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Abstract: We demonstrate a novel polarization maintaining hollow-core
photonic bandgap fiber geometry that reduces the impact of surface modes
on fiber transmission. The cladding structure is modified with a row of
partially collapsed holes to strip away unwanted surface modes. A theoret-
ical investigation of the surface mode stripping is presented and compared
to the measured performance of four 7-cells core fibers that were drawn
with different collapse ratio of the defects. The varying pressure along the
defect row in the cladding during drawing introduces an ellipticity of the
core. This, combined with the presence of antiresonant features on the core
wall, makes the fibers birefringent, with excellent polarization maintaining
properties.

© 2014 Optical Society of America
OCIS codes: (060.2280) Fiber design and fabrication; (060.5295) Photonic crystal fibers;
(060.2420) Fibers, polarization-maintaining.
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1. Introduction

Hollow core photonic band gap (HC-PBG) fibers have been employed for high precision sen-
sors, e.g. fiber optic gyroscopes and gas spectroscopy [1, 2]. Even though they offer unique
properties, like very high optical depth [3] and low non-linearity, they also show some limita-
tions. One of the drawbacks of HC-PBG is the presence of surface modes (SMs), i.e. supported
modes which have a field distribution localized on the core wall. It has been shown that with
a careful design of the core-wall, and in particular of its thickness [4], anti-crossing events of
these modes with the fundamental mode (FM) can be placed outside the band-gap to increase
as much as possible the operative bandwidth of HC-PBG fibers. This principle has been used
in the past to obtain surface mode free HC-PBG fiber. In many applications though, as the ones
mentioned above, it is important for the fiber to be polarization maintaining. A well-known
technique to get a polarization maintaining HC-PBG fiber relies on the introduction of anti-
resonant features on the core wall [5]. These features set a constrain on the core wall design,
and they modify the location of surfaces modes within the bandgap. This complication makes
it unlikely to achieve surface modes free fibers solely through a specific core wall design in the
case of polarization maintaining fiber and it means that SMs will be present within the bandgap.
Surface roughness scattering, which is the main contributor to loss in HC-PBG fibers [6], fa-
cilitates the coupling between the fundamental mode and the surface modes. Therefore even in
spectral regions far from anti-crossing events light can scatter out of the fundamental mode into
surface modes along propagation. In many applications this issue limits the performance since it
affects the transmission stability over time [7]. The fiber is multi-mode because of the presence
of surface modes and geometrical deformation of the fiber due to thermal variations, vibrations
or bending induces transmission instabilities. In this work we show that it is possible through
the introduction of controlled defects in the cladding structure to strip away surface modes at
a given wavelength, hence reducing their effect on the transmission. Moreover the defects can
be exploited to enhance the fiber polarization holding. Indeed placing them along a row in the
cladding allows an elliptical core to be obtained. These improvements though come to the detri-
ment of bandwidth and loss. We have measured a low coupling between the polarization states
of the fiber characterized by an h-parameter as low as 5× 10−5m−1. This together with the
low loss (about 60dB/km at 1550nm) make this fiber design a candidate for many applications
where low loss, good polarization maintenance and transmission stability are needed.

2. Fibers geometry

The four 7-cell HC-PBG fibers in Fig.1 were fabricated using the stack and draw technique.
The fibers were drawn from the same preform. The capillaries that correspond to the cladding
defects have pressure control independent from the rest of the cladding, which allow to intro-
duce a pressure difference during drawing that was used to produce the cladding defects in a
controlled way.

