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Abstract

Level set methods arc a powerful tool for implicitly representing deformable 
surfaces. Since their inception, these techniques have been used to solve prob­
lems in fields as varied as computer vision, scientific visualization, computer 
graphics and computational physics. W ith the power and flexibility of this 
approach; however, comes a large computational burden. In the level set ap­
proach, surface motion is computed via a partial differential equation (PDE) 
framework. One possibility for accelerating level-set based applications is to 
map the solver kernel onto a commodity graphics processing unit (GPU). GPUs 
arc parallel, vector computers whose power is currently increasing at a faster 
rate than tha t of CPUs, in this work, wc demonstrate a GPU-based, three­
dimensional level set solver that is capable of computing curvature flow as well 
as other speed terms. Results arc shown for this solver segmenting the brain 
surface from an MRI data set.



1 In tro d u c t io n

The level set approach to  representing deform able surfaces1 has recently spurred ad­
vances in image processing[l, 2], surface processing[3, 4], image and volume segm entation[5, 
6], surface reconstruction [7], and com puter anim ation [8, 9, 10]. T he level set tech­
nique represents surfaces im plicitly as interfaces, and uses th e  framework of partia l 
differential equations (PD Es) to  com pute surface m otion [ll]. In general, a set of 
speed functions are created to  act on th e  surface and define a level set PD E , which is 
solved to  find th e  surface position th rough  time. T he details of th e  speed functions 
are defined by th e  application.

In con trast to  o ther m odeling techniques, surfaces represented by a level set can easily 
change size, split into m ultiple entities, merge m ultiple surfaces into one and  change 
topological genus. M uch of th is power and flexibility is due to  th e  fact th a t level set 
m ethods em bed a surface in a space th a t  is one-dim ensionally higher. This increase in 
dim ensionality clearly leads to  more com putational complexity. The narrow -band [12] 
and sparse-field[13] approaches to  solving level set equations have reduced th e  com­
plexity to  scale w ith th e  hyper-surface area2 of th e  surface ra th e r th a n  th e  size of the  
space in which it is em bedded. D espite these advances, m ost level set applications do 
not run  a t interactive rates. T he surface editing operations in M useth et al. [4] took 
tens of seconds, and the  surface reconstructions in Elangovan et al. [6] took  up to  five 
hours to  com pute.

Recent advances in com m odity graphics processing units (G PU s) have m ade them  an 
a ttrac tiv e  alternative com puting platform  for certain  applications. G PU s are parallel 
vector processors th a t  are highly optim ized for combining stream ing two- and th ree­
dim ensional d a ta  to  make a single, tw o-dim ensional image. In th e  last two years, 
G PU s’ fixed-function graphics pipeline has begun to  be replaced w ith one th a t is 
highly program m able [14, 15, 16]. This program m ability, combined w ith  the  vector 
na tu re  of th e  processors, has opened up th e  possibility of using G PU s for com putations 
o ther th a n  scan-conversion.

R um pf et al. [17] were the  first to  show th a t  the  level set equations could be solved 
using a graphics accelerator. Their solver im plem ented th e  two-dim ensional level set 
m ethod using a tim e-invariant speed function for flood-fill-like image segm entation. 
The sam e group and others [18, 19] have published work s ta ting  how various scientific

1 Surface is used throughout this paper to mean a curve, surface, or hyper-surface.
2The ’’Hyper-surface area” is the measure of the n — 1 space defined by a R” surface. For a 

two-dimensional curve, the hyper-surface area is the arc length. For a three-dimensional surface it 
is the surface area.



com puting prim itive operations can be m apped to  graphics hardware[20]. I t has 
been shown th a t grid-based com putations may benefit greatly  from th e  high memory 
bandw idth  and parallelism  available on graphics boards. W hile these efforts have 
helped lay th e  groundw ork for non-graphics use of G PUs, there  are some key advances 
th a t m ust first be m ade before an  easily-customizable, three-dim ensional level set 
solver will be m ade to  run  interactively on a  GPU.

From a practical standpoin t, w riting scientific com puting software for current G PU s 
is difficult, error-prone, and  tedious. T he first reason for th is is th a t  all G PU  in­
structions are issued via a  graphics A PI such as OpenGL[21] or Direct3D[22], This 
fact makes for a  non-obvious m apping of scientific com puting algorithm s to  GPUs. 
This work addresses th is problem . T he second difficulty in using G PU s for scien­
tific com puting is th a t current G PU s are only capable of low-precision, fixed-point 
arithm etic. As a  result, scales and  biases m ust be carefully applied th roughout the  
calculation. Fu ture G PU  releases will be capable of floating-point com putations, bu t 
m em ory lim itations may continue to  make fixed-point com putations an a ttrac tiv e  op­
tion. T he other obstacle to  com puting w ith  G PU s is th a t  much of th e  software m ust 
be w ritten  in a  hardware-specific assembly language. This of course makes th e  code 
error-prone as well as hard  to  w rite, read, and reuse. Proudfoot et a l.’s S ta n fo r d  S h a d ­
ing  L anguage[23], th e  O penG L 2.0 shading language[24], N vidia’s C G  language[25], 
and M icrosoft’s H igh  L eve l  S h a d in g  Language[26] all a ttem p t to  provide a  high-level 
language interface w ith  which to  program  GPUs. T he G PU  and operating system  
specificity of th e  language, however, may still rem ain a  challenge to  cross-platform  
developers until a  s tandard  is established.

