuthRecords : In teger>
5 <NoAddit ionalRecords : In teger><DomainName :FDQN><Type : In teger>
6 <Class : In teger><TTL : In teger><RDLENGTH: In teger>
7 <RDATA: S t r i n g [ f−RDATA( Type ) ]>
8 <EndTypes>
9

10 <Header :DNS>
11 <ID:16><QR:1><Opcode:4><AA:1><TC:1><RD:1><RA:1><Z:3><Rcode:4>
12 <NoQuestions:16><NoAnswers:16><NoAuthRecords:16><NoAddit ionalRecords :16>
13 <End : Header>
14
15 <Message : DNSQuestion>
16 <Rule :QR= false>
17 <DomainName:\0><Type:16><Class:16>
18 <End : Message>
19
20 <Message : DNSResponse>
21 <Rule :QR=true>
22 <DomainName:\0><Type:16><Class:16>
23 <TTL:32><RDLENGTH:16><RDATA:RDLENGTH>
24 <End : Message>

Figure 4.11: Bonjour mDNS Message Description

!DNS_Question

?DNS_Response

transport_protocol="udp"
port=5353
mode="async"
multicast="yes"
group="224.0.0.251"
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Figure 4.12: mDNS coloured automaton
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Figure 4.13: A merged automaton for SLP and mDNS protocols

client was executed, Starlink executed the merged automaton and successfully sent an SLP SrvReply
message composed of the content from the SSDP and HTTP fields.
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1 <Types>
2 <Method : S t r ing>
3 <URI : S t r ing>
4 <Version : S t r ing>
5 <MX: In teger>
6 <MM: In teger>
7 <MAN: St r ing>
8 <USN: St r ing>
9 . . .

10 <EndTypes>
11
12 <Header :SSDP>
13 <Method:32>
14 <URI:32>
15 <Version :13 ,10>
16 <F ie lds :13 ,10:58>
17 <End : Header>
18
19 <Message : SSDP Search>
20 <Rule : Method=M−SEARCH>
21 <End : Message>
22
23 <Message : SSDP Response>
24 <Rule : Method=HTTP/1.1>
25 <End : Message>
26
27 <Message : SSDP Notify>
28 <Rule : Method=NOTIFY>
29 <End : Message>

Figure 4.14: Partial SSDP Message Description

4.4.3 Evaluation
Originally we stated that we required the following from CONNECT:

• We require transparent interoperability. In the case study, the legacy protocols are implemented and
deployed independently, they are never aware of the framework and hence the case studies show
that transparent interoperability has been achieved.

• Offer rich translations. The case studies show that we can translate correctly between three different
protocols that are heterogeneous in terms of protocol sequences, e.g. SLP compared to UPnP, and
heterogeneous in terms of message content, e.g., binary to text messages.

• Minimise development effort. In this case study we only needed to provide high-level models, there
was no low-level programming. Further, we were able to reuse the models across the cases, i.e., we
only needed to model SLP once and then write only the merged LTS for the particular case (typically,
these LTS are around 100 lines of XML, but this depends on the complexity of the translation).

The performance of the CONNECTors were evaluated by investigating the time taken to perform in-
teroperability translation. We then compared this to the typical responsiveness of discovery protocols in
terms of the time taken to return a service reply to a lookup request. Figure 4.15(a) shows the results
of the bench measures of the individual protocols (these are measures of the legacy applications imple-
mented using OpenSLP for SLP, the Apple Windows SDK for Bonjour and Cyberlink for UPnP). To obtain
the measures, we calculated the time from when the client sent the message until the response was re-
ceived. For each case, we repeated the experiment 100 times and took the min, max, median of these
results.

All experiments were performed with the client and the service on the same machine (3 Ghz CPU, 2Gb
memory running Windows Vista Operating System, the Java VM was version 1.6.2) to avoid measuring
additional network latency, which may not be constant.

Subsequently, we measured the time taken to translate from one protocol to another within a CON-
NECTor. This measured the time from when the message was first received by the framework until the

CONNECT 231167 70/108



Response time measures for legacy discovery protocols
Protocol Min (ms) Median (ms) Max (ms)
SLP 5982 6022 6053
Bonjour 687 710 726
UPnP 945 1014 1079

(a)

Translation times of Starlink connectors
Case Min(ms) Median (ms) Max (ms)
1. SLP to UPnP 319 337 343
2. SLP to Bonjour 255 271 287
3. UPnP to SLP 6208 6311 6450
4. UPnP to Bonjour 253 289 311
5. Bonjour to UPnP 334 359 379
6. Bonjour to SLP 6168 6190 6244

(b)

Figure 4.15: Native service discovery vs. CONNECTor (ms)

translated output response was sent on the output socket. Figure 4.15(b) shows these measures. We
can see from the results that there is a significant but varied expense to additional translation: in case 6
it is approximately a 600 percentage increase in response time, while in case 1 it is 5 percent. This is
because the cost of translation is bounded by the response of the legacy protocols; if SLP takes 6 sec-
onds to respond that is added to the translation. However, in the domain of service discovery protocols
the timeout of the request response is generally in terms of seconds (OpenSLP sets the default timeout
to 15 seconds, while Cyberlink does not bound the response time); all of the results are within this range
and the solution is both possible and acceptable.

4.5 Handcrafting CONNECTors: Universal Instant Messenger

4.5.1 Goals
The goal of this experiment is to hand-code a mediator achieving transparent interoperability between
various instant messaging (IM) applications, namely Windows Live Messenger4(previously called MSN
messenger), Yahoo! Messenger5, and Google Talk6, as an initial step to gauge the complexity of the
synthesis and to study the CONNECT approach to interoperability focusing on mediation at the application
and messaging layers.

The IM applications under consideration offer similar functionalities such as managing a list of contacts
or exchanging textual messages. However, a user of Yahoo! Messenger is unable to exchange instant
messages with a user of Google Talk. Indeed, there is no common standard for IM, so users have
to maintain multiple accounts in order to interact with each other. The situation does not make any
sense from the end-user perspective, but unfortunately it reflects the way IM (like many other existing
applications) has developed. Hence, solutions that tackle the problem of disparate applications and enable
transparent interaction across different communities are needed.

Microsoft and Yahoo developed a bridging solution in order to make Windows Live Messenger and
Yahoo! Messenger interoperable [46]. However, bridging is infeasible in the long term as the number
of IM systems grows continually. Enterprise Service Buses (ESBs) offers an alternative by providing an
intermediary message bus to allow N-1-M mappings between system messages. Examples of ESB that
ensure interoperability between IM systems are Apache Synapse IM Mediator7 and WSO2 ESB8, both of

4http://explore.live.com/windows-live-messenger/
5http://messenger.yahoo.com/
6http://www.google.com/talk/
7http://esbsite.org/
8http://wso2.com/products/enterprise-service-bus/
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which use the Extensible Messaging and Presence Protocol9 (XMPP) as a standard intermediary protocol.
Another solution consists in using a single application providing a uniform interface to interact with

several instant messaging systems. The application performs the translation between the uniform inter-
face and the existing IM protocols. However, it requires the user to install new software and to have many
identities belonging to multiple IM providers. Moreover, these solutions, such as Pidgin10 or Adium11,
generally provide a subset of the features provided by the original proprietary applications.

Finally, transparent interoperability solutions translate protocol-specific messages, behavior and data
to and from an intermediary representation. An example of such an approach is CrossTalk [50] which
uses XMPP as a standard intermediate protocol. However, relying on a fixed intermediary protocol or
specification might become restrictive over time. Ontologies provide an extensible way to define this
common specification.

To sum up, this experiment addresses the following CONNECT interoperability dimensions:

• Data heterogeneity. MSN Messenger protocol (MSNP), the protocol used for Windows Live Messen-
ger, uses text-based messages whose structure includes several constants with predefined values.
On the other hand, Yahoo! Messenger Protocol (YMSG) defines binary messages that include a
header and key-value pairs. Finally, the XMPP messages are defined in terms of XML Schema.

• Application heterogeneity. The CONNECT networked system model should include the behavior of
the networked systems, either specified by the developer or learned using the learning enabler.
However, both MSNP and YMSG are proprietary protocols and do not provide any specification
of their behavior. Therefore, we reverse engineered these proprietary protocols to compare them
with the ones learned automatically. Also, even though the protocols are simple and quite similar
each one communicates with its own proprietary application server used for authentication and for
relying the messages between instant messaging application. Hence, each protocol defines how to
establish a session in a slightly different manner.

• Heterogeneity of Non-functional properties. MSNP and YMSG do not encrypt their messages
whereas Google Talk activates the encryption option over XMPP making it difficult to access and
modify the content of the messages transparently.

4.5.2 Methodology

Understanding the protocols

One of the challenges we had to face is that neither MSNP nor YMSG have a specification of their pro-
tocols. We had then to reverse engineer the protocol using: (i) network logs collected by monitoring the
protocols using Wireshark12, (ii) client-side APIs, and (iii) unofficial online documentation. On the other
hand, Google Talk is based on XMPP, which is an IETF standard and hence has a detailed specifica-
tion. Figures 4.16, 4.17, and 4.18 illustrate the behaviour of the MSNP, YMSG and Google Talk protocols
respectively. Note that for the sake of readability, we only point out the relevant inputs and outputs ab-
stracting away the details used to generate the messages such as constants and packet length, we also
use a box to denote the transitions in parallel.

Demonstrating CONNECT solution to application-layer interoperability

The IM applications we considered support the configuration of a proxy server which we used for con-
necting them to the mediator using SOCKS13 protocol. The proxy, SOCKSProxy, has been implemented
using JSOCKS API14 (see Figure 4.19).

The UserConnectionmodule manages the user connection and its related data. The BuddyManagement
module maintains the list of contacts of each user.

9http://www.xmpp.org/
10http://www.pidgin.im/
11http://adium.im/
12http://www.wireshark.org/
13http://tools.ietf.org/html/rfc1928
14http://jsocks.sourceforge.net/
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Authentication_Request(userID, challenge)

Authentication_Response(response, authentication_ok)

UpdatePresence(status,ack)

NotifyPresence( , {userID, userDisplayName, status})

addContact(userID, answer)

acceptContact((userID, answer)

CreateChatRoom(userID, conversationID)

JoinChatRoom({userID, userDisplayName}, acceptance )

JoinChatRoom({userID, userDisplayName}, acceptance)

ChatRoomInfo( ,conversationID)

InstantMessage({userID, conversationID,  message}, )

InstantMessage({userID, conversationID,  message}, )

Logout(userID, )

InstantMessage({userID, conversationID,  message}, )

InstantMessage({userID, conversationID,  message}, )

Figure 4.16: MSNP protocol description

Authentication_Request(userID, challenge)

Authentication_Response(response, {authentication_ok,sessionID})

UpdatePresence({status, sessionID}, )

NotifyPresence( , {userID, userDisplayName, status})

acceptContact({userID, sessionID}, answer)

Logout( userID, )

requestContact({userID, sessionID}, ack)

addContact(sessionID, answer)

InstantMessage({userID, recepientID, message, sessionID}, ack)

InstantMessage({userID, recepientID, message, sessionID}, ack)

Figure 4.17: YMSG protocol description

Presence({userID, status}, )

Presence({userID, status}, )

logout

InstantMessage({senderID, recepientID, message}, )

InstantMessage({senderID, recepientID, message}, )

addContact(userID, )

addContact(userID, )

Authentication_Request(userID, challenge)

Authentication_Response(response, authentication_ok)

Figure 4.18: Google talk protocol description
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Figure 4.19: Universal Instant Messaging: the overall architecture

The AbstractProtocolImpl interface defines the functions required to support any IM protocol. An
implementation of this interface (YahooProtocolImp, MSNProtocolImp, and GTalkProtocolImp) is
associated with each protocol (YMSG, MSNP, and Google Talk respectively) to specify how the specific
messages are parsed and composed to handle the behavior of each protocol.

