
HAL Id: hal-00684780
https://hal.inria.fr/hal-00684780

Submitted on 28 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Connecting your Mobile Shopping Cart to the
Internet-of-Things

Nicolas Petitprez, Romain Rouvoy, Laurence Duchien

To cite this version:
Nicolas Petitprez, Romain Rouvoy, Laurence Duchien. Connecting your Mobile Shopping Cart to
the Internet-of-Things. 12th International Conference on Distributed Applications and Interoperable
Systems (DAIS), Jun 2012, Stockholm, Sweden. pp.236-243, �10.1007/978-3-642-30823-9_21�. �hal-
00684780�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49907171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00684780
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Connecting your Mobile Shopping Cart to the

Internet-of-Things

Nicolas Petitprez, Romain Rouvoy, and Laurence Duchien

Inria Lille – Nord Europe,

LIFL - CNRS UMR 8022,

University Lille 1, France

firstname.lastname@inria.fr

Abstract. Online shopping has reached an unforeseen success during the last

decade thanks to the explosion of the Internet and the development of dedicated

websites. Nonetheless, the wide diversity of e-commerce websites does not re-

ally foster the sales, but rather leaves the customer in the middle of dense jungle.

In particular, finding the best offer for a specific product might require to spend

hours browsing the Internet without being sure of finding the best deal in the

end. While some websites are providing comparators to help the customer in

finding the best offer meeting her/his requirements, the objectivity of these web-

sites remains questionable, the comparison criteria are statically defined, while

the nature of products they support is restricted to specific categories (e.g., elec-

tronic devices). In this paper, we introduce MACCHIATO as a user-centered plat-

form leveraging online shopping. MACCHIATO implements the principles of the

Internet-of-Things by adopting the REST architectural style and semantic web

standards to navigate product databases exposed on the Internet. By doing so,

customers keep the control of their shopping process by selecting the stores and

comparing the offers according to their own preferences.

1 Introduction

With the explosion of the Internet and the increasing number of e-commerce sites, on-

line shopping has reached an unforeseen success. This domain is raising a yearly rev-

enue of several billions and involves major companies like Amazon or eBay. While

online shopping was initially dedicated to high-tech products, one can observe that

nowadays e-commerce websites are selling a variety of products ranging from food, to

clothes, to spare parts, and even to cars. Nonetheless, the wide diversity of e-commerce

websites does not really contribute to foster the sales, but rather tend to leave the cus-

tomer in the middle of dense jungle. In particular, finding the best offer for a specific

product might require to spend hours browsing the Internet without being sure of find-

ing the best deal in the end. While some websites provide specialized comparators to

help the customer in finding the best offer meeting her/his requirements, the objectivity

of these websites remains questionable, the comparison criteria are statically defined,

while the nature of products they support is restricted to specific categories.

In this paper, we therefore introduce MACCHIATO as a user-centered platform lever-

aging online shopping. MACCHIATO integrates the principles of the Internet-of-Things

firstname.lastname@inria.fr


by adopting the resource-oriented architectural style and semantic web standards to

navigate product databases exposed on the Internet. By doing so, customers keep the

control of their shopping process by selecting the stores and comparing the offers ac-

cording to their own preferences.

The remainder of this paper is organized as follows. Section 2 introduces the chal-

lenges addressed by this paper, while Section 3 describes our contribution in terms of

distributed infrastructure. Section 4 compares this contribution to the state-of-the-art,

before concluding in Section 5

2 Motivations

The distribution of more and more powerful mobile devices and the emergence of the

Internet-of-Things (IoT) raisewhich is representati a growing interest for the retail in-

dustry, which has to deal with a new generation of customers. Theses customers are

characterized by a clear acquaintance to new technologies (Internet, smartphones, etc.)

and a capacity to seamlessly switch between various sources and canals of distribu-

tion. In particular, shopping malls are more and more facing the competition of online

stores since consumers can easily compare in-store product offers with online ones.

