125 research outputs found

    Dogs with a Gastric Fistula: A Simple but Advanced Model for Simultaneous Recording of Secretion, Motility, Blood Flow and Output of Hormones

    Get PDF
    The conscious dog with a gastric cannula and permanent catheters in the portal vein and gastric arteries can be used for chronic simultaneous investigations of gastrointestinal functions. We have used the model for the recording of gastric secretion, blood flow, output of hormones and antroduodenal motility. The procedures for surgery, measurements, maintenance and pitfalls of the model are described

    Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    Get PDF
    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 μm etc. After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non-return to zero (NRZ) data signals over a 30 m 7-cell HC-PBGF using the offset mode launching method. In another experiment, a short piece of 19-cell HC-PBGF was used to transmit two 20 Gbit/s NRZ channels using a spatial light modulator for precise mode excitation. Bit-error-ratio (BER) performances below the forward-error-correction (FEC) threshold limit (3.3×10-3) are confirmed for both data channels when they propagate simultaneously. © 2013 IEEE

    McGenus: A Monte Carlo algorithm to predict RNA secondary structures with pseudoknots

    Get PDF
    We present McGenus, an algorithm to predict RNA secondary structures with pseudoknots. The method is based on a classification of RNA structures according to their topological genus. McGenus can treat sequences of up to 1000 bases and performs an advanced stochastic search of their minimum free energy structure allowing for non trivial pseudoknot topologies. Specifically, McGenus employs a multiple Markov chain scheme for minimizing a general scoring function which includes not only free energy contributions for pair stacking, loop penalties, etc. but also a phenomenological penalty for the genus of the pairing graph. The good performance of the stochastic search strategy was successfully validated against TT2NE which uses the same free energy parametrization and performs exhaustive or partially exhaustive structure search, albeit for much shorter sequences (up to 200 bases). Next, the method was applied to other RNA sets, including an extensive tmRNA database, yielding results that are competitive with existing algorithms. Finally, it is shown that McGenus highlights possible limitations in the free energy scoring function. The algorithm is available as a web-server at http://ipht.cea.fr/rna/mcgenus.php .Comment: 6 pages, 1 figur

    TT2NE: A novel algorithm to predict RNA secondary structures with pseudoknots

    Get PDF
    We present TT2NE, a new algorithm to predict RNA secondary structures with pseudoknots. The method is based on a classification of RNA structures according to their topological genus. TT2NE guarantees to find the minimum free energy structure irrespectively of pseudoknot topology. This unique proficiency is obtained at the expense of the maximum length of sequence that can be treated but comparison with state-of-the-art algorithms shows that TT2NE is a very powerful tool within its limits. Analysis of TT2NE's wrong predictions sheds light on the need to study how sterical constraints limit the range of pseudoknotted structures that can be formed from a given sequence. An implementation of TT2NE on a public server can be found at http://ipht.cea.fr/rna/tt2ne.php

    Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design.</p> <p>Results</p> <p>RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%.</p> <p>Conclusion</p> <p>To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (<it>ViennaPackage </it>– 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU.</p

    Identification of functional, endogenous programmed −1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae

    Get PDF
    In viruses, programmed −1 ribosomal frameshifting (−1 PRF) signals direct the translation of alternative proteins from a single mRNA. Given that many basic regulatory mechanisms were first discovered in viral systems, the current study endeavored to: (i) identify −1 PRF signals in genomic databases, (ii) apply the protocol to the yeast genome and (iii) test selected candidates at the bench. Computational analyses revealed the presence of 10 340 consensus −1 PRF signals in the yeast genome. Of the 6353 yeast ORFs, 1275 contain at least one strong and statistically significant −1 PRF signal. Eight out of nine selected sequences promoted efficient levels of PRF in vivo. These findings provide a robust platform for high throughput computational and laboratory studies and demonstrate that functional −1 PRF signals are widespread in the genome of Saccharomyces cerevisiae. The data generated by this study have been deposited into a publicly available database called the PRFdb. The presence of stable mRNA pseudoknot structures in these −1 PRF signals, and the observation that the predicted outcomes of nearly all of these genomic frameshift signals would direct ribosomes to premature termination codons, suggest two possible mRNA destabilization pathways through which −1 PRF signals could post-transcriptionally regulate mRNA abundance