The next section discusses th e  technical background behind level set m ethods and 
graphics accelerators. Section 3 describes th e  m apping of the  level set equations to  
a  G PU  and th e  software framework th a t has been built to  support it. Section 4 
discusses our results and  possibilities for fu tu re work.

2  T e c h n i c a l  B a c k g r o u n d

2.1 Level Set Explanation

In th e  level set approach, a  n-dim ensional surface is em bedded in a  R ”+1 space. A 
scalar function, <̂ >(x, t)  defines an  em bedding of a  surface, where x  G M”+1 and  t  is



tim e. The set of points on th e  surface, S, are m apped by d> such th a t

S =  { x |0 (x ) =  A:}, (1)

where k  is an  arb itra ry  scalar value (often zero). It can also be said th a t S is th e  k  
level set of d>. A closed form of d> is not known, bu t an initial estim ation of it can be 
obtained by building a  discrete sam pling of it on a  R ”+1 grid. This is done by setting  
each point in S to  k,  all points inside th e  interface to  d> > k  and positions outside to  
d> < k. If the  initial sam pling of d> sets all values in th e  range [0,1], then  a  curve or 
surface can easily be represented by a  grayscale image or volume.

In order to  p ropagate  d> (and therefore th e  surface) in tim e, we define th e  first-order, 
p artia l differential equation

%  -  (2)
where F  is a  signed, scalar speed function th a t defines th e  speed in th e  direction 
norm al to  d> a t any point x. F  m ay be of th e  form F (x ) , F ( x , t ), or F(d>, D ^ , . . . ) .  
The choice of speed function is defined by th e  application and com binations of them  
may be used to  cap ture a  desired behavior.

The initial estim ation of d> is propagated  forward in tim e v ia th e  up-w ind scheme[27]. 
To guarantee a  stab le solution, the  upwind scheme approxim ates Vd> using one-sided 
derivatives th a t are always in th e  “up-w ind” direction of the  propagating surface. 
The largest allowable tim e step, A t ,  is inversely proportional to  th e  m axim um  speed 
a t a  given tim e, t . T he solution will become unstable if a  larger value for A t  is used. 
Given th a t  ^  is defined by equation 2 and th e  general u pdate  equation is

dd)
(f>(x, t  +  A t )  — (f>(x, t )  +  A t — , (3)

th e  level set u p d a te  equation is

(f>(x, t  +  A t) =  (f>(x, t)  +  A t F \ V(f>|. (4)

The m ean curvature of d>, hereafter referred simply as curvature, is commonly used 
as a  speed function to  p ropagate  d>. A surface under curvature flow will become 
“sm oother” and in fact, under pure curvature flow, a  convex surface will converge to  
th e  fi-sphere and finally a  single p o in t[28], C urvature flow is often combined w ith 
o ther speed functions to  sm ooth out an otherw ise rough surface solution. T he m ean 
curvature of d> is defined as

H  =  c„V • (5)
IV

where, if n  is th e  dim ensionality of th e  surface, cn — l / ( n  — 1). T he details of 
estim ating Vd> and Ft are presented in section 3.



2 .2  Details of a  G r a p h i c s  Processing U n i t

G raphics processing units are designed to  render vertex positions, m aterial properties, 
lighting inform ation, and tex tu re  m aps into a single, two-dim ensional image. In 
addition to  th e  (x , y, z ) position, each vertex may have a set of tex tu re  coordinates, a 
norm al vector, a n d /o r  a color associated w ith  it. T he processing unit can be thought 
of as a pipeline (figure 1). This pipeline first transform s vertices into a com mon model 
space, then  applies lighting calculations to  each vertex. T he vertex inform ation is then  
rasterized into f ra g m en ts .  A fragm ent is th e  generalization of a pixel. In addition to  
the  (x ,  y, z ) position and (r, g, b, a )  values associated w ith  a pixel, a fragm ent may also 
contain a set of in terpolated  tex tu re  coordinates. T here can be m ultiple fragm ents 
th a t m ap to  the  sam e (x ,  y )  pixel location. A fter being rasterized a fragm ent is 
tex tu red  and then  passed th rough  a series of tests  before becom ing a pixel. These 
tests  include th e  scissor, alpha, stencil and dep th  test. If a fragm ent survives all 
of these and several o ther operations, it becom es a pixel. The final ou tp u t is the  
(r, g, b, a )  4-tuple as well as th e  pixel’s dep th  (z )  value.