There are a number of mismatches between protocols we have to cope with:

• Typing Notifications in MSNP. In MSNP, a notification is sent as soon as the user starts/ends typing, a
message can only be received if a notification has been sent beforehand. Since other IM protocols
do not require a typing notification before sending a message, the mediator generates a typing
notification and sends it to the Windows Live Messenger application before sending a message.
This action corresponds to the message producer pattern defined in D3.2 [18].

• Session identifier in YMSG. A YMSG packet header contains a unique sessionID provided by the
Yahoo server during authentication and required for all following messages. The mediator stores the
sessionID and embeds it in all the messages.

• Message acknowledgment in YMSG. In YMSG, after sending a message (identified by a messageID),
an acknowledgment with the same messageID is expected, otherwise the message is sent again.
The mediator sends the appropriate acknowledgment for the user.

• Adding a contact in YMSG. To add a new contact using YMSG, a message is first sent to the server,
which checks that the new contact has an appropriate email address, that is an email address
belonging to the Yahoo or MSN domains. Only after the email address has been approved by the
server, can it be added to the user contact list. However, since we would like to allow users to
communicate whatever IM application or address they use, the mediator intercepts the add-contact
request and sends a positive response to the Yahoo! Messenger application in order to add the new
contact.

Dealing with encryption

Unlike Windows Live Messenger and Yahoo! Messenger, Google Talk enforces encryption over the XMPP
messages. Consequently, the mediator cannot parse or modify these messages. To overcome this limi-
tation, the mediator makes use of a Google Talk robot (bot) (see Figure 4.20), added by the user in order
to include commands in the messages. These messages are: Help to get the list of available com-
mands, IM <destinationID> <message> to send a message message to user destinationID, or
AVAILUSERS to get the list of online users.

The bot is implemented using the Smack API15 and is integrated as any other user with an imple-
mentation of the AbstractProtocolImpl interface. Even if this solution is less transparent than the

15http://www.igniterealtime.org/projects/smack/
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Figure 4.20: Dealing with encryption in Universal Instant Messaging

previous one since it forces the user to add a bot to its contact list and to use extra commands, it remains
the only viable one to bypass the encryption process.

4.5.3 Evaluation

As an initial step, we developed a mediator between heterogeneous instant messaging (IM) applications.
The development of this mediator allowed us to estimate the complexity of its generation, as well as the
limits of transparency in case of encryption. We are currently automating the generation of the mediator
through the use of CONNECT semantic-based techniques in order to automatically check the compatibility
of the different IM protocols and to synthesize the mediator that makes them communicate. Therefore,
our ongoing work relates to:

• defining an ontology of instant messaging systems,

• using the IM ontology to automatically check the behavioral compatibility of the different protocols
based on behavioral matchmaking described in Section 3.3.2, and

• designing and implementing a solution to automatically map the messages of different IM applica-
tions based on their ontological representation. Toward this end, we use listeners/actuators, de-
scribed in Section 4.2, to perform the translation between concrete and abstract messages and use
XSL transformations16 to achieve the mapping between the abstract messages and the correspond-
ing ontological concepts.

Furthermore, this prototype will serve as a reference implementation to compare the automated solu-
tions to the hard-coded one, i.e., the behavior automatically learned with the one obtained by reverse-
engineering the protocols, and the mediator automatically synthesized with the hard-coded one.

4.6 Conclusions

Here, we have highlighted that significant progress has been made towards achieving software proto-
types that can deploy CONNECTors which will ensure highly heterogeneous systems and protocols can
interoperate with one another. These software prototypes are currently:

• Java implemented, generic and customisable Listeners and Actuators. These can interpret high-
level message format spefications for composition and parsing of legacy protocol information. Binary
and text versions of the Listeners and Actuators have been developed.

16http://www.w3.org/TR/xslt
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• A Java implemented mediator engine for k-coloured LTS. This can execute a generated LTS that
describes the translation of one protocol to one or more other protocols. This prototype can equally
be used for application and middleware protocol translation.

• A Java implemented mediator that solves data and behavioral heterogeneities between IM appli-
cations. The aim is to evaluate the effort to generate the mediator using CONNECT principles to
interoperability.

Further, we have identified the potential of high-level models (as advocated across the CONNECT
project) to also handle the often complex interaction with diverse legacy communication protocols. That
is, the very low-level details that are often a barrier to interoperability can be addressed by modelling and
generation of a solution. Following such a philosophy ensures that the overall CONNECT approach and
prototypes will remain future proof.

Finally, we have investigated the realisation of CONNECTors to join multiple protocols; this work has
verified (using two case studies) that the designed CONNECTor architecture is fit for purpose and achieves
the required interoperability. These experiments consider interoperability at the application level (in the IM
example) and at the middleware protocol level (in the discovery example). It is a key objective for the third
year to consider these in tandem and produce CONNECTors for heterogenous applications deployed on
heterogeneous middleware.

CONNECT 231167 76/108



5 CONNECTor Deployment
5.1 Introduction

The objective of this chapter is to describe the operation of the deployment enabler; here we present
how the artifacts that result from the synthesis process (i.e., after the concrete CONNECTors have been
realised) are deployed and started up. As explained previously (See Section 2.4, Figure 2.4 page 23),
CONNECTors are made of two parts: a mediator, whose code is generated from the concrete CONNECTor
model that results from the synthesis process (as documented in Deliverable D3.2 [18]; and the Listener
and Actuator classes that are generated from models of middleware protocols. Importantly, these Listener
and Actuator classes can be re-used from one CONNECTor to another, and hence the deployment enabler
maintains an Interoperability Library from which these can be drawn.

The first part of this chapter outlines the overall deployment process for a CONNECTor; this describes
how the procedure is initiated by the synthesis of the required concrete CONNECTor model between two
networked systems, and then illustrates how the running CONNECTor artifacts are deployed in the network
environment and then executed. Section 5.3 focuses on the packaging and deployment of the Listeners
and Actuators that provide the proxies needed to properly communicate with versatile middleware tech-
nologies. Section 5.4 focuses on the deployment and starting up of the mediator itself, and explains
how we leverage existing services provided by the OSGi platform to properly resolve the dependencies
between the mediator and the required interoperability proxies. The last section then introduces an alter-
native synthesis/deployment solution, based on service orchestrations, which will be investigated in the
last year of the project.

5.2 Overview of the Deployment Process

WP 1 : CONNECTor DeploymentWP 3 : CONNECTor Synthesis

Proxy
Factory

New OSGi
Bundle

Source
Files

Connector
Model

2. Code 
Generation

3. Compilation 
& Packaging

OSGi
Bundle File Install

Agent

4. Deployment
(copy)

5. Detect & Start

Service
Tracker

OSGi Platform
(Apache Felix)

7. ad hoc
proxies

6. find
1. Synthesis

knows

Figure 5.1: Overview of the CONNECTor deployment process

Figure 5.1, above, shows the overall deployment process, starting from the synthesis of the CON-
NECTor model and continuing to the final deployment of the resulting OSGi bundles. This process is
composed of the following steps:

1. The initial step is the synthesis of the CONNECTor model (step 1 in Figure 5.1), which is obtained
after the analysis of the characteristics of the networked systems at play in the collaboration. This
model, which only describes the expected behavior of the mediator, is detailed in the Deliverable
D3.2 [18].

2. The CONNECTor model is then compiled into a set of source files (including: several Java classes,
an Ant build file and a manifest file). The code generation has been outlined in Section 4.3.1 and is
further detailed in the Deliverable D3.2 [18].
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3. The resulting source files are then compiled and packaged into a self-described Jar file (step 3
in Figure 5.1), compliant with OSGi standards, that can be consequently deployed in any OSGi
execution platform.

4. The target platform is the Apache Felix OSGi platform: it includes a File Install Agent that is able
to detect and start new OSGi bundles that are placed into predefined directories (step 5 in Figure
5.1). This boils the deployment down to a file transfer of the CONNECTor binaries into the correct
directory on the target host, i.e., the physical machine that the CONNECTor will operate upon. (step
4 in Figure 5.1).

5. When starting up, the mediator leverages the service discovery feature provided by the OSGi plat-
form to locate the needed proxy factories. While deploying a new CONNECTor, we indeed assume
that the interoperability libraries, so called Proxy Factories, providing Listeners and Actuators have
been previously deployed and registered on the target host. If the required Listeners and Actuators
are not deployed then these can be obtained from the deployment enabler’s Interoperability library.

6. Finally the mediator uses these factories to create a separated thread for each partner involved in
the collaboration (step 7 in Figure 5.1). Each thread is waiting for messages coming from a given
partner and the mediator is then ready to proceed.

5.3 Building Proxy Factories

As explained in previous chapters, a running CONNECTor is made of two parts: a mediator part and
several interoperability libraries (listeners and actuators). The former depends on the application and is
generated from the CONNECTor models, whereas the latter ones depend on the middleware protocols
employed by the application and, due to the nature of middleware protocols, can consequently be reused
from one CONNECTor to another. As a result, these two parts are separately deployed on the target OSGi
platform. This section focuses on the implementation and on the deployment of the proxy factory, which
appear in Figure 5.1.

For the record, messages can be read/written according to a description of the corresponding middle-
ware protocol (See Section 4.2). Such protocol descriptions are actually used to generate a parser object
and a composer object that will decode and encode messages respectively. The proxy factory is thus
responsible for the creation of an object, so-called proxy, in charge of the connection with a given partner
(on a given port), and which ensures the exchange of messages with this partner.

The proxy object is a separated thread which is in charge of listening for incoming messages. The
following code excerpt illustrates the main behavior of this thread. While the thread has not been stopped,
the proxy keeps reading data on the open connection (lines 5 to 9). It’s worth to note that the readLine
method invoked on line 5 is blocking, avoiding an active wait for data. Once a message has been read,
the proxy will use a specific parser object to build an Abstract Message (see line 11) and will then pass
this to the mediator object (line 12).

1 public void run() {
2

3 while(!stopped) {
4 try {
5 String line = reader.readLine();
6 while(reader.ready()){
7 buffer.append(line);
8 line = reader.readLine();
9 }

10

11 Message message = parser.parse(buffer.getByte());
12 mediator.process(message);
13

14 buffer.setLength(0);
15 } catch (IOException e) {
16 // ...
17 }
18 }
19 }
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The proxy may also receive some outgoing messages from the mediator. In this situation, the proxy
object uses a specific composer object in order to transform the Abstract Message into an array of bytes
that can be communicated via the network transport connection with the partner. The following code
illustrates this simple data manipulation.