    Anti-inflammatory effect of rosiglitazone is not reflected in expression of NFκB-related genes in peripheral blood mononuclear cells of patients with type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rosiglitazone not only improves insulin-sensitivity, but also exerts anti-inflammatory effects. We have now examined in type 2 diabetic patients if these effects are reflected by changes in mRNA expression in peripheral blood mononuclear cells (PBMCs) to see if these cells can be used to study these anti-inflammatory effects at the molecular level <it>in vivo</it>.</p> <p>Method</p> <p>Eleven obese type 2 diabetic patients received rosiglitazone (2 × 4 mg/d) for 8 weeks. Fasting blood samples were obtained before and after treatment. Ten obese control subjects served as reference group. The expression of NFκB-related genes and PPARγ target genes in PBMCs, plasma TNFα, IL6, MCP1 and hsCRP concentrations were measured. In addition, blood samples were obtained after a hyperinsulinemic-euglycemic clamp.</p> <p>Results</p> <p>Rosiglitazone reduced plasma MCP1 and hsCRP concentrations in diabetic patients (-9.5 ± 5.3 pg/mL, <it>p </it> = 0.043 and -1.1 ± 0.3 mg/L <it>p </it> = 0.003), respectively). For hsCRP, the concentration became comparable with the non-diabetic reference group. However, of the 84 NFκB-related genes that were measured in PBMCs from type 2 diabetic subjects, only RELA, SLC20A1, INFγ and IL1R1 changed significantly (<it>p </it> < 0.05). In addition, PPARγ and its target genes (CD36 and LPL) did not change. During the clamp, insulin reduced plasma MCP1 concentration in the diabetic and reference groups (-9.1 ± 1.8%, <it>p </it> = 0.001 and -11.1 ± 4.1%, <it>p </it> = 0.023, respectively) and increased IL6 concentration in the reference group only (23.5 ± 9.0%, <it>p </it> = 0.028).</p> <p>Conclusion</p> <p>In type 2 diabetic patients, the anti-inflammatory effect of rosiglitazone is not reflected by changes in NFκB and PPARγ target genes in PBMCs <it>in vivo</it>. Furthermore, our results do not support that high insulin concentrations contribute to the pro-inflammatory profile in type 2 diabetic patients.</p

    Evidence that the Human Pathogenic Fungus Cryptococcus neoformans var. grubii May Have Evolved in Africa

    Get PDF
    Most of the species of fungi that cause disease in mammals, including Cryptococcus neoformans var. grubii (serotype A), are exogenous and non-contagious. Cryptococcus neoformans var. grubii is associated worldwide with avian and arboreal habitats. This airborne, opportunistic pathogen is profoundly neurotropic and the leading cause of fungal meningitis. Patients with HIV/AIDS have been ravaged by cryptococcosis – an estimated one million new cases occur each year, and mortality approaches 50%. Using phylogenetic and population genetic analyses, we present evidence that C. neoformans var. grubii may have evolved from a diverse population in southern Africa. Our ecological studies support the hypothesis that a few of these strains acquired a new environmental reservoir, the excreta of feral pigeons (Columba livia), and were globally dispersed by the migration of birds and humans. This investigation also discovered a novel arboreal reservoir for highly diverse strains of C. neoformans var. grubii that are restricted to southern Africa, the mopane tree (Colophospermum mopane). This finding may have significant public health implications because these primal strains have optimal potential for evolution and because mopane trees contribute to the local economy as a source of timber, folkloric remedies and the edible mopane worm
    corecore