
I n t e r a c t i v e , G P U - B a s e d L e v e l

S e t s f o r 3 D B r a i n T u m o r

S e g m e n t a t i o n

A a r o n L e f o h n J o s h u a C a t e s R o s s W h i t a k e r

S c h o o l o f C o m p u t i n g S c h o o l o f C o m p u t i n g S c h o o l o f C o m p u t i n g

U n i v . o f U t a h U n i v . o f U t a h U n i v . o f u t a h

l e f o h n a e @ c s . u t a h . e d u c a t e s @ c s . u t a h . e d u w h i t a k e r @ c s . u t a h . e d u

U n i v e r s i t y o f U t a h , S c h o o l o f C o m p u t i n g

T e c h n i c a l R e p o r t U U C S - 0 3 - 0 0 4

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

April 16, 2003

mailto:lefohnae@cs.utah.edu
mailto:cates@cs.utah.edu
mailto:whitaker@cs.utah.edu

Abstract

While level sets have demonstrated a great potential for 3D medical image seg­
mentation, their usefulness has been limited by two problems. First, 3D level sets
are relatively slow to compute. Second, their formulation usually entails several free
parameters which can be very difficult to correctly tune for specific applications. The
second problem is compounded by the first. This paper presents a tool for 3D segmenta­
tion that relies on level-set surface models computed at interactive rates on commodity
graphics cards (GPUs). The mapping of a level-set solver to a GPU relies on a novel
mechanism for GPU memory management. The interactive rates for solving the level-
set PDE give the user immediate feedback on the parameter settings, and thus users
can tune three separate parameters and control the shape of the model in real time.
We have found that this interactivity enables users to produce good, reliable segmen­
tations. To support this observation, this paper presents qualitative and quantitative
results from a study of brain tumor segmentation.

1 I n t r o d u c t i o n

This paper describes a new, general-purpose segmentation tool th a t relies on interactive
deformable models implemented as level sets. While level sets have dem onstrated a great
potential for 3D medical image segmentation, their usefulness has been limited by two prob­
lems. First, 3D level sets are relatively slow to compute. Second, their formulation usually
entails several free param eters which can be very difficult to correctly tune for specific appli­
cations. The second problem is compounded by the first. T hat is, users find it impractical
to explore the param eter space when an example result from a point in th a t space requires
minutes or hours to generate.

The proposed tool updates a level-set surface model a t interactive rates on commodity graph­
ics cards (GPUs), such as those th a t are commonly found on consumer-level personal comput­
ers. The tool can be applied to a general set of applications by tuning three free parameters.
Despite its general nature, we dem onstrate the effectiveness of this tool by a quantitative
comparison to a specialized tool and the associated gold standard for a specific problem:
brain tum or segmentation [1, 2]. This paper make the following contributions:

• A 3D segmentation tool th a t uses a new level-set deformation solver to achieve inter­
active rates (approximately 15 times faster than previous solutions).

• A mapping of the sparse, level-set computation to a GPU, a new numerical scheme
for retaining a th in band structure in the solution, and a novel technique for dynamic
memory management between the CPU and GPU.

• Quantitative and qualitative evidence th a t interactive level-set models are effective for
brain tum or segmentation.

The remainder of the paper is organized as follows. The next section gives some technical
background and related work on level sets and GPUs. Section 3 describes our GPU level-set
solver, Sect. 4 presents the results of our study on brain tum or segmentation, and Sect. 5
summarizes our work.

2 B a c k g r o u n d a n d R e l a t e d W o r k

2 . 1 L e v e l S e t s

This paper relies on an implicit representation of deformable surface models called the
method of level sets. The use of level sets has been widely documented in the medical
imaging literature, and several works give more comprehensive reviews of the method and
the associated numerical techniques [3]. Here we merely review the notation and describe
the particular formulation th a t is relevant to this paper.