1 public void send(Message message) {
2 byte[] data = this.composer.composer(Message);
3 connection.outputStream.write(data);
4 connection.outputStream.flush();
5 }

: ProxyFactory

p : Proxy
new

pf : ProtocolFactory

create("RMI", 2345)

d = getDescriptionOf("RMI")

pr = buildParserFrom(d)
pr : Parsernew

setParser(pr)

cp = buildComposerFrom(d)
cr : Composernew

setComposer(cr)

p

Figure 5.2: Proxy Factory Service: On-demand construction of proxy

The construction of a specific proxy object is illustrated on Figure 5.2. The proxy factory can be invoked
to create a proxy object that will listen for messages of a given protocol, on a given port. First the proxy
factory creates a new proxy object. The proxy factory then retrieves from its local database the description
of the protocol that is demanded and asks the ProtocolFactory object to create the relevant parser and
composer objects. These two objects are then used to configure the proxy previously initialized. We
assume that the descriptions of all existing protocols that are supported by the discovery enabler are
registered in the ProxyFactory object. It worth to note that the proxy object is also configured with the
calling mediator object, and the port on which it must open a connection, but this is not depicted in
Figure 5.2 for the sake clarity.

The proxy factory is deployed as an OSGi service, which can be accessed using the OSGi service
tracker. The following code excerpt illustrates how the mediator object obtains a relevant reference on the
ProxyFactory in order to generate the proxy that it needs.

1 public void start(BundleContext bundleContext) throws Exception {
2 Activator.context = bundleContext;
3 ServiceReference proxyFactoryRef = context.getServiceReference("eu.connect.osgi.ProxyFactory")

;
4 ProxyFactory proxyfactory = (ProxyFactory) context.getService(proxyFactoryRef);
5 Proxy rmiProxy = proxyFactory.create("RMI", 2345, this.mediator);
6 }
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5.4 Deployment of a Compiled Mediator

As mentioned in the overview of the deployment process (see Figure 5.1), the deployment of the mediator
bundle is boiled down to the copy of the associated Jar file into a predefined directory. The File Install
Agent detects the new bundles and starts them automatically. While the mediator is starting, it uses
the Service Tracker to access the Proxy Factory Service and dynamically builds the proxy objects that
are needed. Once the mediator is ready, its architecture will look like the UML collaboration diagram
presented Figure 5.3 below.

p1 : Proxy
protocol = RMI
port = 2345

p2 : Proxy
protocol = HTTP
port = 8989

p3 : Proxy
protocol = RPC
port = 5432

m : Mediator

1. process(m1)

partner_1 partner_2 partner_3

3. send(m2)4. send(m3)

HTTP 
Request

Remote
Procedure Call

Remote
Method Invocation

owner
owner

owner

log : LoggingService

2.a log("Message Received")
2.b log("Firing Transition : State is S1")
2.c log("Sending message to partner_3")
2.d log("Sending message to partner_1")
2.e log("Transition Complete, new state is S2")

Figure 5.3: Architecture of a deployed CONNECTor mediating between three partners using three
different communication protocols

Figure 5.3 illustrates the result of the deployment: it shows the interactions between the mediator part
and the three proxy objects to three different partners using RMI, HTTP and RPC respectively. When
a HTTP request is received by the proxy 2 (p2), it parses the request and transmits the corresponding
message to the mediator object. The mediator first stores this message, and later processes it. The
message will trigger one of the transitions of the underlying automaton, and the mediator builds and sends
two messages to the proxies 3 and 1 respectively. As a result, the two proxies output on the network the
proper invocations. All the actions performed by the mediator while processing a message are recorded
using the OSGi standard logging service.

The architecture of the runtime CONNECTor implies that each CONNECTor is composed of at least 3
threads: one for the mediator, plus one for each partner (there are at least two). A large number of threads
may significantly slow down the underlying Java virtual machine and consequently raise performance
issues if many connectors are deployed on the same host. An alternative design such as the Reactor
pattern will be investigated during the third year in order to reduce, or at best limit, the number of threads
needed to implement a CONNECTor.

5.5 Towards the Deployment of Model-based Mediators

We have shown here the details of the software prototype and tools that compose the behaviour of the
deployment enabler; this is successfully able to deploy the code-generation based CONNECTors that were
described both in the previous section 4 and the Deliverabler D3.2 [18]. However, the project is also
investigating different strategies to realise CONNECTors. As described in Section 4.3, model interpretation
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is an alternative solution to the generation of ad-hoc CONNECTors whose code is generated, compiled,
and later deployed on a remote host. The two solutions do not conflict, rather they are suited to different
situations. The use of code generation for ad hoc CONNECTors ensures good performances but provides
a low degree of maintainability. This fits perfectly the cases where partners are legacy systems that are
not likely to change. By contrast, the dynamic interpretation of the CONNECTor models, which provides
lower performance but much better flexibility, better fits systems where partners are likely to dynamically
appear or disappear.

As mentioned in Section 4.3.2 we have started to investigate the generation of BPEL code from the
CONNECTor models. Because there are various similarities between a CONNECTor and a service or-
chestration, we plan to leverage existing orchestration engines, such as Apache ODE for instance to dy-
namically execute the CONNECTor. However, CONNECTors go further than service orchestrations, which
implies the assumption that each partner involved in the collaboration is indeed a web service, exchanging
SOAP messages. There is consequently a need for an extension of the existing orchestration engines, in
order to support middleware technologies on demand, as we did for the ad hoc CONNECTors. Additional
details about the extension of the Apache ODE can be found in the Deliverable D3.2 [18].

With respect to k-coloured LTS, which are implemented solely in Java, we are investigating the same
deployment approach used for the code-generated mediators, i.e., using OSGi-based deployments. Given
that k-coloured LTS are self-contained executables that can be packaged in JAR files, we believe that the
OSGi tools and approaches are similarly well suited.

5.6 Conclusion

In conclusion, we have presented a detailed description of deployment enabler; we have shown how
CONNECT deploys CONNECTors in the networked environment in order to allow the legacy networked
systems to communicate with one another. Naturally, this work has concentrated on the output of the
synthesis enabler at this stage in the project, i.e., it considers the software mediators that have been
generated from high-level models. However, other mediator implementations have been investigated
within the project, which execute the behaviour prescribed by a model of the mediator. Future work in the
area of the deployment enabler will concentrate on these further (it is already well placed to handle these
methods) in the third year of the project.
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6 The Role of Ontologies
6.1 Introduction

In this chapter we discuss the role of ontologies in addressing the interoperability problem, with the goal
to contribute to the overall construction of a CONNECTor. The rational for looking at ontologies is that
they provide the capability to reason about a given phenomena, or a given system, or, as in the case
of CONNECT, on a specific interoperability problem. The ability to reason about information which is
afforded by ontologies, provides us with an automatic way to identify the conditions under which different
middlewares can interoperate. For example, reasoning about the middlewares may reveal the different
ways of doing discovery in different systems so that the CONNECTor will find a way to bridge between
the two systems. In this section, we will explore the use of ontologies to address interoperability of
different middlewares, addressing the problem at different levels, from as low as the messaging level, to
the application level. Such ideas go beyond the state of the art in the application of semantic technologies,
which has typically concentrated on semantic web technologies.

The rest of this section is organized as follows. In section 6.2 we provide a definition of ontology and
its use; then we discuss two examples of use of ontologies, the first one, in section 6.3, proposes a model
of messages in the VANET context, the second one, in section 6.4, shows the use ontologies to reason
about systems architecture. In these two examples, we tackle very different problems at different levels
of abstraction, specifically we look at (1) mapping packet structures and (2) reasoning about architecture
patterns, but we will converge to a similar approach and solution. Finally, in section 6.5 we synthesize the
use of ontologies in CONNECT at large, and we try to extract what are the main advantages and problems
related with their use.

6.2 Definition of Ontology

The universally accepted definition of ontology in Computer Science was proposed by Tom Gruber, who
formulated it as the following: An ontology is a specification of a conceptualization.1. Gruber provided
also a longer and somewhat more sophisticated definition of Ontologiy in the Encyclopedia of Database
Systems2, where he expands on the initial definition without affecting its meaning drastically.

In the context of CONNECT Gruber’s definition is hardly satisfactory. First of all, any data structure is a
conceptualization, and therefore it is not quite clear what is the reason for using ontologies in the context
of this project. Second, and more importantly, Gruber’s definition does not highlight the computational
mechanisms that underly the use of ontologies. As a consequence, this definition hides how the use of
ontologies affects interoperability.

In our work in CONNECT, we adopt a different approach where an ontology is a tuple<A,L,P> where
A is a set of axioms, which implements the conceptualization highlighted in Gruber’s definition, L is a
language in which to express these axioms, and P is a proof theory, that supports the automatic derivation
of consequences from the axioms. In the rest of the discussion, we use the word logic to mean the
combination of language L and proof theory P. Defining ontology in terms of its logics, allows us to uncover
the computational mechanisms underlying the ontology and therefore investigate how its use affects the
the interoperability of the whole system.

Indeed, the definition above raises two issues. the first one is, what logic is adopted to represent
ontologies? The second one is, what interoperability issues are raised by the use of ontologies? In the
next two subsections we will look at these two issues.

6.2.1 Logics for Ontologies

In principle there is a wealth of logics that have been implemented to support the reasonings about data
but the emergence of a set of standards around the Semantic Web initiative3 at W3C greatly limits the

1http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
2http://tomgruber.org/writing/ontology-definition-2007.htm
3http://www.w3.org/2001/sw
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scope of the decision. The flagship of these standards is OWL, a family of languages defined around the
RDF4 serialization of Description Logics [2].

Our work shows that OWL is not sufficient to express the concepts that we want to express in CON-
NECT. As a consequence, we adopt also SWRL5 and RIF6, which are rule extensions of OWL, and
SQWRL7 and SPARQL8, which allow to query the knowledge base. In the next sections we explore these
languages. The purpose of our exploration is not to provide a tutorial, but rather to highlight features that
we use, and problems that we encountered during our work.

OWL

OWL, which stands for Ontology Web Language, is an ontology language that belongs to a family of logics
that stands under the label of Description Logics (hereafter DL)9. Within OWL it is possible to express two
types of descriptions: terminological descriptions, or TBOX, that specify Classes that define the important
types of objects in the domain, and Properties that define relations between classes; and assertion de-
scriptions, or ABOX, that describe the model of actual objects in the domain. For example, if we define
an ontology of computational systems, we may want to distinguish between Client and Server, a fragment
of such an ontology is displayed in figure 6.8, as well as properties such as hasClient or hasServer that
specify the relation between two different systems. All these statements define the TBOX of the ontology.
Using this TBOX, it is then possible to describe instances of actual computational mechanisms such as
myBrowser as a client, and google as a server. These descriptions are stored in the ontology ABOX.