In order to investigate and understand the resonant coupling between surface modes and
cladding defects we developed a model based on an idealized geometry. The starting point is
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Fig. 1. Top:Microscope images of the fibers considered. Bottom: Corresponding idealized
structures used in the modeling.

a standard realistic geometry for HC-PBG fibers [8]. The deformations we need to reproduce
in our model are the partially collapsed holes in the cladding and the ellipticity of the fiber.
In order to achieve that, the following assumptions were made. The glass area of the fiber is a
conserved quantity, the portion of the cladding without the defects is still a regular hexagonal
lattice, and there is no glass flow between apex and strut or between different unit cells. The
total glass area conservation is a requirement given by the manufacturing technique. The local
area conservation in each unit cell, strut and apex has been proven to be a good approach in
previous publications [9]. The weaker assumption is the one about the preserved regularity
in the cladding lattice since the microscope images indicate that this is not completely true,
especially for the outer cladding rings. If we define the collapse ratio α as the ratio between
the diameter of the hole in the defect and the unaltered average cladding hole diameter the four
fibers considered has the following collapse ratios αI = 60% αII = 55% αIII = 46% αIV = 37%.
The four fibers have the same pitch of 3.2µm, the same apex radius of curvature of 1.06 µm, the
same strut thickness of 180nm and the same core ellipticity with an aspect ratio of about 1.2.

A first set of simulations were done with only four rings (one defect per core side) for the
four geometries to illustrate how the cladding defect modes localize within the bandgap and
how they are affected by the different collapse ratios.

A further analysis were done with six and eight rings of holes (two and three defects per core
side, respectively) to investigate the effect of multiple cladding defects. This was done only for
the geometry that offers the best performance (Fiber III).

3. Surface mode stripping

The aim of the proposed method is to attenuate unwanted surface modes by resonantly coupling
with a high loss cladding defect mode. Ideally the attenuation of the surface mode does not
affect the fundamental core mode at a given wavelength (1550 nm in the current work). This
situation is depicted in Fig.2. The mode field distributions show that at a given wavelength, with
the introduction of cladding defects, is possible to have surface mode stripping. At a longer
wavelength couplings between the cladding defect mode and the fundamental modes occur.

Let us now focus on the simulations in Fig.3 regarding the four fibers that were drawn. The
different colors correspond to different kind of modes: blue dots correspond to modes that
localize on the cladding defects, green dots are surface modes and red dots are the fundamental
core guided modes. We can distinguish two different kinds of cladding defect modes. In fiber
I and II only ”apex”-like modes [10, 11] are present, they enter the bandgap from the long
wavelength edge and then shift towards shorter wavelength as the collapse ratio decreases,
moreover they show a dispersion similar to that of the surface modes. In fiber III and IV also
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Fig. 2. Sketch of the surface mode stripping. The green line represents an unwanted surface
mode, the red lines the two polarization of the fundamental mode and the blue line is the
cladding defect mode that can be used to attenuate the surface modes

”airy”-like [10, 11] modes enter the bandgap from the lower edge.
The fiber trasmission measurements obtained using a supercontinuum source through butt

coupling the FUT to a single mode fiber and recording with an OSA are also shown in Fig.3.
Comparing these measurements with the simulated mode trajectories we note there is a good
agreement for the behaviour of the fundamental mode, especially regarding the operational
bandwidth around 1550nm. We believe that the mismatch at longer wavelengths is due to the
fact that the simulation is limited to only four rings of holes (one defect per core side).

This analysis shows how the collapse ratio play an essential role and it allows to place the
cladding defect modes where needed across the bandgap.

The four rings geometry though does not capture the whole picture. To illustrate the effect of
multiple defects per core side we therefore performed simulations also for six and eight rings
cladding fibers. The geometry of Fiber III has been used for these simulations.

As it is possible to see in Fig.4 surface modes do not change with the number of rings con-
sidered, as expected, since the core wall geometry is unaltered. The band edge of the simulated
fibers approach the one predicted by the simulation for an infinite cladding structure as the
number of rings increase. We believe that this effect is due to the fact that with a small number
of rings the finite extent of the photonic crystal cladding reduces the number of cladding modes
and thereby increase the bandgap compared to what one would expect from an infinite crystal.