An implicit model is a surface representation in which the surface consists of all points
S — {x\d>(x) — 0}, where <:> :)ivS ...)i\ Level-set methods relate the motion of th a t surface
to a PD E on the volume, i.e. d d / d t — ^Vd> ■ v (t) , where describes the motion v (t) of the
surface. W ithin this framework one can implement a wide range of deformations by defining
an appropriate v. For segmentation, the velocity often consists of a combination of two terms
[4, 5

d<p
~dt

= IVril QlD (x) + (1 — G;')\7 ■
Vd>

m \ (i)

where D is a data term th a t forces the model toward desirable features in the input data,
the term V ■ (Vd>/ \Vd>\) is the mean curvature of the surface, which forces the surface to have
less area (and remain smooth), and a € [0,1] is a free param eter th a t controls the degree of
smoothness in the solution. There are several variations on this framework in the literature,
e.g. [6].

The behavior of the model is mostly characterized by the data term and how it relates to the
image. Invariably, the data term introduces free parameters, and the proper tuning of those
parameters, along with a , is critical to making the model behave in a desirable manner.

For the work in this paper we have chosen a very simple speed function to dem onstrate the
effectiveness of in terac tiv ity in level-set solvers. The speed function a t any one point is based
solely on the input intensity I at th a t point:

D { I) = e - \I - T \, (2)

where T controls the brightness of the region to be segmented and e controls the range of
greyscale values around T th a t could be considered inside the object. Thus when the model
lies on a voxel with a greyscale level between T — e and T + e, the model expands and
otherwise it contracts. The speed term is gradual, and thus the effects of the D diminish as
the model approaches the boundaries of regions whose greyscale levels lie within the T ± e
range. Even with this simple scheme a user would have to specify three free parameters, T,
e, and a , as well as an initialization. This speed term is a simple approximation to a one­
dimensional statistical classifier, which assumes a single density (with noise) for the regions
of interest.

If a user were to initialize a model in a volume and use the speed term in eq (2) without any
curvature the results would be virtually the same as a simple flood fill over the region bounded
by the upper and lower thresholds. However, the inclusion of the curvature term alleviates
the critical leaking problem th a t arises when using flood filling as a segmentation technique.
The leaking effect is particularly acute in 3D segmentations and is easily dem onstrated on a
brain tum or data set, as shown in figure 2.

The purpose of this paper is not to advocate for any one level-set formulation or speed
function, but rather to address an issue th a t is relevant to virtually all level-set segmentation
strategies; th a t is, a good segmentation depends on a proper specification of free param eters
and the initialization.

(a) (b)
Figure 1: (a) A speed function based on image intensity causes the model to expand over
regions with greyscale values within the specified range and contract otherwise, (b) Efficient
implementations of level sets entail computing the solution only near the moving wavefront.

(a) (b) (c)
Figure 2: Showing one slice of a M ill volume: (a) The spherical initialization, (b) A model
expands to fill the tum or but leaks through gaps and expands into other anatomy, (c) The
same scenario with a degree of curvature prevents unwanted leaking. The level set isosurface
is shown in yellow.

Solving level-set PDEs on a volume requires proper numerical schemes [7] and entails a
significant com putational burden. Stability requires th a t the surface can progress at most
a distance of one voxel at each iteration, and thus a large number of iterations are required
to compute significant deformations. There is a special case of eq (1) in which the surface
motion is strictly inward or outward. In such cases (1) can be solved somewhat efficiently
using the fa s t m arching m ethod [3] and variations thereof [8]. However, this case covers only
a very small subset of interesting speed functions, and such speed functions are inconsistent
w ith interactive param eter tuning. In general we are concerned with problems th a t require
a curvature term and simultaneously require the model to expand and contract to match the
data.

Efficient algorithms for solving the more general equation rely on the observation th a t at
any one time step the only parts of the solution th a t are im portant are those adjacent to
the moving surface (near points where (p = 0). In light of this several authors have proposed
numerical schemes th a t compute solutions for only those voxels th a t lie in a small number
of layers adjacent to the surface as shown in Figure lb . Adalsteinson and Sethian [9] have
proposed the narrow band method, which updates the embedding, cf), on a band of 10-20
pixels around the model, and reinitializes th a t band whenever the model approaches the
edge. W hitaker [10] proposed the sparse-field method, which introduces a scheme in which
updates are calculated only on the wavefront, and several layers around th a t wavefront are
updated via a distance transform at each iteration. Even with this very narrow band of
computation, updates rates using conventional processors on typical medical data sets (e.g.
2563 voxels) are not interactive. This is the motivation behind our GPU-based solver.