Considering products as things that are exposed on the Internet is a raising concern for

the retail industry, and vendors are more and more investing to properly advertise their

products on the Internet. For the time being, this investment takes the form of product

comparators that are proposed to customers by the chains in order to promote their of-

fers. However, such applications are clearly not objective and cannot guarantee the best

possible offer to the consumer. Furthermore, we believe that such an IoT can provide

new categories of applications to better support the consumer in her/his shopping activ-

ities. Before detailing the challenges we identified in Section 2.2, we therefore describe

a short scenario to illustrate a new generation of shopping system connected to the IoT

in Section 2.1.

2.1 Scenario: Towards a New Generation of Shopping System

This section introduces a scenario, which is the representation of the expected usages

of the shopping system. In this scenario, Nathalie uses her tablet-PC to browse recipes

that are published on the website cooking.com. Once she made her choice, Nathalie

wants to order all the ingredients that are needed to prepare the selected recipe. Nathalie

therefore pastes the recipe URL within the MACCHIATO application and specifies the

expected number of guests. MACCHIATO analyzes the content of the recipe and extracts

the list of ingredients. Then, MACCHIATO computes the correct quantities according to

the number of guests mentioned by Nathalie. In parallel, MACCHIATO queries i) an

online folksonomy with the list of ingredients in order to infer equivalent terms, and

ii) a directory service to identify the closest stores according to the current position

of Nathalie. Then, MACCHIATO interrogates the surrounding stores with the enriched

list of ingredients in order to retrieve a consolidated list of relevant products for her.

MACCHIATO guides Nathalie in the process of selecting a specific product for each of

the ingredients she needs.



Meanwhile, Nathalie’s husband runs out of coffee pods, and before throwing the

pods’ bag into the trash, he scans the barcode as a reminder for buying new ones. This

product immediately appears on the shopping cart that Nathalie is currently updating

for the purpose of her recipe. The coffee pods are therefore seamlessly included in the

comparison of offers triggered by MACCHIATO on behalf of Nathalie.

All the selected products are therefore grouped in the shopping cart of the family,

which is then submitted by MACCHIATO to each store in order compute offers for the

shopping cart. Nathalie therefore gets the opportunity to compare different offers and

she finally decide to order all the products from the closest drive-in store. The product

order, including the delivery preferences, is therefore automatically placed with the

drive-in store by MACCHIATO. Nathalie is informed by MACCHIATO when and where

she can pick up her products.

2.2 Challenges

Based on the above scenario description, we elaborate on the key challenges raised by

such a system. In particular, we differentiate business challenges from more technical

challenges.

Interoperability is a fundamental challenge to publish legacy systems on the Inter-

net. Actually, information systems in e-commerce are compartmentalized, and it

remains difficult to break the boundaries between heterogeneous sites in order to

expose the products in a uniform way. Being able to integrate product offers from

heterogeneous sources therefore requires to provide a versatile model for reasoning

on products and matching consumer preferences.

Semantics is another challenge that a new generation of e-commerce platforms should

exhibit. Beyond interoperability, it is also critical for items exposed by vendors to

include enriched data that can be automatically processed by client applications.

Leveraging semantics would therefore enable the development of smart services

that can process and adapt the content available on Internet in order to bring it to

the consumer.

Scalability is a critical challenge in our context since consumer traffic is naturally sub-

ject to strong variations. While some of these variations are predictable, like sales

periods, some others are related to unexpected events, and therefore cannot be an-

ticipated. The MACCHIATO system should therefore be able to support traffic peaks

and to keep serving consumer requests with a reasonable quality of service. In par-

ticular, the MACCHIATO system should scale with regards to the number of concur-

rent consumers, the number of requests they emit, and the volume of data published

by the stores.

3 Exposing Products as a Resource-Oriented Architecture

In MACCHIATO, products are considered as things (according to the IoT terminology)

that are made available on the Internet. We therefore adopted a Resource-Oriented Ar-

chitecture (ROA) to design a system that meets the challenges we introduced in Sec-

tion 2.2, namely interoperability, semantics and scalability.