What is more relevant for this work is that the cladding defect modes split due to the estab-
lishment of supermodes, increasing the possibility of crossing between cladding defect modes
and surface modes. Because of the complexity of the dispersion figures we estimated the cou-
plings between all the defect modes and all the surface modes in order to clarify which crossings
are relevant. Since these modes have a considerable field amplitude at the glass/air interfaces
we considered scattering from glass surface roughness as a primary contribution to the cou-
plings. For this reason, similarly to what is typically done to estimate scattering loss for the
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Fig. 3. For the four fibers the simulations from the idealized model (upper part of each
quadrant) and the measured transmissions over 1 meter fiber (bottom part of each quadrant)
are compared. In the mode trajectory plots green dots represent surface modes, red dots the
fundamental modes, blue dots the cladding defect modes and dark grey the cladding modes

fundamental mode [6], we define the following overlap integral as coupling coefficient:

η =

∣∣∣∣∮glass/air interfaces
E∗1 ·E2 dl

∣∣∣∣2∫
(E1×H∗1) · ẑ dA

∫
(E2×H∗2) · ẑ dA

(1)

The simulations were performed in a quarter domain for all the four boundary conditions, there-
fore η was evaluated only between modes calculated with the same boundary conditions, since
otherwise it would automatically be zero for symmetry reasons. In Fig.4 the calculated coupling
coefficients are plotted. We notice that despite the high number of crossings that are occurring
only a few are relevant. Moreover since the dispersion curves of the cladding defect modes and
surface modes are so similar, tiny differences in their relative location can drastically change
the coupling between them, as it is evident comparing the six and eight rings cases. We also
expect that more couplings than the ones predicted by the numerical model are present in a real
fiber because of geometrical deformations along the fiber. A final consideration for this section
is that the occurrence of supermodes, in the case of multiple defects per core side, generate
more crossings between the cladding defect modes and the fundamental mode. This feature
might explain the complex transmission spectra measured in fiber III and IV (see Fig.3) for
wavelengths longer then 1.6µm.
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Fig. 4. The simulated mode trajectories for fiber III and the overlap integrals between sur-
face modes and cladding defect modes are plotted in the case of 4, 6 and 8 rings of holes,
respectively. Green dots represent surface modes, red dots the fundamental modes, blue
dots the cladding defect modes and black dots the cladding modes. The red dashed lines
represent the bandgap edges for the simulation in the case of an infinite photonic crystal

4. Characterization

In this section we present an experimental characterization of fiber III. As shown above the
control on the collapse ratio allows the cladding defect modes to be shifted to a given location
in the badgap. The surface mode stripping only occurs for a limited range of wavelengths, and it
depends on the cladding defect modes. Depending on the wavelengths of interest any of the four
fibers can be of interest. Fiber III offers the best performance at 1550nm in terms of operational
bandwidth and surface mode stripping.

4.1. Surface modes stripping

Tunable8laser

Infrared
camera

Small8core8fiber

FUT

Beam82

Beam81Razor
blade 1520888153088815408881550888156088815708888158088881590888160088816108888162088[nm]888

1529nm888

1547nm888

1550nm8881553nm888

1556nm888

1574nm888

1607nm888

Fig. 5. (left) Schematic of the measurement, (right) Obtained optical intensity profiles

Proving experimentally the existence of coupling between cladding defect modes and sur-
face modes as it was described so far is a challenging task. The main issues are the very lossy
nature of the modes we want to characterize and the poor coupling that we could achieve to
these modes. At 1550nm the simulated confinement losses for surface modes and fundamental
mode are about 10dB/km and 1dB/km respectively. Their loss is then expected to be dominated
by scattering losses [6]. On the other hand the confinement loss for cladding defect modes is
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several thousands dB/km. Coupling light exclusively to surface modes is almost impossible
with a gaussian input beam since it is inevitable to excite also some core modes, particularly
the fundamental one, that would dominate in the transmission. What has proven to be a reli-
able method is to couple light into one of the cladding defects and look at which wavelengths
coupling occurs, i.e. at which wavelengths light appears in the core area.