Superficially, the structure of an OWL ontology seems to mimic the Object Oriented structure of
classes, subclasses, and instances. The advantage of defining classes in OWL is that one can take
advantage of the OWL inferencing. Whereas in OOP a programmer is forced to specify the type of every
instance that he creates, in OWL this is not required. Indeed, the programmer may just define myBrowser
as an instance of Thing, the root of the class taxonomy, and all the properties of the object. Upon running
the inference engine, myBrowser is classified as of type client. In addition to classification, OWL provides
a second type of inference named class subsumption which identifies if all conditions are satisfied to state
that a there is a subclass relation between two classes. Again, on the opposite of OOP, the subclass
relation between two classes should not be specified statically, but rather it can be inferred on the bases
of the statements that have been made about these classes. Continuing with the example above, I may
not specify explicitly that the class WebClient is a subclass of Client nor that WebServer is a subclass
of Server, but by specifying constraints among them the subclass relation will be inferred directly by the
inference engine.

It is worth noticing that, because of the ability of classifing instances as well as computing class
subsumption, it is very limiting to think of OWL as a pure taxonomic language. Rather the taxonomy
emerges through the relations that have been specified across the different concepts. Indeed, OWL
classes are better thought as sets of logic assertions. To this extent OWL provides a reach language to
make assertions, a programmer could for instance express cardinality constraints such as “the car has
at most 6 wheels” or that “a horse has at exactly 4 legs” as well as universal statements which allow to
specify concepts like “a WebClient is a client whose servers are all WebServers”, as well as existential
statements such as “a WebServer has some clients that are browsers”, which may be true when some of
the clients are not browsers.

As pointed out above, OWL is a family of logics rather than a single logic. The initial specification
of OWL defined three logics: OWL Light, OWL DL, and OWL Full, with different levels of espressivity
and computation complexity. For example, in OWL Light it was possible to specify a concept like “a car
has more than one wheel” but not that “a car has exactly 4 wheels”, while the same concept could be
expressed in OWL DL; furthermore in OWL Full it is possible to relate instances to classes, and therefore
it was possible to express a concept like “a bookstore sells things of type Book” which relates an instance,
my bookstore, with a class Book. This concept of bookshop could not be specified in the other two logics.

4http://www.w3.org/rdf
5http://www.w3.org/Submission/SWRL/
6http://www.w3.org/2005/rules/wiki/RIF Working Group
7http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL
8http://www.w3.org/TR/rdf-sparql-query/
9An extensive description of the different statements that can be expressed in DL logics, as well as OWL, is presented in

http://en.wikipedia.org/wiki/Descriptionlogic
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The situation now is even more complex since with the introduction of OWL 2; additional constraints can
be expressed such as property chains and arithmetic values. Therefore in OWL 2 it is possible to express
concepts like “X is the uncle of Y if X is the brother of Z and Z is the a parent of Y”, furthermore it is
possible to assert that “X is adult if aged more than 18”. Neither of these concepts could be expressed in
OWL 1.

Despite the different expressivity of the different OWL species, if OWL Full is excluded, they are con-
tained one in the other, therefore, in principle, the different degrees of expressivity have no consequence
on interoperability. If System 1 refers to an ontology in OWL Light, and System 2 to an ontology in OWL
2, any reasoner for OWL2 will also be able to handle OWL Light. The converse is of course not true,
therefore minimally the use of OWL imposes some requirements on the computational infrastructure of
the CONNECTor constructor. But in general there may be a number of different reasons for systems to limit
themselves to OWL Light; among the many reasons, one may be efficiency: the computational complexity,
of OWL Light is much lower than OWL 2, and typically the performance is bound to be better.

SWRL and RIF

The problem with using OWL is that even OWL 2 does not provide all the expressivity that is required to
model computational systems. Specifically, for computational reasons the models supported by OWL
and in general by DL logics are tree structures. In turn, there is no way for an instance to refer to
the value of other instances. We encountered this problem in the modeling of the demonstration de-
scribed in the Deliverable D6.2 and highlighted this below in Section 6.4. There is would be desirable
to state when two systems are in the same domain. But in OWL it is impossible to state a concept like
“Syst1.domain=Syst2.domain”, along the same line we cannot express constraints such as “the total time
lapse is the sum of all the individual time lapses”.

SWRL, Semantic Web Rule Language, provides a way to go beyond these problems, by defining a
rule language on top of OWL which allows one to overcome some of the restrictions that are present
in OWL. Essentially, SWRL allows us to specify path properties such as the following: “parent(?x, ?y) ∧
brother(?y, ?z)⇒ uncle(?x, ?z)” which were not possible in OWL 1, and it adds to the language a number
of operators such as math operators, string manipulation and equality that were not possible in OWL
1, and are marginally available in OWL2. Using SWRL, we can address the problem of constraining
the systems domains above by defining a rule like the following “domain(?s1, ?d) ∧ domain(?s2, ?d) ⇒
samedomain(?s1, ?s2)”, where ?s1 and ?s2 are two variables to be bound to the two systems, and ?d is
a variable bound to a domain; the rule holds only when ?d has the same value in both domains. The
cost of using SWRL in conjunction with OWL is that it can be proven that the logics resulting from SWRL
and OWL is undecidable. In our opinion, the loss of decidability is surely compensated by the gain in
expressivity.

SWRL never reached the standard level at W3C, being instead defined as member submission, which
highlights technologies that are of importance for the Web, and may require further standardization work.
In the case of SWRL, the standardization work has been taken up by the Rule Interchange Format (RIF)
effort, which is defining a rule language on top of the semantic web languages. The RIF effort is still
on-going, but no viable tools are available at this time. So for the time being we are limiting ourself to
SWRL.

SQWRL and SPARQL

SQWRL and SPARQL are query language that allow to extract information out of the knowledge base.
Essentially, they view the knowledge base as a graph structure and extract from the graph those nodes
that correspond to a given pattern. A simple example10 of a SPARQL query is given below. The result of
such a query is to extract the url of ”Jon Foobar” blog.

SELECT ?url
FROM <bloggers.rdf>
WHERE {

?contributor foaf:name "Jon Foobar" .

10The example below is taken from the introduction to SPARQL in http://www.ibm.com/developerworks/xml/library/j-sparql/
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?contributor foaf:weblog ?url .
}

Query languages are important in CONNECT because they provide a way to reason about the different
properties that define the objects in the Knowledge Base, and in particular to find which properties belong
to one object but not to the other. In turn this information provides the bases to reason about what
transformations are required to merge two different objects. A very clear example of this difference is
provided in section 6.3.4 below.

While SQWRL and SPARQL are both query languages, they are very different in the details. But, from
the point of view of the CONNECT project though, the difference is mostly based on a pragmatic set of
decision. SQWRL is supported by and earlier version of the Protege tool, that is the main tool for ontology
development, and it is very well integrated with SWRL. For this reason the use of SQWRL provides a
powerful way to interact with ontologies. On the other side SPARQL reached the standardization level and
it is widely used in the context of the Link Open Data initiative. As tools evolved quite fast, the decision of
which language to use may change at a later time.

6.2.2 Issues with Ontologies
In the discussion above we presented a definition of ontology, and then we presented three types of lan-
guages to describe ontologies, namely OWL and classification reasoning, SWRL and RIF for rule-based
reasoning that goes beyond the classification, and finally SPARQL and SQWRL to query the Knowlege
base and extract crucial information patterns. These three languages display the high potential for on-
tology reasoning, but ontology reasoning always come with two of important questions that need to be
addressed, namely: the origin of the ontologies, or in other words who makes them? and how to deal with
multiple ontologies that are potentially incompatible.

Origin of ontologies

In the original ideas that were behind the development of the semantic web, it was expected that complex
ontologies would become available through major organizations, and especially standardization organi-
zations, that would define the essential concepts in their domains. Some initial steps have been made in
that direction with the standardization of SUMO11 (Suggested Upper Merged Ontology) at IEEE. SUMO
provides an ”Upper Ontology” which provides all fundamental concepts that can be specialized for the
different subdomains. Whereas there have been a number of specialized ontology developments, mostly
related to the W3C12 such as the W3C Semantic Sensor Network ontology, the uptake did not match the
level initially hoped.

Nevertheless, in the last few years there have been a number of developments that show an uptake
of Semantic Web technology and ontological reasoning. This development goes under the label of Link
Open Data13 (LOD) which produced billions of statements of semantically marked up data. The most
recent map LOD is shown in Figure 6.1.

The size of LOD is quite impressive, consisting at this time of billions of statements, about virtually
every possible topic. But despite its size, LOD displays two problem: one is that it is very heterogeneous
and therefore difficult to use to address interoperability issues; the second one is that it is based on
RDF(S), which is less expressive than OWL, and therefore less inferences can be made on it. Still, it
provides an impressive amount of knowledge, and despite the fact that we did not exploit it yet, we are
carefully monitoring its content and evolution.

Reference to different ontologies

The converse problem to the origin of ontologies is the availability of multiple alternative ontologies that are
potentially inconsistent. The expectation that there will be one universal ontology that will provide all pos-
sible concepts in a coherent form is universally considered a dream. The experience with any attempt of
standardization of data structures shows that the whole effort is very difficult even in very limited domains,

11http://www.ontologyportal.org/
12www.w3.org
13http://linkeddata.org/
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Figure 6.1: The Link Open Data cloud diagram. The bubbles correspond to ontologies, the links to
the relation between ontologies

furthermore, the experience with distributed databases is that very different data structures emerge as the
different database evolve. Therefore the likelihood that two services developed independently refer to the
same ontology is quite limited.

The ideal way to address this problem is to construct an alignment ontology, such as SUMO above,
which provides a way to relate concepts in the different ontologies. Essentially, the alignment ontology
provides a mapping that translates one ontology into the other. Of course, the creation of an alignment
ontology not only requires efforts, but more importantly, it requires a commitment so that the aligning
ontology is consistent with both ontologies to be aligned.

When no alignment ontology exists, or when it is too expensive to build one, it would be ideal to build an
alignment automatically. In the context of the semantic web there is a very active subfield that goes under
the label of “Ontology Matching” [21, 59] which develops algorithms and heuristics to infer the relation
between two concepts in two different ontologies. Essentially, the goal of the Ontology Matching effort is
to construct the alignment ontology automatically. We already discussed the effort of Ontology Matching
in the Deliverable D1.1 [6]. Ontology matchers use different resources, such as lexicographic indexes like
WordNet to infer the relation between between two concept definitions in different ontologies. The results
of the match is a relation and a level of confidence that that relation holds. Aside from the correctness of
the results that can be derived, the major problem from our point of view is that the result of the match
comes with a confidence value that specifies how related are the two concepts from the point of view of
the ontology matcher.