G PU  program m ing consists of two basic types of operations: those th a t  set or unset 
pipeline s ta te  and those th a t  move d a ta  th rough  the  pipeline. In a fixed-function 
graphics pipeline, render s ta te  is se t/u n se t by m aking graphics A PI calls. A pro­
gram m able pipeline provides an assembly-level or language-level interface for speci­
fying portions of th e  render s ta te . T here are two points of program m ability  in m ost 
m odern GPUs: th e  vertex stage and th e  fragm ent stage. Vertex program s (or shaders 
as they  are commonly referred to) control th e  vertex transform ation  and tex tu re  co­
ordinate pipeline stages. Fragm ent shaders allow a program m er to  specify th e  final 
color of a fragm ent by com bining m ultiple texels, tex tu re  coordinates, and colors w ith 
a lim ited instruction  set. A texe l  is th e  tex tu re  m ap equivalence of a pixel.

A r en d e r  pass  is defined as one set of d a ta  moving entirely th rough  th e  G PU  pipeline. 
The destination  of a render pass is norm ally the  color buffer, which can then  be dis­
played to  a video m onitor. T he destination  can alternatively  be a non-displayable 
buffer called a pixel buffer (pbuffer). Pbuffers can be sized differently th a n  th e  dis­
play window and can also be associated w ith  a tex tu re  (render-to-texture). W hen 
associated w ith  a tex ture, th e  pbuffer memory can be b o th  rendered into and bound 
as a tex tu re  map. This will prove to  be an im portan t feature when using G PU s as 
com putational platform s. We have found th a t  changing between destination  buffers 
is a very slow process, tak ing  approxim ately 0.25 milliseconds. We have thus gone to  
great lengths to  avoid changing pbuffer targets.

A given G PU  will support some num ber of tex tu re  un its ,  N t , which determ ines how



F i g u r e  1 :  T h e  g ra p h ic s  p ro c e s s in g  u n i t  (G P U )  p ip e lin e .



m any tex tu res may be sim ultaneously applied in th e  sam e render pass. Each tex tu red  
vertex may be given up to  N t separate  tex tu re  coordinates (location in a  tex tu re  m ap). 
N ote th a t each of these coordinates m ay be for a  one, two, or th ree  dim ensional 
tex ture. Also note th a t tex tu re  coordinates will generally not fall exactly on a  texel 
location. The tex tu re  sam pling can therefore be specified to  use th e  nearest texel or 
com pute an in terpolated  value a t th e  tex tu re  coordinate position. T he in terpolation  is 
linear, bi-linear, or tri-linear depending on th e  dim ensionality of th e  tex tu re  map. N t 
is between two and six in current hardw are and  is expected to  increase substantially  
in fu tu re cards.

The rem aining sections will give specific hardw are examples in term s of th e  ATI 
Radeon 8500 G PU  because it is th e  G PU  on which we have im plem ented my level 
set solver. W hile fu ture N vidia G PU s will be supported , th e  8500’s fragm ent shader 
features were th e  m ost feature-rich a t th e  tim e th is work began.

Vertex shaders are powerful tools for graphics applications, b u t for grid-based com­
putations, such as a  level set solver, nearly all of th e  calculations are perform ed w ith 
th e  fragm ent shader. T he discussion will thus be focused on th e  details of th e  la tter. 
The inpu t to  a  fragm ent shader program  consists of up to  N t tex tu re  coordinates, 
up to  N t tex tures, two (r , g , b , a ) colors, and up to  N c fixed-point constants. Each 
tex tu re  coordinate may contain up to  four, 32-bit floating-point values. All other 
inputs are 8-bit, fixed poin t num bers. T he ou tp u t from a  fragm ent shader is a  single, 
8-b it, fixed-point (r, g, b, a )  4-tuple. T he in ternal precision of th e  tem porary  registers 
is generally higher precision th a n  th e  inpu t and ou tpu t. As w ith  th e  o ther lim itations, 
it is expected th a t  th e  available precision will increase on fu tu re GPUs. In th e  short 
term , however, th e  work proposed herein m ust address th e  challenges presented by 
com puting w ith  fixed-point operations.

All fragm ent shader instructions are vector-type instructions th a t  operate on all frag­
m ents in a  render pass. T he fragm ents are processed in parallel by m ultiple functional 
units and an entire (r, g, b, a )  4-tuple is processed by each instruction. T he num ber of 
instructions allowed in a  fragm ent program , N f ,  is lim ited by th e  G PU  hardw are (the 
ATI Radeon 8500 allows only sixteen). It is expected th a t fu ture hardw are releases 
will substan tially  increase th e  num ber of allowed instructions. Fragm ent shaders have 
a  lim ited num ber of tem porary  registers, N r , available to  hold in term ediate com pu­
ta tions. This is often th e  same as th e  num ber of tex tu re  units. Ju st as w ith  N t , N r 
in current hardw are is between two and six.

In addition  to  sam pling th e  inpu t tex tures, th e  ATI Radeon 8500’s fragm ent shader 
supports th e  following operations: add, sub trac t, multiply, move, conditional choice 
of two values and dot product. Division is supported  only by divisors of two, four,



and eight. Instruction  modifiers allow for th e  instruction  destination  to  m ask any of 
th e  four channels and for an instruction  source to  repeat any one channel on all four 
channels. B ranching and subroutine calls do not exist.