Fig. 5 shows a schematic of the measurement. We coupled the light of a tunable laser to a
small core single mode fiber with a mode field diameter of ∼ 3µm, that is about the size of the
fiber pitch. Through butt coupling to the FUT we aligned the output field to the central defect
on one of the core sides, in this way only cladding defect modes are excited. The output of
the FUT was imaged on a infrared camera using a x40 microscope objective, the beam was
spatially filtered with the use of a razor blade to exclude the residual light in the cladding defect
modes, in order to image only the light in the core surround. The output signal was very weak
and forced us to set the camera to maximum sensitivity and gain in order to collect the light
distibution. We believe that this due to the very poor coupling between the gaussian beam from
the small core fiber and the cladding defect modes.

Nevertheless we could locate three regions (see Fig.5) in which cladding defect modes
clearly couple to surface modes: around 1529nm, a broader coupling in the range 1547nm
÷1556nm and around 1574nm. Moreover, coupling to the fundamental mode was also de-
tected at 1607nm, accordingly to what was expected from the simulation and the transmission
measurement for fiber III in Fig.3. This is strong evidence that we are looking at the behaviour
of at least one of the cladding defect modes described in the previous section. Outside these re-
gions no light was detected. As expected from the numerical analysis we found the coupling to
occur only on small portions of the spectrum. The discrepancy between the calculated coupling
coefficients in Fig.4 and the experimental measurement in Fig.5 arise from the fact that the
idealized model can not reproduce exactly the relative position of surface modes and cladding
defect modes in the bandgap.

Another confirmation of the reduced amount of surface modes comes from the comparison
of the near field of fiber III with a fiber that has the same cladding geometry but without any
defect. Light from a tunable laser at 1550nm was coupled to a single mode fiber and the FUT
was butt coupled to it. The output was imaged with a x40 microscope objective to a infrared
camera. The camera used is a infrared Vidicon camera C2741 and the frames where collected
with a gamma correction of 0.675 so to enhance the low intensity regions. The fibers were
touched during detection to illustrate the interference between modes and thus the instabilities
given by the presence of surface modes. From the movies in Fig.6 one can notice how the
fiber without cladding defects (see Media 1) has more light in correspondence to the core wall
and moreover in time there is a clear transfer of optical power from the core area to the core
wall where surface modes are localized. This effect is highly reduced in the case of fiber III
(see Media 2). Some residual light in correspondence of the core wall is expected from the
fundamental mode field distribution.

4.2. Birefringence

We have designed the fiber with a 2-fold symmetric elliptical features on the core wall, that is
a well known technique to make the fiber birefringent [5].

Even though HC-PBG fibers have already been produced with elliptical core, either placing
the preform off-center in the furnace during drawing [12] or with a 4-cells core [13], it is the
first time to our knowledge that a pressure control of some of the cladding holes is used to
induce an ellipticity to the core.

A drawback of the introduction of the cladding defects is the increased loss of the fiber.
The fiber in Fig.6 without cladding defects has a minimum loss of ∼ 20dB/km. Fiber III has a
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Fig. 6. Single frame from movies of the near field vs time during fiber external perturbation
(touch) at 1550nm and microscope image of the fiber. Left: Fiber without cladding defects
(see Media 1) Right: Fiber III (see Media 2).
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Fig. 7. Left: Measured group modal birefringence with scanning wavelength method is
compared to the idealized model simulation, Right: Measured polarization holding param-
eter (h-parameter) in blue for fiber III and gray for a fiber with the elliptical features on the
core wall, but without the cladding defects

minimum loss of ∼ 60dB/km and an aspect ratio of the core of 1.2. The comparison with the
elliptical fiber proposed in [12], that has similar polarization properties, an aspect ratio of 1.4
and a minimum loss of ∼ 100dB/km, would suggest that the elliptical core is responsible to the
increased loss. Nevertheless a weak coupling between the fundamental mode and the cladding
defect modes can not be completely excluded.