2 . 2 G r a p h i c s P r o c e s s i n g U n i t s

GPUs have been developed primarily for the computer gaming industry, but over the last
several years researchers have come to recognize them as low cost, high performance comput­
ing platforms. Two im portant trends in GPU development, increased programmability and
higher precision arithm etic processing, have helped to foster new non-gaming applications.

Graphics processors outperform central processing units (CPUs)—often by more than an
order of magnitude—because of their stream ing architecture^ 1] and dedicated high-speed
memory. In the streaming model of computation, arrays of input da ta are processed iden­
tically by the same computation kernel to produce output data streams. The GPU takes
advantage of the data-level parallelism inherent in this model by having many identical
processors execute the computation in parallel.

Currently GPUs must be programmed via graphics APIs such as OpenGL[12] or Direct X 13 .
All computations must, therefore, be cast in terms of computer graphics primitives such as
vertices, textures, texture coordinates, etc. Figure 3a depicts the computation pipeline of a
typical GPU. A render pass is a set of data passing completely through this pipeline. It can

1 2 3 4 5
6
11 H2 13 14 1
1#
21 22 23 24 25

r -

11
1̂2 \
1C 1:

Figure 3: (a) The modern graphics processor computation pipeline, (b) The proposed
method relies 011 packing active tiles into 2D texture a compressed format.

also be thought of as the complete processing of a stream by a given kernel.

Gricl-basecl computations, such as the level-set partial differential equations (PDEs), are
solved bv first transferring the initial data into texture memory and then rendering a graphics
primitive th a t relies 011 this texture. I11 the simplest case, a 2D slice is computed by drawing
a quadrilateral tha t has the same number of grid points (pixels) as the texture. Memory
addresses th a t identify each fragment’s data value as well as the location of its neighbors are
given as texture coordinates. A fragment program then uses these addresses to read data
from texture memory, perform the computation, and write the result back to memory. A 3D
grid is processed by repeating the above process 011 each 2D slice. This com putation model
has been used by a number of researchers to map a wide variety of demanding problems to
the above computation paradigm. Examples include matrix multiplication, finite element
methods, Navier-Stokes solvers, and others[14, 15, 16], All of these examples dem onstrate a
homogeneous sequence of operations over a densely populated grid structure.

Rumpf el. al. [17] were the first to show th a t the level-set equations could be solved using a
graphics processor. Their solver implemented the 2D level-set method using a time-invariant
speed function for flood-fill-like image segmentation without the associated curvature. The
authors have dem onstrated a full 3D level-set solver, with curvature, running 011 a graphics
processor[18]. Neither of these approaches take advantage of the sparse nature of level-set
PDEs and, therefore, they dem onstrated results th a t are only marginally better (e.g. twice
as fast) than sparse-fielcl CPU implementations.

This paper presents a GPU computational model th a t supports sparse grid problems. Sparse
problems are difficult to solve efficiently with GPUs for two reasons. The first is th a t in
order to take advantage of the G PU ’s parallelism, the streams being processed must be
large, contiguous blocks of data, and thus grid points near the level-set surface model must
be packed into a small number of textures. The second difficulty is tha t the level set moves
with each time step, and thus the packed representation must readily adapt to the changing
position of the model. Section 3 describes how our design addresses these challenges.

LtvH-set Controls
Curvatura 12.5723 cj

Run

Ŝ eect Target Value 10 6107
S*)6«etWklti 10 1475

Display Corrfrols
SI*Num f?9

Output Controls
Output Baŝ Namwjturnor011

Drawling Controls
V Enable 30 Drawing?

c w ™ , |

Write Output 30 I

S V
O t T :

Figure 4: The user interface of our segmentation application. The center window shows a
slice of the MRI volume overlaid with the current segmentation. The right window displays
the sign of the speed function.

3 S y s t e m D e s i g n a n d I m p l e m e n t a t i o n

This section describes the interactive, level-set segmentation tool and the GPU implemen­
tation th a t makes it possible.