3.1 Architecture Overview

The MACCHIATO system processes data collected from heterogeneous vendors. For ex-

ample, many stores expose their product catalog, the consumer must therefore be able

to query and understand the data that comes from these different sources. While ROA

styles, like Representational State Transfer (REST) [6], support standard representa-

tions for a given resource (e.g., HTML, XML, JSON), we believe that IoT architectures

should encourage the wide adoption of semantically-rich representations. By enriching

resource representations with semantic descriptions, the client can benefit from typed

information in order to seamlessly perform data alignments and conversions (e.g., au-

tomatically converting prices from dollars to euros). We therefore choose to use the

W3C semantic representation standard Resource Description Framework (RDF) [15]

to expose semantically rich product representations. For example, this specification is

already used by ProductDB [9] to expose the representations of 20,000 products. In ad-

dition to that, to publish and share e-commmerce resources in RDF, we need to agree to

a common vocabulary. We therefore decided to reuse GoodRelations [7], a standard on-

tology for e-commerce, which is already adopted by companies such as Google, Yahoo!,

BestBuy, or Sears. This vocabulary is described according to OWL recommendation [3]

and it contains all the terms and concepts required to describe products and offers. Fi-

nally, to process the product representations, we use the SPARQL language [12], which

is dedicated to query and navigate RDF documents.

While SPARQL queries can be communicated through the network using the SPARQL

protocol [4], this solution tends to introduce performance bottlenecks and requires to in-

vest in powerful server-side infrastructure to tolerate the request load. In MACCHIATO,

we rather encourage to store SPARQL queries within the server and to expose these

queries as REST resources, which can be can be accessed by client applications. This

solution reduces the volume of data sent by applications to the server, avoids the execu-

tion of malicious queries and better tolerate request peaks by applying server-side opti-

mization to the SPARQL queries. In addition to that, standard web intermediaries (e.g.,

cache, proxy) can be applied to the requests exchanged on the network [13]. For exam-

ple, any client application can request via HTTP a specific product to be retrieved as

a semantically rich representation (e.g., text/turtle, application/rdf+xml,

text/rdf+n3). Such an HTTP request can easily be processed by web intermediaries

before being delivered to the server-side infrastructure. If a semantic representation is

requested, the associated SPARQL query is executed by the server to build an RDF

graph describing the query result, and then serialize it according to the requested repre-

sentation.

In MACCHIATO, the integration of ontologies can be achieved in two ways. First,

legacy systems are supported by the deployment of specific gateways that reflect the

product database as a semantically rich model. Second, using web frameworks, such

a Forgeos1, new generations of online stores can automatically expose their data as

semantically rich REST resources.

1 Forgeos: http://www.forgeos.com



3.2 Empirical validation

This section reports on different experiments we conducted in order to assess the server-

side architecture we developed. The server infrastructure uses the FRASCATI [14] plat-

form dedicated to the development of SCA applications. For the RDF resource manipu-

lation, we use Apache Jena [10] and the SPARQL implementation ARQ. The resulting

platform is hosted on single Xeon W3520 server with 16GB of memory running Ubuntu

11.10 amd64 with Java 1.6 and one instance of Apache Tomcat 7.0.

To evaluate the scalability of a REST/RDF service, we deployed an e-commerce

service endpoint. This service exposes 76, 915 product details, price and delivery in-

formations. This represents 75MB of RDF data in W3C N3 serialization. We use a

representative scenario that simulates a consumer searching for 5 types of products. For

each search result, the consumer queries for 5 products details. So, each consumer ini-

tiates 30 requests to retrieve search and product details. Consumers are simulated by

the Gatling stress tool 2. We increase gradually the load up to 450 concurrent customers

on the server. In the initial configuration, we naively deploy this service and we ob-

serve, in Figure 1, that the response time is linearly bound to the number of consumers.

Furthermore, the server fails when the load reaches about 500 concurrent customers.

17:14:00 17:14:30 17:15:00 17:15:3017:13:50 17:14:10 17:14:20 17:14:40 17:14:50 17:15:10 17:15:20
0k

5k

10k

15k

Re
sp

on
se

 T
im

e

0

200

400

600

Active Sessions

Response Time (success) All Sessions

Fig. 1. Stress test of a MACCHIATO server.