The confidence value assigned by the ontology matcher is typically used to evaluate the quality of the
results returned when the ontology matcher is used in the context of information retrieval. In this case the
task is already essentially noisy, therefore there is a considerable likelihood that some of the information
retrieved is irrelevant and conversely that some of the relevant information is missed. But in the context
of constructing CONNECTors to resolve interoperability issues, the use of confidence immediately reflects
on the confidence that we can assume on the CONNECTor. This means that we need to add a measure
of utility of the match with respect to the task performed. For example, if the task is to relate two systems

CONNECT 231167 87/108



that provide weather information, the cost of an error for the use may not be that sizable; whereas if the
task is to relate e-commerce systems where the cost of an error is that the user does not receive their
goods or that some money is lost, then the cost of uncertainty is much greater.

In conclusion, the two concerns above, although mitigated, are still present in ontology engineering
and its applications. Ultimately, ontologies come with a set of trade-offs that need to be explored more
closely. In section 3.3.1 we already pointed out how ontologies can play a role in expressing affordances
and therefore facilitating component discovery; furthermore, in Deliverable D3.2 [18] we showed how
ontologies are employed to facilitate the synthesis of CONNECTors. In this chapter we will look more
deeply at two other experiences that we made with ontologies, namely on the message mapping in the
context of VANETs and on reasoning about system architectures in the context of the overall demonstrator
discussed in Deliverable D6.2 [16].

6.3 Exploiting Ontologies to support Interoperability across VANETs

As a first experiment, we investigated the use of semantic technologies to tackle the problem of interoper-
ability in a particular middleware domain, namely Vehicular Ad Hoc Networks (VANETs). In this domain, a
numer of different protocols exist to route network messages between moving vehicles. These protocols
are highly heterogeneous in terms of their routing strategies (broadcast-based, location-based, etc.,) and
the packet formats employed, hence interoperability between protocols is a significant challenge. Here we
demonstrate how ontologies can be applied to acheive better interoperability between VANET protocols;
this highlights one of the key contributions of the CONNECT architecture, i.e., the use of ontologies at a
deep level in the system to address the technical differences between low-level communication protocols.
We argue that VANETS offer a good case-study for low-level interoperability in CONNECT because their
overall goal is simple: to send a message from one node to another (and hence, we do not need to worry
about other interoperability issues such as application data and behaviour differences). In the future, we
will extend the approach to cover richer protocols such as RPC, service discovery and publish-subscribe.

At the heart of the approach is the construction of the domain’s reference ontology, i.e. the VANET
ontology, to build semantic understanding about the VANET protocols. This ontology acts as a repository,
storing the descriptions of all of the different routing strategies available for this domain, and the different
packet formats that result from them. We then investigated how the ontology could be utilised to perform
two tasks important to achieving interoperablity:

• Classification. A reasoner, used within the ontology, enables the classification of observed packets
under the appropriate routing category. In order to enable other packets to be routed, the new
packet formats need to be compared against the existing packet formats in the ontology. For this to
be possible, there needs to be a way to store the description of known packet formats and when new
packets arrive, the system should be able to infer the description of the new packet formats and then
allow the required comparison to take place. As we will show, to enable an adequate comparison,
the ontology needs to be used in conjunction with SWRL rules and SQWRL queries. The SWRL
rules enable a more expressive inference based on the information provided from the ontology itself.
On the other hand, the LOD queries can be added in order to extract valuable information from this
repository. For example, queries can be formulated to find fields that do not match between two
different packet formats.

• Mapping. Classification can help build a semantic understanding of the packet content and the
protocol behaviour, but it cannot determine how to map the data content from one message to
another. We investigate here the use of SQWRL queries to underpin an approach to describe how
two protocol messages can be mapped onto one another.

6.3.1 Vehicular Ad-hoc Networks
Vehicular Ad-Hoc Networks (VANETs) are an important type of ad-hoc network that are made up of
vehicles interacting with each other. Their goal is to distribute information such as traffic data and road
safety warnings in order to enhance the overall safety of the system. VANETs exhibit their own unique set
of characteristics unlike other mobile ad-hoc networks, such as a high mobility feature and a very dynamic
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network. Figure 6.2 shows a vehicular network whereby the vehicles are communicating with each other
in order to exchange messages.

Figure 6.2: : Vanet Model

The success of VANET applications relies on the fact that messages should be easily distributed to
different vehicles in the network and those messages should be easily interpreted. If all the messages
follow a certain standard format, then there is not much problem in distributing the messages as all the
vehicles will interpret them the same way. But this also means that the network is restricted and can
only infer a certain type of message format. Hence, in order to enhance the scalability of the VANET,
the network should be able to interoperate with other types of VANETs having different set of message
formats. So far, different VANET systems are not able to interoperate with one another. To understand
the concept of interoperability within VANETs, it is imperative to understand the different types of VANETs
that exist. These different VANETs are formed based on the type of routing protocol they are employing
in order to distribute messages.

Categories of Vehicular Ad-Hoc Network Protocols

There are different categories of routing protocols that are applicable in Vehicular Ad-hoc Networks
(Vanet):

• Broadcast-based: The vehicles talk to each other in the network. When a message is broadcasted
within the network, all the vehicles that are within the radio range receive this information.

• Position-based forwarding uses: node locations (longitude and latitude) and the greedy forwarding
method in order to forward packets towards the node which is closest to the destination.

• Trajectory-based forwarding uses: the greedy forwarding method and an estimated trajectory
outlined by the source node through GPS and a digital map in order to route the packets to the
destination.

• Restricted-directional flooding uses: GPS or directional antenna in order to direct the message
broadcast in the required direction. This method is useful in warning nodes behind the sender node
e.g during occurrence of a road accident in front of the sender.

• Content-based forwarding uses: Distance, Speed, Traffic Density and availability of neighbours to
route packets. The contents of packets are analyzed and based on the priority of the message, the
packets are routed accordingly.

• Cluster-based forwarding uses: Clusters formed in the network where a head node is responsible
to forward the messages to the other nodes in the cluster. A border node is assigned to route the
packets outside of the cluster.
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• Opportunistic forwarding uses: the Carry and Forward notion in order to route the messages in
the network.

Example of routing protocol messages

This section demonstrates a few packet formats that are used in the context of VANETs; thses are: BBR
(for Broadcast-based VANETS), Broadcomm (for Trajectory-based VANETS) and Lora cbf (for Location-
based VANETS). The idea is to show how VANETs emitting different types of packets can interoperate
with one another. In Figure 6.3 we see example of the packet formats for each of these three protocols.

Figure 6.3: Packet formats of three VANET Routing Protocols

Figure 6.3 shows that a direct mapping of packets from one type of VANET to another type of VANET
is not possible. In order to achieve interoperability within different VANET protocols, we need to learn
the behaviour of each protocol. Then, based on this information, we need to try to find some degree of
similarity (matching), if possible, between these two different protocols before any procedure of mapping
is applied.

As mentioned previously, the ontology can be used to relate information between similar sources and
help achieve interoperability among these systems. If we take, as an example, a Broadcast-based packet
(e.g. BBR) and a Location-Based packet (e.g. Lora cbf), can an ontology really help in enabling an
exchange of information between these two different packets? Figure 6.4 highlights these two different
packet formats. The Broadcast-based VANET requires only the DestinationIP to route the packet whereas
the Location-based VANET requires both the DestinationIP as well as the GPS Coordinates. Hence, the
location based packet can be used by the broadcast protocol, but the location-based protocol requires
extra information, i.e. GPS co-ordinates, to be added to the broadcast packet in order for it to use it.
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Figure 6.4: Comparing VANET Packet Formats

6.3.2 Application of ontologies to the VANET domain

As an exercise and also in order to answer the questions from the previous section, an ontology has been
created in order to represent the domain of the VANET. The purpose of the ontology is to represent all the
concepts that form the VANET, in particular the different types of packet formats that are possible for the
different types of routing strategies applicable to this type of network. Figure 6.5 shows a snapshot of the
VANET ontology; this shows the different concepts represented as classes. For instance the class Packets
contains subclasses among which we have ClusterBasedPacket, which represents packets performing
Cluster-based routing. The given classes also have fields such as a Cluster Head, a Target Route and
some Location Coordinates.

Before the reasoner can be applied to achieve classification, we need to create a set of classes called
Restrictions within the ontology. The purpose of these restrictions is to define new concepts which will
be used to categorise the existing concepts. For example, we have created the definitions of packets
like BBR, Broadcomm and Lora cbf within the ontology. We require the reasoner to classify these
packets under different categories of VANETs, for example, BBR should be classified as a Broadcast-
based packet. Broadcomm should be classified as Trajectory-based packet but can also be classified as
a Partial-LocationBased packet since it also contains part of the set of required fields to operate as a
Location-Based packet. All these different categories are defined as restrictions within the ontology and
the purpose of the reasoner is to classify the different packets under these different restrictions, based on
the definitions provided by the packets.

When the reasoner is applied, the inferences generated are displayed within the ontology itself as
demonstrated in Figure 6.6. This reveals the inferred concepts from the VANET ontology. For instance,
the Broadcomm packet has been classified under the class PartialPositionBased packet. This class
describes all classes of packets which contain part of the set of required fields to operate as a Position-
based packet (these fields are location coordinates and a trajectory). Since Broadcomm packet contains
either of these required fields, it is therefore classified as a PartialPositionBased packet.

Weakness of Ontology. So far, the ontology is able to classify the packets as per the description
provided by the VANET domain itself. However, even if Broadcomm, for example, is found to be a partial
Position-based packet, the ontology cannot tell what fields are lacking from the Broadcomm packet for
the latter to function as a fully Position-based packet such as Lora cbf. This is where the ontology lacks
expressivity. In order to fulfill this mapping need, we need an extra mechanism that can increase the
expressivity of the OWL language, which are SWRL rules.

Using OWL it is possible to to classify the packets as per the description provided by the VANET
domain itself. However, even if we can tell that Broadcomm, for example, is found to be a partial Position-
based packet, the ontology cannot tell what fields are lacking from the Broadcomm packet for the latter to
function as a fully Position-based packet such as Lora cbf. This is where OWL lacks expressivity. In order
to fulfill this need, we need to increase the expressivity of the OWL language with the SWRL rules.
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Figure 6.5: VANET Ontology

6.3.3 Using SWRL

In Broadcast-based VANETs, packets are broadcasted a certain number of times, depending upon the
density of the network in order to reach a maximum number of vehicles. Hence, if we want to input into
the ontology that a certain packet has a high broadcast rate (the class representing this is termed as
hasHighBroadcastMeter), we can set up a SWRL rule as follows:

BroadcastMeter(?b) ˆ BBRPacket(?p) ˆ hasIntegerType(?b, ?s) ˆ
swrlb:greaterThan(?s, 10) -> hasHighBroadcastMeter(?p, ?b)

This rule states that if a packet p is a BBR packet, and has a broadcast rate b (BroadcastMeter) and
this broadcast rate b has value s, and if the value s is greater than 10 (a threshold value), then it implies
that the BBR packet b has a high broadcast meter.

So far, the ontology and the reasoner can classify a packet under a certain category. For example, BBR
packets are classified under Broadcast-based Vanets and Lora cbf packets are classified under Position-
based Vanets. In addition, the rules help to increase the expressivity of the ontology as shown above.
However, if we need to compare these two types of packets and determine which fields are different
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Figure 6.6: Inference in VANET Ontology

between them, we cannot do so with the ontology and SWRL rules only. Henceforth, we need to make
use of SQWRL.