An especially powerful feature in program m able G PU s is dependent tex tu re  reads. 
This allows for th e  com putation  of tex tu re  coordinates w ithin a fragm ent shader and 
th e  use of those coordinates to  perform  a lookup into ano ther tex ture. D ependent 
tex tu re  reads allows th e  use of tex tu res as lookup tab les (LUTs). The ATI R adeon’s 
hardw are allows for two sam ple stages per fragm ent shader. In th e  first stage, up to  
N t tex tu res are sam pled and m athem atical operations are perform ed on th e  input. 
The second stage begins when th e  same tex tu res are sam pled again, bu t now w ith 
th e  possibility of using a com puted result as th e  tex tu re  coordinates for th e  lookup.

G rid-based com putations on G PU s use tex tu re  m aps to  hold all input, in term ediate 
and ou tp u t data. Each render pass renders to  a tex tu re  m ap via a pbuffer, and 
th a t tex tu re  is bound as inpu t to  a la ter pass. As m entioned early, th e  d a ta  in 
each tex tu re  are 8-bit, fixed-point values. C om putations are perform ed by m apping 
m ultiple tex tu re  m aps to  a single, p lanar quadrila teral (a c o m p u te  slab) and using a 
fragm ent shader to  combine th e  inputs into a single ou tpu t. For three-dim ensional 
calculations, a stack of com pute slabs is used, and th e  d a ta  is stored in m ultiple two­
dim ensional tex tures. Each com pute slab uses d a ta  from th e  slabs above and below 
it in addition  to  its own.

3  D e s i g n

O ur system  consists of an O penG L-based, 2D and 3D level set solver running on 
an ATI Radeon 8500 graphics processing unit. An image and volume segm entation 
program  has been created based on th is solver. T he speed function for th is application 
is created by com bining a pre-eom puted, data-driven speed w ith  th e  m ean curvature.

3.1 C o m p u t a t i o n  Over v i e w

The 2D solver requires five render passes to  com pute th e  curvature speed term , a 
pass to  combine th e  speed term s, th ree  more passes to  com pute th e  up-w ind approx­
im ation to  V<p, and a single pass to  combine th is inform ation and u p d a te  <fi(t) to  
(p(t +  A t). If only tim e-invariant speed functions are used, <p can be advanced in six



instead of ten  passes. Pseudocode for th e  2D solver is shown below. Each num bered 
line represents a render pass, w ith  th e  inpu t tex tu res as function argum ents. D estina­
tion  pbuffers/tex tures are considered variables, and tem poraries are allocated using 
register allocation strategies.

for(int t=0; t < numSteps; t++) {
// Compute first set of derivatives
Tex2D dl = derivl( phi[z] ); //I

// Compute Curvature
Tex2D d2 = deriv3( phi[z] ); // 2
Tex2D d3 = deriv4( phi[z] ); // 3
Tex2D cx = curvX( dl, d2, d3, normalizeLUT ); // 4
Tex2D curv = curvY( dl, d2, d3, cx, normlalizeLUT ); // 5

// Sum the speed functions
Tex2D speed = sumSpeedC curv, G ); // 6

// Upwind Computation
Tex2D minG = minGradC dl ); 1 1 1
Tex2D maxG = maxGradC dl ); // 8
Tex2D gMag = gradMagl( minG, maxG, speed, // 9

phi[z], 12NormLUT );

//Do PDE timestep update
Tex2D phi [z] = phiUp( gMag, multScaleLUT ); // 10

}

The partition ing  of th e  com putation  into render passes is d ic tated  by N t, N r and 
N j .  T he current im plem entation a ttem p ts  to  exploit th e  fact th a t entire 4-tuples are 
processed in a single instruction, b u t parallelism  is lim ited by lookup tab le  accesses, 
th e  single ou tp u t lim itation, and of course com putational dependencies.

The 3D solver requires seven render passes per slab to  com pute th e  m ean curvature, 
and a to ta l of sixteen render passes per slab to  com pute an entire tim e step  update. 
For a 256x256xl75 d a ta  set, th is  m eans th a t 2800 render passes are required to  u pdate  
th e  entire volume a single P D E  tim e step. Pseudocode for th e  3D solver is shown 
below.



for(int t=0; t < numSteps; t++) { 
for(int z=0; z < numSlabs; z++) {

// Compute two sets of 4-vec derivatives
Tex2D dl = derivl( phi [z] ); //I
Tex2D d2 = deriv2( phi[mz], phi[pz] ); // 2

// Compute Curvature
Tex2D d3 = deriv3( phi[mz], phi [z], phi[pz] ); // 3
Tex2D d4 = deriv4( phi[mz], phi[z], phi[pz] ); // 4
Tex2D d5 = deriv5( phi[mz], phi[z], phi[pz] ); // 5
Tex2D d6 = deriv6( phi[mz], phi [z], phi[pz] ); // 6
Tex2D cx = curvX( dl, d3, d4, normalizeLUT ); // 7
Tex2D cxy = curvY( dl, d3, d5, cx, normlalizeLUT ); // 8
Tex2D curv = curvZ( dl, d2, d6, cxy, normalizeLUT ); // 9

// Sum the speed functions 
Tex2D speed = sumSpeed( curv, G );

// Upwind Computation 
Tex2D minGl = minGradl( dl, d2 );
Tex2D minG2 = minGrad2( minGl, dl, d2 );
Tex2D maxG = maxGrad( dl, d2 );
Tex2D gMagl = gradMagl( minG2, maxG, speed,

phi [z], 12NormLUT );
Tex2D gMag2 = gradMag2( gMagl );

// Do PDE timestep update
Tex2D phi[z] = phiUp( gMag2, multScaleLUT );

>
>

For th e  rem ainder of th e  discussion, only the  three-dim ensional solver will be discussed 
in detail, b u t th e  two-dim ensional case can easily be derived from th e  discussion.