3 . 1 I n t e r f a c e a n d U s a g e

Our system consists of a graphical user interface (GUI) th a t presents the user with two
volume slices and a control panel. The first slice window displays the current segmentation
as a yellow line overlaid on top of the MRI data. The second slice viewing window displays a
visualization of the speed function th a t clearly delineates the positive and negative regions.
The GUI has controls for setting the three free speed parameters, a s ta rt/s to p bu tton to
control the solver, and controls to save the 3D segmentation to file. The user can query
grey-scale values in the MRI slice viewer and create spherical surface models. A screen shot
of our interface is shown in Fig. 4.

3 . 2 G P U L e v e l S e t S o l v e r I m p l e m e n t a t i o n

This section gives a brief description of the design of our GPU level-set solver. A more
comprehensive description is available online at [19].

The efficient solution of the level-set PDEs relies on only updating voxels th a t are on or
near the isosurface. The narrow band and sparse field methods achieve this by operating
on sequences of heterogeneous operations. For instance, the sparse-field method [10] keeps a
linked list of active voxels on which the computation is performed. Such algorithms are not
well suited for streaming architectures and thus the mapping of the sparse field algorithm
to GPUs requires a very different approach.

The sparse GPU level-set solver decomposes the volume into a set of small 2D tiles (e.g. 16
x 16 pixels each). Only those tiles with non-zero derivatives are stored on the GPU (Fig.
3b). These active tiles are packed, in an arbitrary order, into a large 2D texture on the
GPU. The 3D level-set PD E is computed directly on this compressed format.

There are several im portant details th a t make this strategy effective. First, because active
tiles are identified by non-zero gradients, it is crucial th a t the volume in which the level-set
surface is embedded, <p, resemble a clamped distance transform. In this way regions on or
near the model will have finite derivatives, while tiles outside this narrow band will be flat,
w ith derivative values of zero. This is accomplished by adding an additional speed term to
the p d e update equation, which forces the level sets of <p to spread out if the gradient is too
large and to move together if the gradient is too low. This rescaling term, G r is of the form,

G r = 994 - <?|V(p|, (3)

where <p is the value of the embedding a t a voxel and |V<p| is the gradient in the direction of
the isosurface. The target gradient, g(p, is set based the numerical precision of the level set
data. This speed term is strictly a numerical construct: it does not affect the movement of
the zero level set, i.e. the surface model, and its role in the segmentation process is computed
without free param eters or user intervention.

For each p p ® time step update, the 3D neighborhoods of all pixels in the active tiles must
be sampled from the compressed 2D compressed format. For each active tile, the CPU sends
texture coordinates, i.e. memory addresses, to the GPU for each of the tiles th a t share a
side or an edge in the 3D volume. These texture coordinates are generated and maintained
on the CPU. Using these texture coordinates, the GPU can perform neighborhood lookups
to produce the complete set of partial derivatives (finite differences) used for the gradient
and curvature calculations, which are in tu rn used to update values of <p.

After the level-set embedding is updated, the GPU uses built-in, hardware accelerated,
rniprnapping capabilities to create a b it vector image th a t summarizes the status of each tile.
Each pixel in this coarse texture contains a bit code th a t identifies if th a t tile, as well as
any of its six cardinal neighbors, need to be active for the next time step. This small image
(< = 64KB) is read back by the CPU and used to update the data structures th a t track the
active volume regions. The texture coordinates are updated based on these structures and
the next time step is computed.

This GPU-based level-set solver achieves a speedup of ten to fifteen times over a highly-
optimized, sparse-field, CPU-based solver. All benchmarks were run on an Intel Xeon 1.7
GHz processor with 1 GB of RAM and an ATI Radeon 9700 Pro GPU. For the tum or
segmentations performed in the user study, the GPU-based solver ran a t 60-70 tim e steps
per second while the CPU version ran a t 7-8 steps per second. The final steps of the cerebral
cortex segmentation shown in figure 6 ran at 4 steps per second on the GPU and 0.25 steps
per second on the CPU.