6.3.4 Using SQWRL
An an example, suppose we need to compare the packets BBR and Broadcomm and find out the fields
which are different between them. The SQWRL query will look as follows:

BBRPacket(?b) ˆ hasFields(?b, ?f) ˆ Broadcomm(?p) ˆ hasFields(?p, ?pf) ?
sqwrl:makeBag(?bag, ?f) * sqwrl:makeBag(?bagt, ?pf)

* sqwrl:difference(?diff, ?bagt, ?bag) ˆ sqwrl:element(?e, ?diff)
-> sqwrl:selectDistinct(?p, ?e)

For instance, the SQWRL query above states that if b is a BBR packet and has fields f, create a bag or
set of all these fields called bag. On the other hand, if p is a Broadcomm packet and has fields pf, create a
set or bag of such fields called bag t. Then find the difference between these two bags and if there is any
difference, then select those fields which are found to be in Broadcomm packet p but not in BBR packet
b. The result of this query is the set of fields found in Broadcomm and not in BBR.

The OWL language enhanced with the use of SWRL and SQWRL results in creating a very expres-
sive VANET ontology which can determine the nature of a packet given the field descriptions, and also
enable the comparison of any two particular packets and to finally produce the fields that are different
between them. Once the matching of the packets has been achieved, this leads to the next step in this
interoperability approach which is to perform the mapping between these two packets.

6.3.5 Enabling mapping in VANET
Referring to the above scenario, if a Location-based VANET receives a BBR packet, the fields that are
missing from the latter are: Location Coordinates, Target Route, Cluster Head, Distance
From Cell Reflector, and Speed. In this case, the mapping algorithm should map the list of Neigh-
bours received from the BBR packet onto the Target Route (which is a list of possible destinations for
routing the packet). It should further decide a cluster head for this particular case. Moreover, if the hello
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beacons coming from the source of the BBR packet contain Location Coordinates, they can be used to
fill in the gap. But if the Location coordinates are missing, then the routing algorithm should compute a
best possible range of Location Coordinates for this particular vehicle, based on the location coordinates
of the neighbours and still route the packet using a range of Location Coordinates instead of an exact pair
of Location Coordinates.

On the other hand, when a Broadcast-based VANET (using BBR packets) receives a Broadcomm
packet (a Trajectory-based packet), the fields that are necessary for the Broadcast-based VANET to
function are: Source Node ID, Destination Node ID, Common Neighbour #, and Neighbour
List. Among these fields, the Broadcomm packet can only provide Source NodeID and Destination
NodeID. In order for the Broadcast-based VANET to accommodate the Broadcomm packet, it would need
the lacking two fields which are Common Neighbour # and NeighbourList. One possible solution to this
problem is to create an adaptive routing strategy so that the routing can still be performed even if few
fields are found to be missing. In a VANET, vehicles discover their neighbourhood by sending and re-
ceiving hello beacon messages. Therefore, the Broadcast-based VANET can infer the list of neighbours
for the Broadcomm packet by looking at the possible beacons received within the same timeframe as the
latter, and hence also approximate a possible common neighbor number.

6.3.6 Analysis
We have presented one example of a mapping procedure being applied in the case of VANETs. Interop-
erability between protocols that employ different routing algorithms is underpinned by the need to identify
the fields which are crucial for performing the routing of a particular packet format. Therefore, there is
a need to cater for situations where those fields can be missing and provide an adaptive mechanism to
counter this problem. We have shown the important role ontologies can play in moving The role of the
ontology coupled with SWRL and SQWRL rules is to produce the set of fields that are found to be missing
from a packet which has been received by a VANET using a particular packet format (we have shown here
that this can be achieved). The next step is to enable an adaptive mapping mechanism in order to enable
interoperability; work in the third year of the project will focus on this particular issue.

6.4 Using Ontologies to model System Architectures

In the previous section we used ontologies to reconcile low level details in the message structure of differ-
ent protocols. In this section, we use ontologies to analyze systems at the architectural level. Specifically,
we look at the one of the demonstrators implemented in the CONNECT project, where we are working
towards the connection of two very different systems: the RCS MMIM: a multi-media instant messaging
system, that is a system for multi-media distribution developed within the mobile network [30], and a video
surveillance system, with the objective to improve video surveillance by including videos coming from
different users.

Presence Server

XDMS

IMS / IP Core 
Network

IM Server

Video Share 
XMPP 

Gateway

XMPP 
Client

SIPXDMS
ServerRCS

Client
Server

Gateway SIP
HTTP
XMPP

Figure 6.7: The two alternative ways to address the integration of the RCS MMIM and the Video-
Surveillance system

As shown in Figure 6.7, there are two ways to achieve this result:
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1. The mechanism for video-surveillance could open a connection directly as an RCS client, as the
client shown on the left of Figure 6.7; but there is a complication that the RCS is restricted to mobile
users, therefore the video-surveillance cameras should also register as users with the core of the
mobile network and carry a SIM card credentials.

2. Exploit the non-standardized XMPP port, shown on the right of Figure 6.7, offered by the specific
RCS system to which we have access. In this case though, any client to the XMPP port should be
inside the domain in which the XMPP port is deployed.

In either case, the problem of connecting the two systems does not depend only on the protocol of
the two connecting systems, but it also depends on additional conditions that need to be satisfied in
the overall system. We need therefore a way to express: (1) the requirements of the different ports, for
example, the need for the credentials on one side and the domain requirements on the other side; and (2)
the capabilities of the clients, whether they have the credentials, and whether they can accommodate the
domain requirements.

Ontologies afford us a way to address these problems. Indeed, we can specify ontologies that describe
the different components, their relations, and their requirements, as well as the capabilities of the clients.
We can then use the inferencing to derive whether the particular client fits the requirements of the different
ports. Below we provide a brief description of how ontologies have been used to address the domain
problem, and in Deliverable D6.2 [16] there is a more extensive description of the process.

A fragment of the relevant ontology is given in figure 6.8. We defined two main concepts: Pattern
and Component. Components specify the type of components in the system, while Pattern describes
their relation in the system. Here a system component is defined as having a Domain and a Protocol.
Furthermore, two different types of components are identified: Client and Server, and components may
be in relation among through the relations hasClient and hasServer.

ProtocolDomain

SIP HTTP XMPP
DOCOMO CONNECT

ComponentPattern
hasComponent

Component

isaisahasclient hasServer

Pattern

Client Server

Figure 6.8: The different types of components in the ontology and their relation

Given the definition of Component, we can define patterns of components. In the context of the
definition of the ontology that we are specifying we can take components and check in what type of
pattern do they fit in. A fragment of the specification of patterns is shown in Figure 6.9. Patterns relate
only to components, where each Pattern may relate to multiple components. It is therefore easy to define
Client/Server patterns, as well as ServerServer patterns by restricting on the number of components that
can participate in a Pattern and on the type of components that can be in a pattern. Furthermore, it
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is possible to identify different patterns that are problematic, as for example a pattern with clients only.
Finally, it is possible to define a set of remedial actions, which then can be taken either automatically by
the code or by some other operator to fix the problem.

The need for verifying when the system that is created by the connector is sound or not was required
to check whether there are unexpected domain boundaries that should not be violated. As shown in
Figure 6.7, both the client of the RCS XMPP port should be within the DOCOMO XMPP domain, and
any client outside such domain would fail to communicate. The natural way to model such a constraint
would be to define the patterns of components that are in the same domain, identified in Figure 6.9 as
SameDomain and the ones that cross domains, identified as DifferentDomain. We could then define
the class of patterns that are problematic and derive an appropriate remedial action, such as creating a
connection through an intermediate XMPP server recognized by the RCS server.

As in the case of VANETs above, OWL is not enough to express all the constraints that are required by
this case. For example, the definition of SameDomain and DifferentDomain cannot be expressed within
the OWL language. But OWL in combination with SWRL and a query language provides us with the
required expressivity.

ComponentPattern
hasComponent

isa

Client/Server Server/ServerProblematic SameDomain DifferentDomain

isa
isa

ClientOnly CS‐DiffDom

Figure 6.9: A snitppet of the Pattern Ontology.

6.5 Analysis: Towards an ontology of Middleware

In the introduction of this section about ontologies, we argued that the use of ontologies is very appealing
because of their capability to perform inferences over system models. Ultimately, the broad use of on-
tologies in CONNECT proves that to be the case. Within the CONNECT project we have used ontologies
to model five different aspects of systems of systems: (1) to analyze the message structure as described
above in the context of VANETS in section 6.3; (2) to perform Input/Output Matching and (3) to match
systems affordances during discovery; (4) to model middleware to match different protocols; and (5) to
analyze the structure of systems architectures. These experiences provide us with a broad range of uses
of ontologies at different levels of abstraction in the systems analyzed.

When reviewing these experiences it is quite clear that ontologies essentially provide us two functions
that would be difficult to build otherwise.

1. Abstraction over syntactic differences of systems descriptions. This is evident with respect to affor-
dance matching. There, two systems may use different labels to describe their own affordance, but
when the labels are substituted with concepts defined with respect to an ontology, then the proof
theory can be exploited to verify the relation between these concepts to find the degree of matching.
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A similar process was exploited for the Input/Output Matching during Ontology-based Model Check-
ing in section 3.3.2. In this case the reasoning hinged on proving whether two syntactically different
traces can, or cannot be considered equivalent through an analysis of the relation between inputs
and outputs. In a sense, this reasoning provides the first step beyond the reasoning about message
structure to look also at the payload of the messages carried.

2. Reason about the structure of objects that need to be manipulated, their features and their missing
features. This is particularly clear in the analysis of message structures, which was analyzed in
the context of VANETS in section 6.3. There ontologies proved useful to identify the types of mes-
sages and the additional requirements that need to be satisfied to transform across different types
of messages, and what is missing in a message to transform it to the other type of message. A
similar resoning problem was presented by the verification of architectures, as discussed in section
6.4. There we showed that, even when all the pieces are in place, additional problems may emerge
from the point of view of architectural requirements that are not satisfied. The verification of these
architectural requirements requires reasoning about the relations between the different components
and whether the conditions for these components to work together are satisfied. As in the previous
case, it is not enough to verify whether the CONNECTed system architecture is valid, but also how to
fix it, and in turn what is missing to transform it to a valid architecture.

Ultimately, the abstraction over syntactic differences of systems descriptions provides us a semantic
abstraction with respect to an ontology. As a result, the ontology allows us to recognize when two struc-
tures that look superficially different from the viewpoint of their syntactic structure carry essentially the
same type of information, and it is therefore possible to compare and analyze them in a coherent way.
Furthermore, the ability to reason about the structure of entities that need to be manipulated, their features
and their missing features, allows us to express in a declarative way the entities that are involved in the
systems that need to be connected, and reason about the connected system and very different levels of
abstraction, from the message structure to the hight level architecture.

