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ABSTRACT

We present McGenus, an algorithm to predict RNA
secondary structures with pseudoknots. The
method is based on a classification of RNA struc-
tures according to their topological genus.
McGenus can treat sequences of up to 1000 bases
and performs an advanced stochastic search of
their minimum free energy structure allowing for
non-trivial pseudoknot topologies. Specifically,
McGenus uses a Monte Carlo algorithm with
replica exchange for minimizing a general scoring
function which includes not only free energy contri-
butions for pair stacking, loop penalties, etc. but
also a phenomenological penalty for the genus of
the pairing graph. The good performance of the sto-
chastic search strategy was successfully validated
against TT2NE which uses the same free energy
parametrization and performs exhaustive or partially
exhaustive structure search, albeit for much shorter
sequences (up to 200 bases). Next, the method was
applied to other RNA sets, including an extensive
tmRNA database, yielding results that are competi-
tive with existing algorithms. Finally, it is shown that
McGenus highlights possible limitations in the free
energy scoring function. The algorithm is available
as a web server at http://ipht.cea.fr/rna/mcgenus.
php.

INTRODUCTION

In the past 20 years, there has been a tremendous increase
of interest in RNA by the biological community. This bio-
polymer, which was at first merely considered as a simple
information carrier, was gradually proven to be a major
actor in the biology of the cell (1).

Since the RNA functionality is mostly determined by its
three-dimensional conformation, the accurate prediction
of RNA folding from the nucleotide sequence is a

central issue (2). It is strongly believed that the biological
activity of RNA (be it enzymatic or regulatory) is imple-
mented through the binding of some unpaired bases of the
RNA with their ligand. It is thus crucial to have a precise
and reliable map of all the pairings taking place in RNA
and to correctly identify loops. The complete list of all
Watson–Crick and wobble base pairs in RNA is called
the ‘secondary structure’ of RNA.
In this article, we stick to the standard assumption that

there is an effective free energy which governs the forma-
tion of secondary structures, so that the optimal folding of
an RNA sequence is found as the minimum free energy
structure (MFE for short). The problem of finding the
MFE structure given a certain sequence has been concep-
tually solved provided the MFE is planar, i.e. the MFE
structure contains no pair (i, j), (k, l) such that i< k< j< l
or k< i< l< j. In that case, polynomial algorithms that
can treat long RNAs assuming a mostly linear free
energy model have been proposed (3–5). Otherwise, the
MFE structure is said to contain pseudoknots and
finding it has been shown to be an NP-complete
problem with respect to the sequence length (6).
In a previous article (7), we proposed an algorithm,

TT2NE, which consists in searching for the exact MFE
structure for a certain form of the energy function, where
pseudoknots are penalized according to a topological
index, namely their genus. TT2NE relies on the
‘maximum weighted independent set’ (WIS) formalism.
In this approach, an RNA structure is viewed as a collec-
tion of stem-like structures (helices possibly comprising
bulges of size 1 or internal loops of size 1� 1), called
‘helipoints’ (7), defined in the next section. Given a
certain sequence, the set of all possible helipoints is
enumerated and used to build a weighted graph. The
graph vertices are the helipoints and their weight is
given by �1� the helipoint free energy. Two vertices are
linked by an arc if and only if the corresponding helipoints
are not compatible in the same secondary structure.
Incompatibilities arise, for example, when two helipoints
share one or more bases as this could imply the formation
of base triplets, which is forbidden. Finding the MFE
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structure thus amounts to finding the maximum WIS of
the graph, i.e. the set of pairwise compatible helipoints for
which the overall free energy is minimum.
Both McGenus and TT2NE utilize the same energy

function, defined in terms of helipoints and genus
penalty as well as the same initial graph. The difference
between the two lies in the search algorithm for the MFE.
While in TT2NE, the secondary structure is built by
adding or removing helipoints in a deterministic order,
in McGenus, they are added or removed one at a time
according to a stochastic Monte Carlo (MC) Metropolis
scheme. As in TT2NE, there is no restriction on the
pseudoknot topology that McGenus can generate. A
server implementation of McGenus can be found at
http://ipht.cea.fr/rna/mcgenus.php.
In the following and in the numerical implementation of

McGenus, we will restrict ourselves to the energy function
and genus penalty described in detail in (7). While in
TT2NE, the energy form was dictated by the requirement
to allow for a branch and bound procedure, here in
McGenus we insist that there is no such restriction on
the form of the energy function. It can for instance
include loop and pseudoknot entropies. Furthermore,
the penalty for pseudoknots needs not be proportional
to the genus as in TT2NE, but may depend also on the
topology of each individual pseudoknot (see below).
Therefore, by modifying the energy function, it is
possible to improve on the results that we will present
below. As stated in the ‘Introduction’ section, the initial
graph is generated in the same way as in (7).