In the second configuration, we include HTTP caching technology in the Tomcat

server with ehcache 3 to demonstrate the benefits of web intermediaries. This choice

is motivated by the observation that most of the requests (between 80 and 95% de-

pending on vendors) received by e-commerce websites are read-only requests. Based

on this statement, the deployment of a cache intermediary can be used to store the re-

sults of SPARQL queries and avoid to systematically trigger SPARQL computations,

which would produce the same result. Products that are frequently requested are auto-

matically stored in the cache and therefore quickly delivered to the customers. One can

observe in Figure 2 that the response time goes slightly up when caching results, and

then remains constant regardless of the number of customers. By adopting this organi-

zation, the server can therefore handle up to 7,000 requests per seconds, which makes

2 Gatling Stress tool: http://gatling-tool.org
3 Ehcache: http://ehcache.org



the adoption of RDF standards a sounding choice for implementing an IoT for the retail

industry.

17:27:30 17:28:00 17:28:30 17:29:0017:27:15 17:27:45 17:28:15 17:28:45
0

200

400

600

Re
sp

on
se

 T
im

e

0

200

400

600

Active Sessions

Response Time (success) All Sessions

Fig. 2. Stress test of a MACCHIATO server with a caching intermediary.

3.3 Discussion & perspectives

With regards to the challenges we introduced in Section 2.2, we address the interoper-

ability and semantics issues by adopting i) a REST architectural style to accommodate

the client diversity and ii) RDF ontologies to share common vocabularies for expos-

ing products, respectively. The scalability issue is tackled by the deployment of web

intermediaries that can be used to reduce the resource-consuming computations and to

improve user response time.

In the current solution we propose, most of the REST resource representations are

the result of the execution of a SPARQL query on a remote RDF model. However, these

queries are statically defined in the resource implementations. In order to accommodate

the flexibility of the system, we are interested in supporting the dynamic deployment

of SPARQL queries as REST resources. A mobile application could therefore post a

SPARQL query to a server, which would host the query on behalf of all the client

applications. The server would reply with the URL of the resource created with the

attached query. The client could then query this resource to retrieve the results of the

execution, or future updates. By adopting this approach, consumers can let long-running

queries executing on server, and collect the results whenever needed. They could easily

share these resources with other consumers and be notified of result evolutions, like the

evolution of item prices.

4 Related work

Price engines. Many mobile applications already allow consumers to compare prices of

products. LiveCompare [5] is an application to compare local prices of different prod-

ucts. It uses a combination of barcode decoding and GPS/GSM location to automate the

detection of the product and the store location. However, the application only collects

the pictures of the product tags. This means that the application mostly reports pictures



to the user and is not able to provide advanced product comparisons. Furthermore, the

proposed solution is based on contributions from users, which can results in report-

ing deprecated prices to users. The solution we promote is rather based on up-to-date

product catalogs exposed by vendors. The exploitation of semantically rich product de-

scriptions provides the foundations for supporting advanced product comparison not

only based on the price of product, but also other properties, such as the nutrition facts

labels or the carbon footprint.

Another approach described in the literature focuses on the decision assistance for

the purchase process. Will I Like It [8] therefore analyzes consumer reviews to extract

the most discriminating features of a given product and respective consumer opinions.

This approach helps the consumer in choosing a particular product by exposing its

discriminating factors. However, this approach mostly focus on consumer reviews and

does not help in choosing the offer that better matches the consumer preferences, such

as the delivery method, the location of the store, etc.

Finally, the UBIRA platform [1] tries to unify e-commerce and the brick-and-mortar

stores. The proposed application allows the customer to switch from online to offline

stores at each step of her/his shopping process. This approach helps the customer in

locating the best offer from various online and offline sources, but does not help to

choose between different products.

Interoperability. Interoperability is a critical challenge in the domain of distributed

systems. Several solutions have already investigated the exploitation of ontologies to

support interoperability. In particular, the ability to use RESTful services for interop-

erability of distributed systems has already been explored [2]. This solution proposes

to create a SPARQL endpoint that query execution along multiple services. Performing

the query division is achieved by a ontology mapping implemented in the endpoint.