6.5.1 Modeling Systems with Ontologies
Ontologies have been used quite extensively to represent aspects of systems, but as far as we could see,
there has never been an ontology quite as broad and comprehensive as the one emerging in CONNECT.
From the point of view of CONNECT, we are interested in work that addresses the two problems highligted
above: namely the abstraction from the syntactic aspects of the system description; and, second, the
reasoning about systems.

As for the first problem, the most prominent work in literature have been developed around semantic
web services [42, 22, 65], which were reviewed extensively in Deliverable D1.1 [6]. This work has been the
basis of the representation of affordances of the representation of traces. Though, most of these works
concentrate on a description of the affordance as a function mapping inputs into outputs, while in CON-
NECT we have a broader approach in which affordances are described to reflect the function performed
by the system independently of the input/output relation that they generate. The second aspect is that the
discovery extends to the mapping of traces of protocols which are typically not considered in semantic
web services.

On the second problem, namely reasoning about systems, there have been two main streams of work.
On one side, Description Logics has been used to provide a formal semantics to UML [5, 60, 36] with
the objective to verify their consistency and possibly debug them when they are invalid. The second
stream of work has been toward the analysis of the configuration of systems. The problem here is that
system configuration tends to become a combinatorial problem and a logic model can help the developer
to avoid any misconfiguration. The first attempt in this direction has been due to [4] whose system was
successfully applied to the configuration of very complex telecommunication systems at AT&T and Lucent.
The configuration problem has been considered in other systems which applied both to computer systems
as well as other systems such as installation of home electronics [45].

Our work closely relates to these works, and indeed, it may be beneficial to revise our ontology to
reflect UML more closely. On the other hand, our problem is somewhat different since we do not aim at an
operator that has to verify the settings of an apparatus, or the validity of UML diagrams, rather we aim at
developing a system that constructs correctly a CONNECTor between two other systems. Therefore, it is
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not enough to detect the failure, we need also to identify it and react to it. Indeed, in our ontology, shown
in Figure 6.9, we have the concept “Problematic” that is the root node of the possible faults that we can
have in the system and we can react to.

In perspective, ontologies may afford another level of abstraction in building valid CONNECTors. Rather
than specify all possible faults and keep a fixed relation between the faults and the possible fixes, we could
use the inference engine to prove whether the overall system is valid. If the proof fails, we could analyze
the proof to derive the fault, and potentially create a fix for it on the fly. Such a fix would describe how to
fix the system to generate a correct CONNECTor. Some technologies to support this process are already
available: work on proof explanation [19] could provide a way to derive the reason of a proof from which
to derive the system fault, and we could exploit AI planning technology [27, 51, 61] as a mechanism of
automatic programming to generate a system fix for us. But at this point the generation of explanations
is still very difficult and possible only for very weak logics; as for AI planning, it is not clear how to do
planning with actions at different levels of abstraction. In the cases analyzed by CONNECT so far, there is
no need for such complexity. Although this approach sounds too visionary even by CONNECT standards,
we may investigate this opportunity in the progress of the project work.

6.5.2 Issues with Modeling
In the presentation so far we have looked at ontologies in an abstract form, but it is important also to look
at the practical consequences of using ontologies for system modeling. Specifically, the use of OWL as a
modeling language comes with two types of problems. On one side, since the standards are still evolving,
the tools are not quite at the same level as the standards; on the other side, the use of logics requires a
mind shift with respect to traditional programming.

With respect to the standards and the tools, we noticed above as SWRL is being replaced with RIF,
and ad hoc query languages such as SQWRL are replaced with SPARQL, with the problem that tools
have to be modified to adapt to the standards shifts. This is evident in Protege, which is now the leading
open source software to create ontologies. Recently Protege did undergo an extensive rewriting moving
from version 3, which supports OWL1.1 SWRL , to version 4, which supports OWL 2.0 and is tailored to
handle large and complex OWL ontologies, but has no support for SWRL and SQWRL.

The second problem is that OWL and DL in general require a change of thinking that is sometimes
inconsistent with more traditional programming languages. The main problem is that it makes the open
world assumption which means that if something is not told it cannot be assumed to be false. The use of
the open world assumption allows the use of OWL with incomplete and evolving information, but it is also
contrary to traditional programming languages that typically make a closed world assumption. In practice
the open world assumption forces the ontology developer to define a number of negative statements that
are quite unintuitive to make. The second problem is that it does not make the single name assumption
therefore it is often difficult to assume that two things that appear to be the same are actually the same.

6.6 Conclusion

The result of the work performed during the year is that we have developed ontologies that describe dif-
ferent aspects of systems: from the low level details of their messages, to the payload of those messages,
to their affordances, to the abstract architecture. As a result, we are progressing toward the objective to
build a CONNECT ontology of middlewares which is broad enough to express very different middleware
structures as well as very different aspects of computational systems.

The ontology that we have now is quite broad, but also fragmented in the sense that it evolved in
an ad-hoc way while the project members were addressing different problems. This result has been
the consequence of a decision to develop ontologies “bottom up” in which ontologies are first used to
solve problems, rather than following a ”top-down” approach where ontologies are created in an abstract
way and then used to impose a structure on the problem solving, with the risk of missing the crucial
concepts that we need and of creating artificial problems. The work to be performed next year will be
to synthesize those ontologies in a coherent and, as much as possible, complete language to describe
systems. Furthermore, we will be able to extend our ontologies to represent other aspects of systems
such as quality of service, security policies, and reliability constraints.
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7 Conclusions
7.1 Concluding Remarks

The overall aim of the CONNECT project is to bridge the interoperability gap that results from the use of
different data and protocols by the different entities involved in the software stack such as applications,
middleware, platforms, etc. This aim is particularly targeted at heterogeneous, dynamic environments
where systems must interact spontaneously i.e. they only discover each other at runtime. In this docu-
ment, we have presented a refined version of the CONNECT architecture that will meet this particular aim;
this focuses on producing and integrating concrete technologies in order to maker the vision a reality.

In this report we first presented a refined version of the CONNECT architecture. This highlighted the
concrete vision of the CONNECTor architecture and the Networked System Model; both of which play a
central role in integrating the work of the separate work packages. Also, the enabler architecture and the
associated communication exchange between enablers was unified within the CONNECT architecture.

A number of prototype software solutions have been created on the path towards the full implementa-
tions of the CONNECT architecture. Those highlighted in this deliverable and described in the accompa-
nying appendix (Deliverable D1.2 Appendix - Prototype) are:

• The Discovery Enabler protoype can discover and generate the networked systems deployed in a
network environment, for systems that have been advertised by UPnP or the CONNECT Discovery
Protocol. Further, the software matching framework can identify networked systems that match and
are suitable to interoperate with one another. Further information about this prototype is found in
Section 2 of the D1.2 Appendix - Prototype.

• The deployment enabler can deploy CONNECTors in the network environment to successfully inter-
operate with the legacy networked systems that are also deployed. Further information about this
prototype is found in Section 3 of the D1.2 Appendix - Prototype.

• The CONNECTor generator tools allow software CONNECTors to be realised from the high-level mod-
els produced (or defined) by other elements of the CONNECT architecture. The prototype software
corresponding to these tools is collectively termed the Starlink framework and further description
including the location is given in Section 4 of the D1.2 Appendix - Prototype.

These prototypes have been or are being evaluated using small application or middleware case-studies;
these show that the prototypes succesfully achieve the objectives of the CONNECT project (namely long-
lived interoperability) and conform to the specification of the CONNECT architecure. The prototypes also
form the foundation of the implementation and evaluation of the case-study as described in Deliverable
D6.2 [16].

The other important contribution of this report is to highlight the important role of ontologies in the
CONNECT architecture. Ontologies have been successfully employed within Web 2.0 applications, how-
ever these have only really considered the top level concerns such as discovering semantically similar
systems. CONNECT is pushing the role of ontologies further, we are going deep with our use of ontolo-
gies, using them across system software as well as at the application level. Our ontologies cross-cut all of
the CONNECT functions and enablers. We have shown the role of ontologies in the discovery, matching,
and synthesis of CONNECTors; here ontologies feature in the networked model and are employed in dis-
covery and matching of affordances and descriptions, further, matching of systems (including alignment
based upon ontologies) leads to the synthesis of CONNECTors. At the lowest level of the CONNECT archi-
tecture, i.e. the interoperation with middleware protocols, ontologies are applied to classify (discover the
behaviour of) new network protocols and are used to determine the low-level interoperability bridges (i.e.
matching and mapping of data field content from between messages).

Overall, this intermediary step has proven that the advanced solutions proposed by CONNECT can
be integrated and produce appropriate interoperability solutions that ensure heterogeneous networked
systems can communicate. The nature of this process means that there remain further open questions
and challenges as we seek to create eternal and long-lived interoperability software.
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7.2 Future Activities for WP1

There are two important areas of future work: i) the addition of advanced learning and synthesis ap-
proaches into the CONNECT architecture; ii) addressing non-functional properties through the integration
of the dependability enablers (as provided by WP5). These will form the body of work for WP1 in the
third year of the project, with the key objective of achieving fully automated, future-proof and dependable
interoperability solutions, and hence achieve the overall goal of the CONNECT project.

In terms of advanced learning, we envisage further investigation of the role learning occupies within the
architecture. At present, learning is focused solely on the behaviour model from the networked system
model; that is, it aims to identify the application behaviour of a system. While this is important to the
automation of CONNECTors, it only focuses on part of the behaviour. At present, the middleware protocol
behaviour and their corresponding message formats must be defined (and be known by CONNECT) in
advance. If a new system employs a novel protocol then CONNECT is unable to resolve the interoperability,
hence the approach is not future proof. Rather it is required that we equally apply learning approaches
at the middleware level; this would not be executed as frequently (e.g. within the flow of the CONNECT
process) because a new protocol need only be learned once. At present synthesis is disjoint, we can
match and synthesize solutions at the separate levels of application and middleware. We will integrate
the work about advanced synthesis techniques from WP3 that synthesize complete CONNECTor solutions
into the CONNECT architecture.