3.2 Initialization

/ /  10

/ /  11 
/ /  12 
// 13 
// 14

// 15

// 16

The initialization stage of the  program  loads two grayscale volumes into tex tu re  mem­
ory on the  GPU: th e  source image to  be segm ented, I ( x ,  y ,  z ) ,  and the  in itial level set



image, < p (x ,y ,z ,  0). T he initial <p solution is a  grayscale volume w ith  pixel values of 
255 inside a  boundary  (often a  sphere), 127 on th e  boundary  and 0 outside (figure 2).

The scalar <p d a ta  is packed into th e  RGB channels of RGBA, 2D textures. T he slabs 
are processed bo ttom  to  top  and th e  old version of each slab is stored in the  a  channel 
of each RGB pbuffer in order for the  next slab to  use to  com pute th e  correct derivatives 
in the  ^-direction. Because these special render-to-tex ture buffers m ust be in RGB 
or RGBA form at, th is packing b o th  reduces m em ory usage and avoids th e  costly 
changing of destination  buffers. N ote th a t  th is packing relies on the  ability  to  use a 
buffer as b o th  a  tex tu re  inpu t and a  render destination  in the  th e  sam e pass. W hile 
th is behavior is explicitly disallowed by the  render-to-tex ture specification, current 
display drivers perm it th is operation. Because the  render pipeline com putes pixels in 
parallel w ith  no guarantees of ordering, th e  sam pling of neighbors in th is situa tion  
can be undefined. If, however, one is careful to  only sam ple neighborhoods of d a ta  
which is not currently  being w ritten , th en  the  usage has a  clear meaning. We would 
like to  em phasize the  im portance of th is feature and encourage G PU  m anufactures 
to  allow for th is usage model.

The data-driven  speed function, G ( x , y , z )  is com puted based on two thresholding 
constants, 2|0 and Ihi, inpu t from th e  user interface. This tim e-invariant, spatial 
speed function is com puted as

Ihi ho

f  I ( x ,  y ,  z )  -  ho  if I  <  I ave 
\  I h i ~  I { x , y , z )  otherw ise '

This d a ta  is stored into tex tu re  m em ory in 2D, lum inance textures. This speed 
function a ttra c ts  th e  level set surface tow ards grayscale values in th e  source image 
th a t are E  [Ii0, Ihi]- A  graph  of equation 6  is shown in figure 3 .

3.3 C o m p u t a t i o n  Details

For th e  sake of clarity, all quantities except for th e  constan t scalars, i)0 and Ihi, 
are assum ed to  be th ree dim ensional sam plings and the  operations thus apply to  all 
sam ple points (e.g. <p =>- 4> (x ,y ,z ) ) .  This no ta tional convention closely m atches the 
way in which the  vector instructions are specified to  th e  GPU. It is also assumed

G  ( x , y )



Figure 2: 2 D  s lice  o f  th e  in i t ia l  leve l s e t  so lu tio n .

F i g u r e  3 :  T h e  d a ta -d r iv e n  speed  fu n c t io n .  G . w ith  I  6  [ 0 , 1 ] ,



th a t all quantities are sam pled a t th e  sam e tim e step, t ,  unless a tim e argum ent is 
explicitly given as in equation 19.

Six render passes are required to  com pute th e  twenty-one different derivatives required 
for th e  curvature and upwind com putation. T he neighborhood, n ,  from which these 
derivatives are com puted is specified w ith  th e  num bering scheme

6 7

00

CO 4 5
0 1 2

(7)

N ote th a t  4 denotes th e  center pixel, and n f z represents th e  ith  sam ple on th e  slab 
above or below th e  current one. N eighborhoods are sam pled by shifting th e  tex tu re  
coordinates by th e  desired num ber of texels in each direction. The derivatives of <p 
are defined as

D x
D y
d ‘

(n5 -  « 3)/2  
(n7 -  n i) /2

0 / 2( : 4 Z

D +y == { n8 -- T ie ) /2
D - y  == {n-2 ~• «o)/2
TlJrz - ^  x “= i ' 4 z - 0 / 2

D +  == n  5 -- n  4 V)~z -^ X  “= (%* - 0 / 2
r)+

y = n  7 -- n  4 Tl+X -
y = ( n 8 -- n 2) / 2

r\+
^  z - n +z- '<-4 — n  4 T)~x -y = («6 -- «o)/2
D ~ == n  4 -" '% T)+z -

y = i ' 4 z - 0 / 2
== n 4 -- m D ~ zy = ( % z- 111 : )/2

D ~ =-  r ii - - n7iz Tl+X _ 
JJ Z “= ( O - 0 / 2
T)~x - U  z ~= ( O - 0 / 2
D + y == « - 0 / 2
j ) —y

z = « ' r - 0 / 2

(8)

N ote th a t  in order to  re ta in  as much precision as possible, <p is stored € [0, 255] b u t in 
order for the  derivatives to  stay  w ithin th e  sam e range, they  are com puted w ith  (p/2. 
The range [—127,+127] is represented by [0,255]. R esults of derivatives are shifted 
by -127 w hen used and V<p is scaled by 2 in th e  <p u pdate  step  (equation 19).