MATERIALS AND METHODS

In the present framework, the folded structure of a given
RNA sequence is given by the set of helipoints which min-
imizes the free energy. We recall that a helipoint is ‘an
ensemble’ of helices (defined as a stack of base pairs
possibly comprising bulges of size 1 or internal loops of
size 1� 1) that are demarcated by the same extremal
(initial and terminal) base pairs. Given two extremal
pairs (i, j) and (k, l), the set !ij

kl of all helices that end
with these two pairs can be generated and their individual
energies calculated according to a given energy model. The
free energy �Fij

kl of the helipoint is then computed as

expð���Fij
klÞ ¼

X
h2!ij

kl

expð��eðhÞÞ, ð1Þ

where � ¼ ðkBTÞ
�1 and e(h) is the free energy of formation

of helix h. In our implementation, to speed up the com-
putation of this sum, helices of non-negative (i.e. unfavor-
able) energies are neglected, since their Boltzmann weight
would strongly suppress their contribution. Helipoints are
stem-like structural building blocks which account for all
possible internal pairing possibilities that occur between
their extremal pairs. We shall denote by fh1,:::,hNg the set
of all helipoints that can possibly arise from the pairings
of nucleotides in the given sequence (their total number N
is clearly sequence dependent). We stress that the set of
enumerated helipoints comprises all possible helipoints,
and hence is not restricted to maximal ones.

Clearly, a given RNA structure S is fully specified by a
collection of compatible helipoints. It is therefore conveni-
ent to identify S with a binary vector, ~�S, of length N and
whose ith component, �Si takes on the value 0 or 1 accord-
ing to whether helipoint hi belongs to S. The free energy of
S can accordingly be written as:

FS ¼
XN
i¼1

�Si �FðhiÞ+�gðSÞ: ð2Þ

The first term is the additive contribution of the free
energy �F of individual helipoints and is parametrized
as in (7). The second term weights the topological com-
plexity of the structure, measured by its genus g (8,9).
Unlike the first term which is local, the genus, which is a
non-negative integer, depends globally on all the
helipoints. The parameter �� 0 is used to penalize struc-
tures with excessively large values of the genus, in agree-
ment with the phenomenological observation that the
genus of most naturally occurring RNA structures of
size up to 600 bases is <4. Based on previous studies (7),
the default value of the genus penalty � is set to
1.5 kcal/mol.

It is implicitly assumed that the free energy of incom-
patible sets of helipoints is infinite.

Advanced MC search of MFE structures

The minimization of the free energy (2) is performed by a
MC exploration of structure space, which is over the set of
possible ~� vectors. Starting from a structure S where only
one helipoint is present, at each MC step, one of the
helipoints hi is added (si=0 ! si=1) or removed
(si=1 ! si=0). The helipoint to be modified is
picked with a biased probability favouring the addition
(respectively, removal) of helipoints with low (respectively,
high) free energy e. The biasing is inspired by the
heat-bath MC algorithm. Specifically, the a priori prob-
ability to pick helipoint hi to be changed in structure S is
given by

wS
i ¼

�Si+ð1� �
S
i Þe
���FðhiÞP0

j¼1::N �
S
j+ð1� �

S
j Þe
���FðhjÞ

, ð3Þ

where the primed sum indicates that helipoints incompat-
ible with S are not considered. Changing the state of hi
defines a trial structure, S0, which is accepted with
probability

min 1,
wS0

i

wS
i

e��ðFS0�FSÞ

� �
: ð4Þ

The above acceptance criterion is a generalization of the
standard Metropolis rule and ensures that, in the long run,
the generated structures are sampled with probability
given by the canonical weight exp½��FS�.

The stochastic generation of structures is performed
within a MC algorithm with replica exchange where
several simulations are run in parallel at different inverse
temperatures �. The values of � are chosen so as to cover a
range of thermal energies 1/�, going from �one-tenth of
the smallest helipoint energy up to the largest helipoint
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energy. At regular time intervals, swaps are proposed
between structures at neighbouring temperatures and are
accepted with the generalized Metropolis criterion
described in (10). The Markov replicas at the lowest tem-
perature progressively populate structures of low free
energy, and a record is kept of the lowest energy structures
which are finally provided as output.