For the non-functional properties and dependability assurance, we plan to integrate the work of WP5
(as discussed in D5.2 [15]) into the prototype software of the CONNECT architecture. In particular, this will
first involve eliciting the non-functional requirements from networked systems and specifying them using
the property meta-model within the Networked System Model. This will involve extending the discovery
enabler to discover information about the systems and the environment in order to describe these non-
functional properties. The further steps will involve integrating the dependability and monitor enablers
to ensure that runtime dependability analysis is achieved for the deployed CONNECTors. Finally, we will
investigate concrete solutions to add the body of work about trust and security into the architecture as a
whole.
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8 D1.2 Appendix
8.1 xDL definition of the Photo Sharing Networked Systems

1 <?xml vers ion= ” 1.0 ”?>
2 <xDL name= ” LimePhotosharing ”
3 targetNamespace= ” h t t p : / / example . com/ LimePhotosharing . xd l ”
4 xmlns : tns= ” h t t p : / / example . com/ LimePhotosharing . xd l ”
5 xmlns : xsd= ” h t t p : / / www.w3 . org /2000/10 /XMLSchema”
6 xmlns= ” h t t p : / / www. connect−f o reve r . eu / xDL>
7 <types>
8 <type name= ” PhotoMetadata ”
9 modelReference= ” h t t p : / /www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / photoSharing . owl#

PhotoMetadata ”
10 l i f t ingSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

photoMetadata2Ont . x s l t ”
11 loweringSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

ont2photoMetadata . x s l t ”>
12 <xsd : complexType>
13 <sequence>
14 <element name= ” photoID ” type= ” s t r i n g ”></element>
15 <element name= ” l o c a t i o n ” minOccurs= ” 1 ” maxOccurs= ” 1 ”>
16 <complexType>
17 <a t t r i b u t e name= ” l a t i t u d e ” type= ” double ”></ a t t r i b u t e >
18 <a t t r i b u t e name= ” long i t ude ” type= ” double ”></ a t t r i b u t e >
19 </complexType>
20 </element>
21 <element name= ” d e t a i l s ” type= ” s t r i n g ”></element>
22 </sequence>
23 </xsd : complexType>
24 </ type>
25 <type name= ” PhotoMetadataList ”
26 modelReference= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / photoSharing . owl#

PhotoMetadata ”
27 l i f t ingSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

photoMetadata2Ont . x s l t ”
28 loweringSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s /

mapping / ont2photoMetadata . x s l t ”>
29 <element name= ” metadataEl t ” type= ” tns : PhotoMetadata ” > </element>
30 </ type>
31 <type name= ” PhotoF i le ”
32 modelReference= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / photoSharing . owl#

PhotoMetadata ”
33 l i f t ingSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

photoMetadata2Ont . x s l t ”
34 loweringSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

ont2photoMetadata . x s l t ”>
35 <xsd : complexType>
36 <sequence>
37 <element name= ” photoID ” type= ” s t r i n g ”></element>
38 <element name= ” F i l e ” type= ” hexBinary ”></element>
39 </sequence>
40 </xsd : complexType>
41 </ type>
42 <type name= ” PhotoComment ”
43 modelReference= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / photoSharing . owl#

PhotoComment ”
44 l i f t ingSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

photoMetadata2Ont . x s l t ”
45 loweringSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

ont2photoMetadata . x s l t ”>
46 <xsd : complexType>
47 <sequence>
48 <element name= ” photoID ” type= ” s t r i n g ”></element>
49 <element name= ” comment ” type= ” s t r i n g ”></element>
50 </sequence>
51 </xsd : complexType>

CONNECT 231167 101/108



52 </ type>
53 <type name= ” PhotoIDTemp ”
54 modelReference= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / photoSharing . owl#

PhotoMetadata ”
55 l i f t ingSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

photoIDTemplate2Ont . x s l t ”
56 loweringSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

ont2photoIDTemplate . x s l t ”>
57 <xsd : element name= ” photoID ” type= ” s t r i n g ”></element>
58 </ type>
59 <type>
60 <template name= ” PhotoDetailsTemp ”
61 modelReference= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / photoSharing . owl#

PhotoMetadata ”
62 l i f t ingSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

PhotoDetai lsTemplate2Ont . x s l t ”
63 loweringSchemaMapping= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / a p p l i c a t i o n s / mapping /

ont2PhotoDetai lsTemplate . x s l t ”>
64 <element name= ” d e t a i l s ” type= ” s t r i n g ”></element>
65 </ type>
66 </ types>
67
68 <p r i m i t i v e s>
69 <SMPrimit ives>
70 <w r i t e name= ” wri tePhotoMetadata ” b ind ing= ” tns : LimeOutPhotoMetadata ”>
71 <sdata name= ” SPhotoMetadata ” type= ” tns : PhotoMetadata ” />
72 </ w r i te>
73 <w r i t e name= ” wr i t ePho toF i l e ” b ind ing= ” tns : LimeOutPhotoFi le ”>
74 <sdata name= ” SPhotoFi le ” type= ” tns : PhotoF i le ” />
75 </ w r i te>
76 <read name= ” readPhotoComment1 ” b ind ing= ” tns : LimeRdPhotoComment1 ”>
77 <template name= ” PhotoIDTemplate ” type= ” tns : PhotoIDTemp ” />
78 <sdata name= ” PhotoF i le ” />
79 </read>
80 <read name= ” readPhotoComment2 ” b ind ing= ” tns : LimeInPhotoComment2 ”>
81 <template name= ” PhotoIDTemplate ” type= ” tns : PhotoIDTemp ” />
82 <sdata name= ” PhotoF i le ” />
83 </read>
84 <w r i t e name= ” writePhotoComment ” b ind ing= ” tns : LimeOutPhotoComment ”>
85 <sdata name= ” SPhotoComment ” type= ” tns : PhotoComment ” />
86 </ w r i te>
87 <read name= ” readPhotoMetadata ” b ind ing= ” tns : LimeRdgPhotoMetadata ”>
88 <template name= ” PhotoDetai lsTemplate ” type= ” tns : PhotoDetailsTemp ” />
89 <sdata name= ” SPhotoMetadataList ” type= ” tns : PhotoMetadataList ” />
90 </read>
91 </SMPrimit ives>
92 </ p r i m i t i v e s>
93 <bindings>
94 <b ind ing name= ” LimeOutPhotoMetadata ”>
95 <data> <l ime : data use= ” encoded ” /> </data>
96 <p r i m i t i v e> <l ime : ac t i on use= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / middleware / l ime . owl

#out ” />
97 </ p r i m i t i v e>
98 </ b ind ing>
99 <b ind ing name= ” LimeOutPhotoFi le ”>

100 <data> <l ime : data use= ” encoded ” /> </data>
101 <p r i m i t i v e> <l ime : ac t i on use= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / middleware / l ime . owl

#out ” />
102 </ p r i m i t i v e>
103 </ b ind ing>
104 <b ind ing name= ” LimeRdPhotoComment1 ”>
105 <data> <l ime : data use= ” encoded ” /> </data>
106 <p r i m i t i v e> <l ime : ac t i on use= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / middleware / l ime . owl

# rd ” />
107 </ p r i m i t i v e>
108 </ b ind ing>
109 <b ind ing name= ” LimeInPhotoComment2 ”>
110 <data> <l ime : data use= ” encoded ” /> </data>
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111 <p r i m i t i v e> <l ime : ac t i on use= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / middleware / l ime . owl
# i n ” />

112 </ p r i m i t i v e>
113 </ b ind ing>
114 <b ind ing name= ” LimeOutPhotoComment ”>
115 <data> <l ime : t up l e use= ” encoded ” /> </data>
116 <p r i m i t i v e> <l ime : ac t i on use= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / middleware / l ime . owl

#out ” />
117 </ p r i m i t i v e>
118 </ b ind ing>
119 <b ind ing name= ” LimeRdgPhotoMetadata ”>
120 <data> <l ime : data use= ” encoded ” /> </data>
121 <p r i m i t i v e> <l ime : ac t i on use= ” h t t p : / / www. connect−f o reve r . eu / on to log ies / middleware / l ime . owl

#rdg ” />
122 </ p r i m i t i v e>
123 </ b ind ing>
124 </ rb ind ings>
125 </xDL>

8.2 BPEL Behavior of the Photo Sharing Affordances

1 <bpel : i f name= ” I f ”>
2 <bpel : f l ow name= ” Flow ”>
3 <bpel : sequence name= ” Sequence ”>
4 <e x t e n s i o n A c t i v i t y>
5 <xd l : w r i t e name= ” wri tePhotoMetadata ”>
6 <data name= ” PhotoMetadata ”> photoMetadata </data>
7 </ xd l : wr i te>
8 </ e x t e n s i o n A c t i v i t y>
9 <e x t e n s i o n A c t i v i t y>

10 <xd l : w r i t e name= ” wr i t ePho toF i l e ”>
11 <data name= ” PhotoF i le ”> pho toF i l e </data>
12 </ xd l : wr i te>
13 </ e x t e n s i o n A c t i v i t y>
14 <bpel : while name= ” While1 ”>
15 <bpel : f l ow name= ” Flow1 ”>
16 <e x t e n s i o n A c t i v i t y>
17 <xd l : read name= ” readPhotoComment1 ”>
18 <template name= ” PhotoIDTemp ”> photoID </ template>
19 <data name= ” PhotoF i le ”> photoComment </data>
20 </ xd l : read>
21 </ e x t e n s i o n A c t i v i t y>
22 <bpel : sequence name= ” Sequence ”>
23 <e x t e n s i o n A c t i v i t y>
24 <xd l : read name= ” readPhotoComment2 ”>
25 <template name= ” PhotoIDTemp ”> photoID </ template>
26 <data name= ” PhotoF i le ”> photoComment </data>
27 </ xd l : read>
28 </ e x t e n s i o n A c t i v i t y>
29 <e x t e n s i o n A c t i v i t y>
30 <xd l : w r i t e name= ” writePhotoComment ”>
31 <data name= ” PhotoComment ”> comment </data>
32 </ xd l : wr i te>
33 </ e x t e n s i o n A c t i v i t y>
34 </ bpel : sequence>
35 </ bpel : f low>
36 </ bpel : while>
37 </ bpel : sequence>
38 <bpel : sequence name= ” Sequence1 ”>
39 <e x t e n s i o n A c t i v i t y>
40 <xd l : read name= ” readPhotoMetadata ”>
41 <template name= ” PhotoDetailsTemp ”> photoMetadata </ template>
42 <data name= ” PhotoMetadata ”> photoMetadataLis t </data>
43 </ xd l : read>
44 </ e x t e n s i o n A c t i v i t y>
45 <bpel : while name= ” While ”>
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46 <bpel : f l ow name= ” Flow2 ”>
47 <e x t e n s i o n A c t i v i t y>
48 <xd l : read name= ” readPhotoFi le ”>
49 <template name= ” PhotoIDTemp ”> photoID </ template>
50 <data name= ” PhotoF i le ”> pho toF i l e </data>
51 </ xd l : read>
52 </ e x t e n s i o n A c t i v i t y>
53 <e x t e n s i o n A c t i v i t y>
54 <xd l : read name= ” readPhotoComment1 ”>
55 <template name= ” PhotoIDTemp ”> photoID </ template>
56 <data name= ” PhotoF i le ”> photoComment </data>
57 </ xd l : read>
58 </ e x t e n s i o n A c t i v i t y>
59 <bpel : sequence name= ” Sequence ”>
60 <e x t e n s i o n A c t i v i t y>
61 <xd l : read name= ” readPhotoComment2 ”>
62 <template name= ” PhotoIDTemp ”> photoID </ template>
63 <data name= ” PhotoF i le ”> photoComment </data>
64 </ xd l : read>
65 </ e x t e n s i o n A c t i v i t y>
66 <e x t e n s i o n A c t i v i t y>
67 <xd l : w r i t e name= ” writePhotoComment ”>
68 <data name= ” PhotoComment ”> comment </data>
69 </ xd l : wr i te>
70 </ e x t e n s i o n A c t i v i t y>
71 </ bpel : sequence>
72 </ bpel : f low>
73 </ bpel : while>
74 </ bpel : sequence>
75 </ bpel : f low>
76 </ bpel : i f>
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