4 U s e r S t u d y

The purpose of this study was to determine if our algorithm can produce volumetric delin­
eations of brain tum or boundaries comparable to those done by experts (e.g. radiologists
or neurosurgeons) using traditional hand-contouring. We applied our method to the prob­
lem of brain tum or segmentation using data from the Brain Tum or Segm entation Database,
which is made available by the Harvard Medical School at the Brigham and Women’s Hos­
pital (HBW) [1, 2]. The HBW database consists of ten 3D 1.5T MEI brain tum or patient
datasets selected by a neurosurgeon as a representative sampling of a larger clinical database.
For each of the ten cases, there are also four independent expert hand segmentations of one
randomly selected 2D slice in the region of the tumor.

We chose nine cases for our study: three meningioma (cases 1-3) and 6 low grade glioma
(4-6, 8-10). One case, number 7, was omitted because a quick inspection showed it th a t its
intensity structure was too complicated to be segmented by the proposed tool such a prob­
lem remains as future work, as we will discuss in Section 5. We performed no preprocessing
on the data, and there are no hidden param eters in this study all param eters in our system
were set by the users in real time, as they interacted with the data and the models.

Five users were selected from among the staff and students in our group and trained briefly
to use our software. We asked each user to delineate the full, 3D boundaries of the tum or
in each of the nine selected cases. We set no time limit on the users and recorded their time
to complete each tumor. None of our users were experts in reading radiological data. It
was not our intention to test for tum or recognition (tissue classification), but rather to test
whether param eters could be selected for our algorithm to produce a segmentation which
mimics those done by the experts. To control for tum or recognition, we allowed each user
to refer to a single slice from an expert segmentation. Users were told to trea t this hand
segmentation slice as a guide for understanding the difference between tum or and non-tumor
tissue. Our assumption is th a t an expert would not need such an example.

4 . 1 M e t r i c s

We consider three factors in evaluating our segmentation method [20]: validity of the results
(accuracy), reproducibility of the results (precision), and efficiency of the method (time). To
quantify accuracy we established a ground tru th from the expert segmented slices using the
STAPLES method [21]. This method is essentially a sophisticated averaging scheme th a t
accounts for systematic biases in the behavior of experts in order to generate a fuzzy ground
tru th (W) as well as sensitivity and specificity param aters (p and q respectively) for each
expert and each case. The ground tru th segmentation values for each case are represented
as an image of values between zero and one th a t indicates the probability of each pixel
being in the tumor. Each subject generates a binary segmentation which, compared against
the grount tru th , gives values to obtain p and q for th a t subject. For our analysis we

Sensitivity Specificity Total Correct

O Experts ■ Subjects ■<---------- Case N u m b e r ----------►

Figure 5: Results from the user study in compare with expert hand contouring reveal an
overall comparable performance with a tendency to underestim ate the region of tumor.

also considered a third metric, lo lal correct fraction which is the total number of correctly
classified pixels (weighted by W) as a percentage of the total size of the image.

To assess interoperator precision in segmentations, we used the metric proposed bv [20],
which consists of pairwise comparisons of the cardinality of the intersection of the positive
classifications divided by the cardinality of the union of positive classifications. To analyze
efficiency, we calculated the average total time (user time plus processing time) taken for a
segmentation.

4 . 2 R e s u l t s

For a typical segmentation of a tumor using our tool a user scrolls through slices until they
find the location of the tumor. W ith a mouse, the user queries intensity values in the tumor
and sets initial values for the parameters T and e based on those intensity values. They
initialize a sphere near or within the tumor and initiate deformation of that spherical model.
As the model deforms the user scrolls through slices, observing its beha,vior and modifying
parameters. Using the immediate feedback they get on the beha,vior of the model, they
continue modifying param eters until the model boundaries appear to align with those of the
tumor. In a typical 5 minute session, a user will modify the model parameters between 10
and 30 times.

Figure 5 shows graphs of a,verage p , q, and c values for the experts and the users in our
study. Error bars represent the standard deviations of the associated values for the experts
and the users in our study.

The performance of the experts and our users varies case by case, but in almost all cases the
performance of our users was within the range of performances of the experts. The a,verage
correct fraction of our users was better than the experts in 4 out of 9 cases. A general trend
is that our users tended to underestim ate the tumor relative to the experts, as indicated by
lower values of p. This is consistent with our experiences with hand segmentations and level
set models— with hand contouring users tend to overestimate structures, and with level sets
the curvature term tends to reduce the size of convex structures.