Finally, we point out that the MC optimization can be
performed not only within the whole space of secondary
structures (unconstrained search) but is straightforwardly
restricted to topologically constrained subspaces. In par-
ticular, by introducing ad hoc ‘infinite’ energy penalties in
Equation (2), the search can be restricted to structures
whose genus, topology or extent of pseudoknots satisfy
some preassigned constraints. The web-server interface
allows the user to set such thresholds, e.g. to account for
knowledge-based constraints.

Generalized topological penalties

As we have previously reported (11,12), any RNA
complex pseudoknot structure may be built from a set
of building blocks, called primitive pseudoknots. A
pseudoknot is termed primitive if it is (i) irreducible, i.e.
its standard diagrammatic representation cannot be dis-
connected by cutting one backbone line and (ii) contains
no nested pseudoknot, that is it cannot be disconnected by
cutting two backbone lines (Figure 1). An arbitrary
pseudoknotted structure can be decomposed in a collec-
tion of primitive pseudoknots and its total genus is the
sum of the genii of its primitive constituents (11).

Therefore, it makes sense to assign different penalties to
pseudoknots having same genus but with different primi-
tive components. For example, all tmRNAs have total
genus 3 or 4 and contain no primitive pseudoknots of
genus larger than 1. In the present implementation, we
propose only two options: (i) we forbid primitive
pseudoknots of genus larger than 1 (by assigning them
an infinite penalty) but the overall structure can have
any total genus or (ii) we assign a global penalty propor-
tional to the total genus and do not take into account the
decomposition of the structure into primitive blocks.

RESULTS AND DISCUSSION

We have performed an extensive comparison of McGenus
predictions against those of other methods. For this
purpose, we used hundreds of RNA sequences from
various sets, including the dataset previously used for
TT2NE (7), an extensive set of tmRNAs (13) and the
more limited set of pseudoknotted RNA molecules for
which the structural data are available in the protein

databank (PDB). Over such diverse datasets, the predict-
ive performance is aptly conveyed by the ‘sensitivity’ of
the method, that is the fraction of pairs in the reference
(native) structure that are correctly predicted by the
method. Depending on the context, we shall also report
on the positive predicted value (PPV). The PPV corres-
ponds to the fraction of predicted pairs that are found
in the native structure and hence measures the incidence
of false positives in the predicted contacts. We have con-
sidered this measure for the PDB set, but not for the
tmRNA set whose entries, often corresponding to
putative native structures derived from homology, are
known to potentially lack several native contacts, as in
the paradigmatic case of Aste.yell._TRW-322098_1-426
(13). A visual representation of this structure can be
found in the RNA STRAND database (14) under the ref-
erence TMR_00037.
From an overall point of view, the tests are aimed at

elucidating two issues that are central to any MFE-based
method. The first issue regards the algorithmic effective-
ness of the energy minimization, while the second regards
the viability of the energy parametrization within the con-
sidered space of secondary structures. The former is most
clearly ascertained by comparing algorithms employing
the same energy parametrization. This step is crucial for
the second aspect too. In fact, the appropriateness or the
limitations of a given energy parametrization and/or of
the considered secondary structure space can be exposed
in a non-ambiguous way only if the minimization algo-
rithm is well performing.
Following the above-mentioned logical order, we

started by comparing the predictions of McGenus
against TT2NE on a database of 47 short sequences
(<209 bases) used in (7). As McGenus and TT2NE rely
on the same energy parametrization (15), the comparison
provides a stringent test of the effectiveness of the
energy-minimization procedure. In fact, we recall that
TT2NE is based on an exhaustive, or nearly exhaustive
search in sequence space. Despite the stochastic,
non-exhaustive and much faster McGenus searches, its
performance turned out to be optimal. Over the full
dataset, McGenus returned exactly the same MFE struc-
tures as TT2NE, as well as all the suboptimal structures.
To extend the assessment of McGenus minimization

performance for longer chains, that cannot be addressed
by TT2NE, we considered UNAFold (4), a MFE-based
algorithm restricted to secondary structures without
pseudoknots. We used a customized version of
UNAFold which uses the same energy parametrization
as McGenus. However, it cannot yet be compared with
McGenus since it outputs secondary structures in terms of
base pairs rather than helipoints. To circumvent this dif-
ficulty, we generated all the lowest lying secondary struc-
tures (within 1 kcal/mol from the lowest energy structure)
using the algorithm presented in (16). To match the de-
scription of the structure in terms of helipoints, we made
clusters of secondary structures sharing the same
extremities of their helical fragments. We then resummed
them (in terms of their Boltzmann weights) and as a result
the energy discrepancy between the two approaches isFigure 1. The only four primitive pseudoknots of genus 1 (11).
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negligible. In the sequel, we will refer to this process as
cUNAFold.
The comparison was performed over the complete set of