The group modal birefringence (GMB) has been measured for fiber III by wavelength scan-
ning method (Fig. 7) for two different fiber lengths (1.3m for the short wavelengths and 19.4m
for the long wavelengths) to have a good resolution for the whole measurement range. Both po-
larizations of the fundamental mode were transmitted through the fiber and the interferogram
was recorded. From this the absolute group birefringence was calculated by the use of

|Bg(λ )|=
λ 2

∆λL
(2)

where Bg is the group modal birefringence, L is the fiber length and ∆λ the wavelength spac-
ing between two contiguous maxima on the interferogram. The sign is reconstructed from the
simulation, but it is arbitrary since it depends on the birefringence given by the effective index
difference. As described in [14] the group modal birefringence is highly affected by the core
asymmetries and small features in the core can greatly affect it. In Fig.7 two simulations of
our idealized model performed with slightly different core wall thickness are compared to the
experimental measurement, showing a fairly good agreement.
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GMB is not a good measure for how well the fiber maintains field polarization though. The
polarization crosstalk (C) is defined [15] as the logarithmic ratio of the power Px (Py) coupled
to the unexcited mode polarized along x (y) axis, with respect to the total transmitted power
Px+Py over a propagation length L, and it can be expressed in terms of the polarization holding
parameter h:

C = 10 log
(

Px

Px +Py

)
= 10 log

(
1− e−2hL

2

)
(3)

We estimated experimentally the h-parameter using a crossed polariser setup and the approxi-
mation [15]:

h' 2
L(ρx +ρy)

, ρx =
Px(L)
Py(L)

for Py(0) = 0, ρy =
Py(L)
Px(L)

for Px(0) = 0 (4)

where L is the length of the FUT and Px(l) , Py(l) the optical powers in the two principle axis
of the fiber at the given fiber length l.

Fig.7 shows the measured h-parameter for both fiber III and a fiber with the elliptical features
on the core wall, but without the cladding defects(see Fig.6). Both the measurements were
performed over a 50m FUT. The comparison shows that the new fiber design contribute to
achieve a flat profile with a value of about 5× 10−5 m−1 over a broader bandwidth around
1550nm. The minimum h-paramter for the fiber without cladding defect is located at 1520nm
at the short wavelength bandgap edge. However at operative wavelengths around 1550nm it is
about 15×10−5 m−1. In the case of solid core fibers polarization holding as low as 10−6 m−1

can be achieved. If in a given application a maximum of -20dB polarization crosstalk can be
tolerated, 67m of the hollow core fiber without cladding defect can be exploited, 200m in case
of Fiber III and about 10km for a solid core fiber with a h-parameter of 10−6 m−1.

5. Conclusion

A novel approach to reduce the impact of surface modes on polarization maintaining hollow
core photonic band gap fibers has been proposed. The modified cladding geometry presents
a row of partially collapsed holes that can be used to attenuate unwanted surface modes. The
modes in the cladding defects resonantly couple with the surface modes and thus increasing
their transmission loss. Four 7-cell core fibers with different collapse ratio were drawn and
analyzed numerically and experimentally. There was a good agreement between the numerical
analysis and experiment, which showed a significant reduction in the amount of surface modes
propagating at 1550 nm. Moreover, the introduction of the cladding defects makes the core
elliptical, thereby enhancing the polarization holding. An h-parameter of 5× 10−5m−1 has
been measured at 1550nm, with a group modal birefringence of about 10−3.

We expect this fiber design to prove its robustness in experiments in which the transmission
stability, polarization maintaining and low loss are essential, such as fiber optic gyroscopes and
gas saturated absorption for frequency standards.

Further improvement might also be achieved considering additional rows of defects to en-
hance the surface modes stripping. This approach would also allow to obtain a fiber without an
elliptical core, in case this feature is unwanted.
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