(a) (b) (e)
Figure 6: (a) An expert hand segmentation of a tum or from the HBW database shows
significant interslice artifacts, (b) A 3D segmentation of the same tum or from one of the
subjects in our study, (e) A segmentation of the cerebral cortex from a 256 x 256 x 175 MRI
volume using the same tool took 6 minutes.

The segmentations in our study show a much higher degree of precision than the expert hand
segmentations. Mean precision [20] across all users and cases was 94.04% ± 0.04% while the
mean precision across all experts and cases was 82.65% ± 0.07%. Regarding efficiency, the
average time to complete a segmentation (all users, all cases) was 6 ± 3minutes. Only
5% — 10% of this time is spent processing the level-set surface. This compares favorably
with the 3-5 hours required for a typical 3D segmentation done by hand.

The accuracy and precision of subjects using our tool compares well with the autom ated
brain tum or segmentation results of Kaus. et al. [1]. who use a superset of the same data
used in our study. They report an average correct volume fraction of 99.68% ± 0.29%.
while the average correct volume fraction of our users was 99.78% ± 0.13%. Their method
required similar average operator times (5-10 minutes), but unlike the proposed method their
classification approach required subsequent processing times of approximately 75 minutes.
That method, like many other segmentation methods discussed in the literature, includes a
number of hidden parameters, which were not part of their analysis of timing or performance.

These qualitative comparisons with experts pertain to a only single 2D slice th a t was ex­
tracted from the 3D segmentations. This is a lim itation due to the scarcity of expert data.
Our experience is th a t computer-aided segmentation tools perform relatively better for 3D
segmentations because the hand contours typically show signs of interslice inconsistencies
and fatigue. Figures 6a b show a segmentation by an expert with hand contouring com­
pared with a segmentation done by one of our subjects. Screen-captured movies of a user
interacting with our system are available online at [19].

5 S u m m a r y a n d C o n c l u s i o n s

A careful implementation of a sparse level-set solver on a GPU provides a new tool for
interactive 3D segmentation. Users can m anipulate several param aters simultaneously in
order to find a set of values th a t are appropriate for a particular segmentation task. The

quantitative results of using this tool for brain tum or segmentation suggest th a t it is compares
well w ith hand contouring and state-of-the-art autom ated methods. However, the tool as
built and tested is quite general, and it has no hidden parameters. Thus, the same tool can
be used to segment other anatomy (e.g. Figure 6c).

The current limitations are mostly in the speed function and the interface. The speed func­
tion used in this paper is quite simple and easily extended, within the current framework, to
include image edges, more complicated greyscale profiles, and vector-valued data. Also, fu­
ture work will include a true 3D interface, w ith cutting planes and real-time volume rendering
of the models and surrounding tissue.

A c k n o w l e d g m e n t s

The authors would like to thank Gordon Kindlmann for his nrrd library (used for dataset ma­
nipulation and I/O), part of the teem toolkit available a t http: //www. c s . Utah. edu/^gk/teem.
Milan Brits’ G L E W sofware was also used extensively for OpenGL extension management.
We also want to thank Simon Warfield, Michael Kaus, Eon Kikinis, Peter Black and Ferenc
Jolesz for making the tum or database publicly available. This work was supported by grants
#ACIQQ89915 and #CCRQQ92Q65 from the National Science Foundation.

R e f e r e n c e s

[1] M. Kaus, S. K. Warfield, A. Nabavi, P. M. Black, F. A. Jolesz, and E. Kikinis, “Auto­
mated segmentation of mri of brain tum ors,” Radiology, vol. 218, pp. 586-591, 2001.

[2] S. K. Warfield, M. Kaus, F. A. Jolesz, and E. Kikinis, “Adaptive, tem plate moderated,
spatially varying statistical classification,” M edical Im age A nalysis, vol. 4, no. 1, pp. 13
45, 2000.

[3] J. A. Sethian, Level Set M ethods and Fast M arching M ethods Evolving Interfaces in
C om putational G eom etry, Fluid M echanics, C om puter Vision, and M aterials Science.
Cambridge University Press, 1999.