590 sequences of genus 3, 4 or 5 from the tmRNA
database (13) with lengths in the 200–500 range. To
assess the efficiency of the minimization algorithm of
McGenus, we ran it over our sample of 590 sequences,
with the constraint gmax=0 and compared it with the
output of cUNAFold. The average MFE from McGenus
with gmax=0 is �105.1 kcal/mol while that of cUNAFold
is �106.7 kcal/mol. Interestingly enough, out of the 590
sequences, 191 sequences are predicted to have identical
secondary structures by both algorithms. This comparison
shows the good efficiency of McGenus minimization
algorithm.
In the non-zero genus case, for each of the 590 se-

quences, McGenus returned structures with lower free
energy than cUNAFold. On the average, the free energy
of the McGenus-predicted structures was �125 kcal/mol.
These two tests prove the effectiveness of the

energy-minimization scheme adopted by McGenus and
we accordingly turned our attention to the overall predict-
ive performance of the method (sensitivity). For this
purpose, we used again the 590 sequences of genus 3, 4
or 5 from the tmRNA database (13) and compared
McGenus predictions against McQfold (17), HotKnots
(18), ProbKnot (19) and UNAFold (20) on this set. We
did not compare McGenus against PKnots (21) and gfold
(22), as the original articles claim that they cannot handle
sequences longer than 200 bases. We recall that UNAFold
predictions are restricted to secondary structures free of
pseudoknots, while ProbKnot and McQfold can output
any topology of pseudoknot. The genus of each of
McGenus prediction was enforced not to exceed the
genus of the native structures of the dataset. As discussed
in (7), the setting of the corresponding parameter gmax can
be decided by the user. In this report, for each test
sequence, we chose to set gmax to the appropriate,
native, value to illustrate the performance of McGenus
when it is driven in the appropriate secondary structure
search space.
The total number of base pairs to be predicted in the set

is 56 740. The UNAFold, McQfold, ProbKnot, HotKnots
and McGenus arithmetic averages of the sensitivity over
all sequences are, respectively, 37, 42, 43, 39 and 43%,
with a respective standard deviation of 14, 15, 14, 14
and 16%. A closer look at the secondary structures
output by ProbKnot and HotKnots showed that none
of them contained any pseudoknot. Therefore, the per-
formance of McGenus is not inferior to that of the few
methods that can handle sequences of comparable length.
Even without resorting to advanced comparative tests
(23,24), the consistent sensitivity of these five algorithms
allows to conclude that their performance is very similar.
The fact that the average sensitivity of the five methods

is <50% poses the question of whether it can be improved
by tweaking the energy parameters or by suitably further
constraining the space of secondary structures over which
the minimization is performed. We focus on the latter
aspect as the first has been already discussed in (7). The
space of secondary structures considered by prediction

schemes based on abstract, graph-theoretical representa-
tions, includes structures that are unphysical, i.e. that
cannot be realized in a three-dimensional space because
of chain connectivity constraints.

The impact of this major difficulty can be lessened by
excluding from further considerations of those structures
that present physically unviable or atypical levels of en-
tanglement. To illustrate this point, we note that, in the
mentioned dataset of 590 molecules, only H-pseudoknots
which span <70 bases are present. By enforcing such
knowledge-based constraint on the search space, the sen-
sitivity of McGenus is boosted from 43 to 53% with a
standard deviation of 18%. To assess the statistical sig-
nificance of this improvement, we performed the Welch
t-test. We find a t-value of t=10, which with a total of
1168 degrees of freedom implies a P-value <10�7, i.e. the
improvement is definitely significant.