C urvature is com puted using the  above derivatives and th e  “difference of norm als” 
m ethod introduced by W hitaker and Xue[l]. T he two norm als, n + and n - , are
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(10)

respectively. The com ponents of the  divergence from equation 5 are then  com puted 
as

n-n..
(11)—- = n; — nT, 

d x

On,,

and

— - =  n 1 — n
d y  y y

<9n2

(12)

(13)

Finally, th e  curvature,
<7iir (7iih d n z . 4.

o x  o y  o z

is com puted. Note th a t th e  norm alization of n + and are perform ed w ith  a cube 
m ap lookup tab le  because division and square-root are not instructions available in 
the  R adeon 85QQ’s fragm ent shader hardw are. A lookup tab le  is also used because 
the  in term ediate values in the  norm alization m ay get quite large, b u t the  end result is 
w ithin the  lim ited, available range. The constan t factor of four in equation 9 and 10 
is necessary to  keep th e  resulting value E [0, 255].



The upwind approxim ation to  V<p is then  com puted using D +, D +, D +, D x , D y , 
and D ; .  To begin,

V& nax =

is com puted followed by

V<Pmin

/m a ® (D + , 0)2 +  m a x { —D ~ ,  0)2 

y J m a x ( D + ,  0)2 +  m a x ( - D ~ ,  0)2 

. /m a ® (D + , 0)2 +  m a x ( —D ~ ,  0)2 .

y / m i n ( D + , 0)2 +  m i n ( - D ~ ,  0)2 

y J m i n ( D + ,  0)2 +  r n i n { - D - ,  0)2 

. y / m i n ( D + , 0)2 +  m i n ( - D 0)2 .

(15)

(16)

Ju st as w ith  th e  norm alization of th e  gradient vectors, th e  euclidean norm s in th e  
above equations are com puted w ith  a  lookup table. T he final choice of V<p is defined 
by

' IV ^ n a x lh  if -F1 >  0 (1?)

(18)

^  1 11 <Pm in 112 otherwise 

where F  is com puted as th e  linear com bination of FI and G:

F  =  CoG +  CiH where c,\ =  1 — cq .

The (j){t +  A t )  values are th en  com puted by

<p(t +  A t )  =  <p(t) +  A tcF \V < p\, (19)

where c is th e  scaling by two necessitated by <p being stored in [0,255]. Due to  
roundoff errors and other inconsistencies in th e  G PU  processing, c =  1.9 in th is 
im plem entation. The next section discusses th is issue further. Because c m ust be 
a  floating-point value, it is passed into th e  fragm ent shader as an  “ex tra” tex tu re  
coordinate.

3.4 Object Oriented O p e n G L  F r a m e w o r k

The current level set solver is bu ilt w ith  modules from an object-oriented framework 
th a t has been built on top  of OpenGL. T he design a ttem p ts  to  provide a  framework



in which re-usable O penG L code can easily be w ritten . Unlike o ther object-oriented 
O penG L encapsulations such as GI.T 29 and 0penlnventor[30], my framework is de­
signed for low-level O penG L developers ra th e r th a n  high-level graphics program m ers. 
It also does not a ttem p t to  encapsulate any w indowing-related calls o ther th a n  th e  
handling of pbuffers. It is expected th a t G LU T or some other windowing u tility  will 
be used.

The new framework defines a set of reusable and extensible m odules th a t can be 
com posited into higher-level objects. The multi-level approach is very flexible in th a t 
a user can choose to  work a t any level from raw O penG L code to  m anipulating entire 
render passes. M ultiple levels can be used w ithin th e  sam e application. A nother goal 
of th e  library is to  encapsulate all hard  ware-specific O penG L code into pluggable 
m odules so th a t m ultiple G PU  architectures can be easily supported  by an appli­
cation. In addition all O penG L extensions from N vidia and  ATI are autom atically  
loaded. This framework is referred to  as Glift. A class tree  of Glift is shown in 
figure 4.

The design supports two types of O penG L calls: those th a t se t/u n se t pipeline s ta te  
and those th a t in itia te  processing of d a ta  th rough  th e  pipeline. A th ird  type of call, 
pipeline s ta tu s  queries, are not currently  supported  bu t could be added later. All 
O penG L calls th a t se t/u n se t s ta te  are encapsulated by th e  class tree  based on th e  
Attribute interface. This interface specifies a bind()  and re le a se  ()  v irtual m ethod. 
O penG L calls th a t move d a ta  th rough  th e  pipeline are encapsulated by th e  class tree 
based on th e  Drawable interface. Drawable sim ply specifies a draw() m ethod. A 
th ird  class tree  based on th e  Renderable interface combines all th e  Attributes and 
Drawables th a t specify an entire render pass.

