
A G P U - B a s e d ,

T h r e e - D i m e n s i o n a l L e v e l S e t

S o l v e r w i t h C u r v a t u r e F l o w

Aaron Lefohn Ross Whitaker
School o f Computing School of Computing

Univ. o f Utah Univ. o f Utah
lefohnae@cs.utah. edu whitaker@cs.utah.edu

University of Utah, School of Computing
Technical Report UUCS-02-017

School of C om puting
U niversity of U tah

Salt Lake City, UT 84112 USA

Decem ber 11, 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:whitaker@cs.utah.edu

Abstract

Level set methods arc a powerful tool for implicitly representing deformable
surfaces. Since their inception, these techniques have been used to solve prob
lems in fields as varied as computer vision, scientific visualization, computer
graphics and computational physics. W ith the power and flexibility of this
approach; however, comes a large computational burden. In the level set ap
proach, surface motion is computed via a partial differential equation (PDE)
framework. One possibility for accelerating level-set based applications is to
map the solver kernel onto a commodity graphics processing unit (GPU). GPUs
arc parallel, vector computers whose power is currently increasing at a faster
rate than tha t of CPUs, in this work, wc demonstrate a GPU-based, three
dimensional level set solver that is capable of computing curvature flow as well
as other speed terms. Results arc shown for this solver segmenting the brain
surface from an MRI data set.

1 In tro d u c t io n

The level set approach to representing deform able surfaces1 has recently spurred ad
vances in image processing[l, 2], surface processing[3, 4], image and volume segm entation[5,
6], surface reconstruction [7], and com puter anim ation [8, 9, 10]. T he level set tech
nique represents surfaces im plicitly as interfaces, and uses th e framework of partia l
differential equations (PD Es) to com pute surface m otion [ll]. In general, a set of
speed functions are created to act on th e surface and define a level set PD E , which is
solved to find th e surface position th rough time. T he details of th e speed functions
are defined by th e application.

In con trast to o ther m odeling techniques, surfaces represented by a level set can easily
change size, split into m ultiple entities, merge m ultiple surfaces into one and change
topological genus. M uch of th is power and flexibility is due to th e fact th a t level set
m ethods em bed a surface in a space th a t is one-dim ensionally higher. This increase in
dim ensionality clearly leads to more com putational complexity. The narrow -band [12]
and sparse-field[13] approaches to solving level set equations have reduced th e com
plexity to scale w ith th e hyper-surface area2 of th e surface ra th e r th a n th e size of the
space in which it is em bedded. D espite these advances, m ost level set applications do
not run a t interactive rates. T he surface editing operations in M useth et al. [4] took
tens of seconds, and the surface reconstructions in Elangovan et al. [6] took up to five
hours to com pute.

Recent advances in com m odity graphics processing units (G PU s) have m ade them an
a ttrac tiv e alternative com puting platform for certain applications. G PU s are parallel
vector processors th a t are highly optim ized for combining stream ing two- and th ree
dim ensional d a ta to make a single, tw o-dim ensional image. In th e last two years,
G PU s’ fixed-function graphics pipeline has begun to be replaced w ith one th a t is
highly program m able [14, 15, 16]. This program m ability, combined w ith the vector
na tu re of th e processors, has opened up th e possibility of using G PU s for com putations
o ther th a n scan-conversion.

R um pf et al. [17] were the first to show th a t the level set equations could be solved
using a graphics accelerator. Their solver im plem ented th e two-dim ensional level set
m ethod using a tim e-invariant speed function for flood-fill-like image segm entation.
The sam e group and others [18, 19] have published work s ta ting how various scientific

1 Surface is used throughout this paper to mean a curve, surface, or hyper-surface.
2The ’’Hyper-surface area” is the measure of the n — 1 space defined by a R” surface. For a

two-dimensional curve, the hyper-surface area is the arc length. For a three-dimensional surface it
is the surface area.

com puting prim itive operations can be m apped to graphics hardware[20]. I t has
been shown th a t grid-based com putations may benefit greatly from th e high memory
bandw idth and parallelism available on graphics boards. W hile these efforts have
helped lay th e groundw ork for non-graphics use of G PUs, there are some key advances
th a t m ust first be m ade before an easily-customizable, three-dim ensional level set
solver will be m ade to run interactively on a GPU.