Introducing the constraint in structure space clearly
results in higher energies for the predicted structures. In
fact, the average free energy was �125 kcal/mol without
the constraint whereas it is �114 kcal/mol with the restric-
tion of the pseudoknot length. Notwithstanding the reduc-
tion of the search space due to the pseudoknot-length
constraint, the structures returned by McGenus have an
energy that is significantly lower than the reference,
(putative) native structures, which is about �73 kcal/mol.
The free energy difference appears too large to be ac-
counted for by the neglected contribution of loop
entropy, missing chain-connectivity constraints or imper-
fect parametrization of the potentials, which are well
established. A more plausible source of discrepancy
could be the missing contacts in the homology-derived
native structure of the tmRNA database.

To check this last point, we have studied the uncon-
strained version McGenus on a set of four sequences
from the PDB with gmax being fixed to the native genus.
Their PDB ids are 1Y0Q (length=229, g=1), 3EOH
(length=412, g=1), 2A64 (length=417, g=1) and
2H0W (length=151, g=2). The structures of these
entries are unambiguously known from X-ray scattering
data and contain very few long and non-hybridized RNA
sequences (i.e. not bound to proteins, DNA or other mol-
ecules). Accordingly, the McGenus performance on this
set was higher than for the tmRNA set. The sensitivity
for 1Y0Q, 3EOH, 2A64 and 2H0W was equal to 87, 39,
50 and 72%, respectively, while the PPV was equal to 90,
38, 35 and 84%, respectively. Again, the structures pre-
dicted by McGenus have a lower free energy than the
native ones. This indicates that, besides accounting for
topological effects, further improvements of secondary
structure predictions would probably require a better par-
ametrization of the free energy. The generality and flexi-
bility of the McGenus search algorithm ought to allow for
incorporating any such modifications in a transparent
way.

Finally, let us discuss the choice of a maximum genus.
Ideally, one should perform the computation with a com-
pletely unconstrained genus. However, there are two
difficulties to this approach. First, since steric constraints
are only limitedly accounted for by available pseudoknot
prediction algorithms (including McGenus), the predicted
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structures can be sterically impossible and hence
associated to an excessively high genus. Secondly, the
computational time required to explore the unrestricted
genus space could be impractical. To overcome these
difficulties and restrict the search space, one can profitably
introduce knowledge-based constraints. In particular, the
statistical PDB analysis of (11) provides a quantitative
indication for the dependence of the genus on the length
of naturally occurring RNA sequences. The data can be
clearly used to provide a phenomenological upper bound
to gmax. Alternatively, a user could explore a few different
increasing values of gmax and perform a supervised evalu-
ation of the results by taking into account (i) the phenom-
enological constraints and (ii) the possibility that
structures with excessively large genus value are returned
because of the imperfect treatment of steric constraints.

To illustrate this last point, we ran McGenus on a set of
792 5S rRNA sequences of length around 150, with no
pseudoknot. We set gmax=3 which according to the
study of (11) (see Figure 10 therein) is very large. The
number of sequences predicted with genus 0 (i.e. without
pseudoknots) is 258, with genus 1 is 500, with genus 2 is 34
and with genus 3 is 0. Consistently with the remarks made
in the context of H-pseudoknots, the results indicate that
performance of pseudoknot prediction algorithms could
certainly benefit by improving the current handling of
chain connectivity and excluded volume constraints.

CPU time

The CPU time required by McGenus to fold an RNA
sequence depends on the total number of MC steps. For
a tmRNA of length 400, the typical number of helipoints
is 3500. For each sequence, we use 10 replicas, and overall
3000� number of helipoints steps to achieve these results.
The result is typically returned in 15 min on a parallel
quadcore computer (Intel Xeon CPU @2.66GHz). The
current implementation of McGenus on the server is not
parallelized.

CONCLUSION

In this article, we presented McGenus, an efficient algo-
rithm for RNA pseudoknot prediction, which proves that
classifying pseudoknots according to their genus is a
relevant and successful concept. We showed that on a
set of RNA structures from the tmRNA database (13),
McGenus allows treatment of sequences of sizes up to
1000 with a typical CPU time of 15min for a 500 long
sequence on a quadcore CPU, with a performance that is
comparable or better than the few methods that can treat
sequences with comparable length.

In order to further improve the performance of
McGenus, we see three main directions: (i) improvement
on the computing techniques, in particular on the paral-
lelization of the algorithm; (ii) improvement of the func-
tional form and parametrization of the energy model
(likely to have an impact also on the parametrization of
pseudoknot-free methods such as UNAFold) and (iii) in-
clusion of steric constraints.
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