In addition, all G lift objects support a compile()  m ethod th a t  a ttem p ts  to  compile 
th e  O penG L com m ands encapsulated by th e  object into a display list. N ote th a t 
th is  feature provides a way to  “compile away” th e  abstrac tion  penalty  th a t m ight 
otherw ise exist. My experience thus far has shown, however, th a t th e  current level 
set solver is com pletely G PU -bound and th e  Glift abstrac tion  layers do not affect th e  
execution speed of th e  code.

G lift is designed to  provide a m inim al am ount of pre-encapsulated O penG L s ta te  
and have obvious extension points for adding more functionality  as desired. As Glift 
m atures, more functionality  can come pre-defined by th e  library. The following is a 
list of current extension points:



Command

-  PBuffer
- PixelShader

-  ProgShader

Compilable -

r  Attribute

r  GenAttrib

PixelShaderATI

Shader

- Texture

r  MultiTexture
SingleTexture BasicTexture

EmptyTexture

-  Drawable -

r  RawPrim -

r  MultiPrim SubdivPlanarQuad

SinglePrim -

r  PrimGL

LineLoopGL

LinesGL

LineStripGL

PointsGL
PolygonGL

QuadsGL

QuadStripGL

TriangleFanG L
TriangleGL

TriangleStripGL

WrappedPrim PlanarQuad

ShadedPrim
RenderPass

DrawAlgorithm DrawAlgArr

TexCoordGen

r  QuadTexGen
ScaleTexGen2D

- TexConst

TexTrans

F i g u r e  4 :  C la ss  tree  f o r  th e  G lift , o b je c t-o r ie n te d  O p e n G L  fr a m e w o r k .



C l a s s  N a m e P u r p o s e

GenAttrib
PixelShader
VertexShader
WrappedPrim
MultiPrim
RenderPass

DrawAlgorithm

TexCoordGen

Defining any b ind /release a ttr ib u te  th a t is no t already defined.
Defining interfaces to  hardware-specific fragm ent shaders
Defining interfaces to  hardware-specific vertex shaders
Defining high-level drawables th a t contain only a  single Prim G L  object
Defining high-level drawables th a t contain m ultiple Prim G L objects
Defining a  render pass with functionality different th an
has been provided
Defining a  drawing algorithm  other th a n  th e  s tandard  
(g lB egin(.. .) /g lE n d ( ...)  or vertex array  m ethod 
Defining tex tu re  coordinate generation algorithm s

To build a  render pass, th e  a ttr ib u tes  are first combined into a  Shader object. The 
Drawables are then  defined and p u t into a  MultiPrim. T he Shader object and  the  
Multiprim (or any other RawPrim) are com bined into a  ShadedPrim object. A t th is 
point, any tex tu re  coordinate pertu rba tions (tex ture coordinate offsets and tex tu re  
coordinate constants) th a t are defined by th e  shader are applied to  th e  tex tu re  coor­
dinates for th e  prim itives. In addition, if m ultiple tex tu res are specified in th e  shader, 
m ultiple sets of tex tu re  coordinates are generated. This ShadedPrim object (or any 
Drawable) is combined optionally with a tex tu re  a n d /o r  pbuffer destination  into a 
RenderPass.

Glift has been used to  build a  ComputeSlab class th a t serves as a  base class to  all 
th e  render passes in th e  level set solver. T he subclasses of ComputeSlab define only 
the ir inpu t tex tu res (SingleTexture pointers), th e  shading language being used, the  
destination  pbuffer, tex tu re  coordinate pertu rba tions, and th e  fragm ent shader (po­
ten tia lly  in m ultiple languages). A ComputeSlab can be though t of as a  function call 
where th e  inpu t tex tu res are th e  argum ents, th e  fragm ent program  is th e  subroutine 
code, and  th e  destination  pbuffer holds th e  results.

4  R e s u l t s

We have bu ilt a  two- and  three-dim ensional, G PU -based level set solver and  used 
it to  create an  image and volume segm entation application. To our knowledge, this 
is th e  first level set solver im plem ented on a  G PU  th a t includes curvature flow. For 
two dim ensions and small three-dim ensional datasets, th e  program  runs a t interactive
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Figure 5: In i t ia l  le v e l s e t  s o lu t io n  (w h ite  l in e )  s u p e r im p o s e d  on  a s lice  o f  M R I  d a ta  
c o u r te s y  o f  D a v id  W e in s te in .

rates. This allows users, for the first time, to use parameters such as the fraction of 
curvature flow as visualization parameters to achieve the desired segmentation.