[4] E. T. W hitaker, “Volumetric deformable models: Active blobs,” in Visualization In
Biom edical Com puting 1994 (R- A. Eobb, ed.), (Mayo Clinic, Eochester, Minnesota),
pp. 122-134, SPIE, 1994.

[5] E. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling w ith front propogation: A
level set approach,” IE E E Trans, on P a ttern A nalysis and M achine Intelligence, vol. 17,
no. 2, pp. 158-175, 1995.

[6] V. Caselles, R. Kimmcl, and G. Sapiro, “Geodesic active contours,” in Fifth In terna­
tional Conference on C om puter Vision, pp. 694-699, IEEE, IEEE Computer Society
Press, 1995.

[7] S. Osher and J. Sethian, “Fronts propogating with curvature-dependent speed: Al­
gorithms based on Hamilton-Jacobi formulations,” Journal o f Com putational P h ysics,
vol. 79, pp. 12-49, 1988.

[8] M. Droske, B. Meyer, M. Rumpf, and C. Schaller, “An adaptive level set method for
medical image segmentation,” in Proc. o f the Annual Sym posium on Inform ation P ro­
cessing in M edical Im aging (R. Leahy and M. Insana, eds.), Springer, Lecture Notes
Computer Science, 2001.

[9] D. Adalsteinson and J. A. Sethian, “A fast level set method for propogating interfaces,”
Journal o f C om putational P h ysics, pp. 269-277, 1995.

[10] R. T. W hitaker, “A level-set approach to 3D reconstruction from range data,” In terna­
tional Journal o f C om puter Vision, vol. October, no. 3, pp. 203-231, 1998.

[11] J. D. Owens, Com puter Graphics on a Stream Architecture. PhD thesis, Stanford Uni­
versity, Nov. 2002.

[12] M. Segal and K. Akeley, “The OpenGL graphics system: A specification (version 1.2.1).”
http://w w w .opengl.org, 2003.

[13] Microsoft Corporation, “Direct3D.” http://w w w .m icrosoft.com /directx, 2002.

[14] M. Rumpf and R. Strzodka, “Using graphics cards for quantized FEM com putations,”
in IA S T E D Visualization, Im aging and Im age Processing Conference, 2001.

[15] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra, “Physically-based visual sim­
ulation on graphics hardware,” in Proc. S IG G R A P H /E G Graphics Hard,ware Workshop
’02, ACM, 2002.

[16] W. Li, X. Wei, , and A. Kaufman, “Implementing lattice boltzm ann computation on
graphics hardware,” in The Visual Com puter, (Heidelberg, Germany), Springer-Verlag,
to appear 2003.

[17] M. Rumpf and R. Strzodka, “Level set segmentation in graphics hardware,” in In ter­
national Conference on Im age Processing, pp. 1103-1106, 2001.

[18] A. Lefohn and R. W hitaker, “A gpu-based, three-dimensional level set solver with cur­
vature flow.” University of U tah tech report UUCS-02-017, December 2002.

[19] A. Lefohn, J. Cates, and R. W hitaker, “Interactive, gpu-based level
sets for 3d brain tum or segmentation: Supplementary information.”
h ttp ://w w w .sci.u tah .edu/ lefohn/w ork/rls/tum orSeg, 2003.

http://www.opengl.org
http://www.microsoft.com/directx
http://www.sci.utah.edu/

[20] J. Udupa, V. LcBlanc, H. Schmidt, C. Imielinska, P. Saha, G. Grevera, Y. Zhuge,
L. Currie, P. Molholt, and Y. Jin, “A methodology for evaluating image segmentation
algorithms,” in Proceedings o f S P IE Vol. 4684 , pp. 266-277, SPIE, 2002.

[21] S. K. Warfield, K. H. Zou, and W. M. Wells, “Validation of image segmentation and
expert quality w ith an expeetation-maximization algorithm,” in M l CCA I 2002: Fifth
In ternational Conference on M edical Im age Com puting and C om puter-A ssisted In ter­
vention, (Heidelberg, Germany), pp. 298-306, Springer-Verlag, 2002.