However, this solution requires an a priori knowledge on the ontologies used by differ-

ent services, which does not make it a scalable and customizable solution. Furthermore,

it does not offer any solution to improve the response time, which is a key criteria in

such responsive systems.

CONNECT [11] proposes to use ontologies to support the dynamic interoperability

of systems based on heterogeneous protocols. This approach infers ontology represen-

tatives message types of protocol in order to generate the connectors between these

protocols. This allows for the discovery and adaptation of protocols at runtime. How-

ever, this is a very low-level approach that offers no solution to the alignment data.

While our solution focus on application-level ontologies for e-commerce, we would

like to investigate the solutions proposed by CONNECT to mine vendors which are not

using the GoodRelations ontology and seamlessly connect them to the MACCHIATO

infrastructure.

5 Conclusion

The emergence of mobile devices is deeply impacting consumption usages in the e-

commerce domain. In particular, one can observe that the consumer can use more and

more sources to make her/his choice. In order to help consumers to buy the products that



fit their preferences, we need a new generation of e-commerce platforms, which have

to tackle a variety of technical and functional challenges. To address these challenges,

this paper reports on the design and the implementation of the MACCHIATO platform.

To expose products, we propose a Resource-Oriented Architecture that exposes seman-

tically rich representations of product catalogs.

In the future, we plan to work on more dynamic resource-oriented architectures.

This service could allow user to deploy new resources from SPARQL queries. This will

allow consumers to be alerted from complex resource updates, and to share information

between consumers. We also plan to work on client application adaptation by exploring

end-user programming technics in order to easily customize actor choregraphies.

References

1. Udana Bandara and James Chen. Ubira: a mobile platform for an integrated online/of-

fline shopping experience. In James A Landay, Yuanchun Shi, Donald J Patterson, Yvonne

Rogers, and Xing Xie, editors, Ubicomp, pages 547–548. ACM, 2011.

2. Robert Battle. Bridging the semantic Web and Web 2.0 with representational state transfer

(REST). , Services and Agents on the World Wide Web, 2008.

3. Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuinness,

Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology Language Reference,

2004. http://www.w3.org/TR/owl-ref.

4. Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL Protocol for RDF, 2008.

http://www.w3.org/TR/rdf--sparql--protocol.

5. Linda Deng and LP Cox. Livecompare: grocery bargain hunting through participatory sens-

ing. Proceedings of the 10th workshop on Mobile, 2009.

6. Roy T Fielding. Architectural Styles and the Design of Network-based Software Architec-

tures. PhD thesis, University of California, Irvine, 2000.

7. Martin Hepp. Goodrelations: An ontology for describing products and services offers on the

web. Knowledge Engineering: Practice and Patterns, pages 329–346, 2008.

8. Silviu Homoceanu, Michael Loster, Christoph Lofi, and Wolf-Tilo Balke. Will I Like It?

Providing Product Overviews Based on Opinion Excerpts. 2011 IEEE 13th Conference on

Commerce and Enterprise Computing, pages 26–33, September 2011.

9. Ian Davis. ProductDB, 2012. http://productdb.org.

10. B McBride. Jena: a semantic Web toolkit. Internet Computing, IEEE, 6(6):55–59, 2002.

11. Vatsala Nundloll and Paul Grace. The role of ontologies in enabling dynamic interoperabil-

ity. Distributed Applications and Interoperable, 2011.

12. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF (Working

Draft). Technical report, W3C, 2007.

13. Ulrich Scholten, Robin Fischer, and Christian Zirpins. Perspectives for Web Service Inter-

mediaries: How Influence on Quality Makes the Difference. In EC-Web, volume 5692 of

LNCS, pages 145–156. Springer, September 2009.

14. Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Valerio Schiavoni, and

Jean-Bernard Stefani. Reconfigurable SCA Applications with the FraSCAti Platform. In

IEEE Int. Conf. on Services Computing, 2009.

15. W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax, 2004.


	Connecting your Mobile Shopping Cart to the Internet-of-Things