Figure 5 shows the source image for a 2D segmentation with the initial level set 
solution as a white circle near the center. The segmentation was accomplished in 
three stages. Each stage consisted of enough time steps (500) to allow the level set 
solution to converge. The grayscale thresholding constants, I j0 and Ihi were set to 0.3 
and 0.55 respectively for all three stages, in the first stage, the speed function was 
composed entirely of G  with no curvature flow included. This created the noisy image 
surface shown in figure 6. The second stage (figure 7) used a speed function with 50% 
curvature flow. Note that much of the fine detail has been lost due to the smoothing 
effect of the curvature. In the last stage, only 5% curvature was used in the speed 
function (figure 8) in order to regain much of the fine detail present in 6 but without 
the noise. These segmentations qualitatively match the results of a floating-point, 
software level set solver.

In the current version of the solver, one time step on a 256 x 256 image takes 4 millisec­
onds with curvature flow enabled and 2 milliseconds without it. This is approximately 
the same speed as a highly-optimized, sparse-field software implementation. This re­
sult is disappointing but not surprising, given the fact that the GPU-based solver 
is computing an update at every pixel whereas the software implementation is only 
computing updates on or near the isosurface.

F i g u r e  1 0  s h o w s  a  b r a i n  s u r f a c e  e x t r a c t e d  f r o m  a  2 5 6 a ’2 5 6 a ’1 7 5 ,  M R I  d a t a  s e t  ( f i g u r e



Figure 6: L e v e l s e t  s o lu t io n  a f te r  th e  f i r s t  s e g m e n ta t io n  s ta g e  (w h ite  l in e ) . G ra ysca le  
th re sh o ld  v a lu e s  w ere  s e t  to  I\0 =  0.3 a n d  I hi = 0.55, a n d  n o  c u r v a tu r e  f lo w  w a s  used.

Figure 7: L e v e l  s e t  s o lu t io n  a f te r  th e  s e c o n d  s e g m e n ta t io n  s ta g e  (w h ite  l in e ) . G ra ysca le  
th re sh o ld  v a lu e s  w ere  s e t  to  I\0 = 0.3 a n d  I hi =  0.55, a n d 50% c u r v a tu r e  f lo w  w a s  
used.



Figure 8: L e v e l s e l  s o lu t io n  a f te r  th e  th ir d  s e g m e n ta t io n  s ta g e  (w h ile  l in e ) . G ra ysca le  
th re sh o ld  v a lu e s  were, s e l  lo  l i Q — 0.3 a n d i/„; =  0.55, a n d 5% c u r v a tu r e  f lo w  w a s  used .

Figure 9: S lic e  o f  th e 256a’256a’175 M R I  d a ta  fr o m  w h ic h  f ig u r e s  10 a n d  11 w ere  
se g m e n te d .



Figure 10: B r a in  su r fa c e  s e g m e n te d  u s in g  th e  G P U -based , le v e l s e t  so lv e r . B o th  th e  
d a ta -d r iv e n  a n d  c u r v a tu r e  speed  t e r m s  w ere  u se d  to  o b ta in  th is  su r fa c e .

Figure 11: B ra ,in  su r fa c e  s e g m e n te d  u s in g  a C P U , softwa.re-ba.sed. so lv e r . T h e  s a m e  
d a ta -d r iv e n  a n d  c u r v a tu r e  speed, t e r m s  used, f o r  th e  G P U -b a se d  s e g m e n ta t io n s  w ere  
also  used, to  o b ta in  th is  su r fa c e .



9) using our G PU -bascd level set solver. F igure 11 shows th e  brain  surface extracted  
from the  same d a ta  set using a  floating-point, software solver. N ote th a t  th e  sur­
faces are qualitatively similar. O ur solver is approxim ately two tim es faster th an  
th e  software im plem entation despite th a t it is perform ing roughly ten  tim es as m any 
calculations. If th e  G PU  solver were only processing th e  voxels near th e  isosurface, 
th e  theoretical speedup is g reater th a n  tw enty tim es over th e  software version. N ote 
th a t G PU s are also increasing in power a t a  faster ra te  th a n  CPU s so this gap will 
continue to  increase over time.

5  D i s c u s s i o n

We have im plem ented a  two- and three-dim ensional level set solver, th a t includes 
m ean curvature flow, on th e  ATI R adeon 8500. All com putations are perform ed in 
8-bit, fixed-point arithm etic. In 2D, th is solver runs a t approxim ately the  sam e speed 
as an  optim ized software im plem entation. A 3D exam ple running on a  256s’256sl75  
d a ta  set runs a t twice th e  speed of th e  CPU -based solution. A lthough these results 
are encouraging, they  are m erely a  proof of concept.

Fu ture work will take advantage of m ore the  powerful fragm ent program s of the  next 
generation of GPUs. It currently  takes sixteen render passes per slice for a  single 
P D E  tim e step  update. This num ber will be significantly reduced on new G PU s due 
to  an  increased instruction  lim it, a  richer instruction  set, and the  ability to  ou tp u t 
more th a n  four values per pass.

O ur solver is com puting PD E  updates a t all pixel/voxel locations, and is thus not 
tak ing  advantage of th e  sparse na tu re  of th e  moving wavefront. We estim ate th a t 
speedups of a t least tw enty five tim es are possible by com puting only those values 
near th e  surface. Fu ture work will explore th e  use of dep th  and stencil culling, hier­
archical spatial decom positions, compression of th e  dynam ic tex tu re  data , and other 
possibilities to  achieve th is optim ization.
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