From a practical standpoin t, w riting scientific com puting software for current G PU s
is difficult, error-prone, and tedious. T he first reason for th is is th a t all G PU in
structions are issued via a graphics A PI such as OpenGL[21] or Direct3D[22], This
fact makes for a non-obvious m apping of scientific com puting algorithm s to GPUs.
This work addresses th is problem . T he second difficulty in using G PU s for scien
tific com puting is th a t current G PU s are only capable of low-precision, fixed-point
arithm etic. As a result, scales and biases m ust be carefully applied th roughout the
calculation. Fu ture G PU releases will be capable of floating-point com putations, bu t
m em ory lim itations may continue to make fixed-point com putations an a ttrac tiv e op
tion. T he other obstacle to com puting w ith G PU s is th a t much of th e software m ust
be w ritten in a hardware-specific assembly language. This of course makes th e code
error-prone as well as hard to w rite, read, and reuse. Proudfoot et a l.’s S ta n fo r d S h a d
ing L anguage[23], th e O penG L 2.0 shading language[24], N vidia’s C G language[25],
and M icrosoft’s H igh L eve l S h a d in g Language[26] all a ttem p t to provide a high-level
language interface w ith which to program GPUs. T he G PU and operating system
specificity of th e language, however, may still rem ain a challenge to cross-platform
developers until a s tandard is established.

The next section discusses th e technical background behind level set m ethods and
graphics accelerators. Section 3 describes th e m apping of the level set equations to
a G PU and th e software framework th a t has been built to support it. Section 4
discusses our results and possibilities for fu tu re work.

2 T e c h n i c a l B a c k g r o u n d

2.1 Level Set Explanation

In th e level set approach, a n-dim ensional surface is em bedded in a R ”+1 space. A
scalar function, <̂ >(x, t) defines an em bedding of a surface, where x G M”+1 and t is

tim e. The set of points on th e surface, S, are m apped by d> such th a t

S = { x |0 (x) = A:}, (1)

where k is an arb itra ry scalar value (often zero). It can also be said th a t S is th e k
level set of d>. A closed form of d> is not known, bu t an initial estim ation of it can be
obtained by building a discrete sam pling of it on a R ”+1 grid. This is done by setting
each point in S to k, all points inside th e interface to d> > k and positions outside to
d> < k. If the initial sam pling of d> sets all values in th e range [0,1], then a curve or
surface can easily be represented by a grayscale image or volume.

In order to p ropagate d> (and therefore th e surface) in tim e, we define th e first-order,
p artia l differential equation

% - (2)
where F is a signed, scalar speed function th a t defines th e speed in th e direction
norm al to d> a t any point x. F m ay be of th e form F (x) , F (x , t), or F(d>, D ^ , . . .) .
The choice of speed function is defined by th e application and com binations of them
may be used to cap ture a desired behavior.

The initial estim ation of d> is propagated forward in tim e v ia th e up-w ind scheme[27].
To guarantee a stab le solution, the upwind scheme approxim ates Vd> using one-sided
derivatives th a t are always in th e “up-w ind” direction of the propagating surface.
The largest allowable tim e step, A t , is inversely proportional to th e m axim um speed
a t a given tim e, t . T he solution will become unstable if a larger value for A t is used.
Given th a t ^ is defined by equation 2 and th e general u pdate equation is

dd)
(f>(x, t + A t) — (f>(x, t) + A t — , (3)

th e level set u p d a te equation is

(f>(x, t + A t) = (f>(x, t) + A t F \ V(f>|. (4)

The m ean curvature of d>, hereafter referred simply as curvature, is commonly used
as a speed function to p ropagate d>. A surface under curvature flow will become
“sm oother” and in fact, under pure curvature flow, a convex surface will converge to
th e fi-sphere and finally a single p o in t[28], C urvature flow is often combined w ith
o ther speed functions to sm ooth out an otherw ise rough surface solution. T he m ean
curvature of d> is defined as

H = c„V • (5)
IV

where, if n is th e dim ensionality of th e surface, cn — l / (n — 1). T he details of
estim ating Vd> and Ft are presented in section 3.

2 .2 Details of a G r a p h i c s Processing U n i t

G raphics processing units are designed to render vertex positions, m aterial properties,
lighting inform ation, and tex tu re m aps into a single, two-dim ensional image. In
addition to th e (x , y, z) position, each vertex may have a set of tex tu re coordinates, a
norm al vector, a n d /o r a color associated w ith it. T he processing unit can be thought
of as a pipeline (figure 1). This pipeline first transform s vertices into a com mon model
space, then applies lighting calculations to each vertex. T he vertex inform ation is then
rasterized into f ra g m en ts . A fragm ent is th e generalization of a pixel. In addition to
the (x , y, z) position and (r, g, b, a) values associated w ith a pixel, a fragm ent may also
contain a set of in terpolated tex tu re coordinates. T here can be m ultiple fragm ents
th a t m ap to the sam e (x , y) pixel location. A fter being rasterized a fragm ent is
tex tu red and then passed th rough a series of tests before becom ing a pixel. These
tests include th e scissor, alpha, stencil and dep th test. If a fragm ent survives all
of these and several o ther operations, it becom es a pixel. The final ou tp u t is the
(r, g, b, a) 4-tuple as well as th e pixel’s dep th (z) value.

G PU program m ing consists of two basic types of operations: those th a t set or unset
pipeline s ta te and those th a t move d a ta th rough the pipeline. In a fixed-function
graphics pipeline, render s ta te is se t/u n se t by m aking graphics A PI calls. A pro
gram m able pipeline provides an assembly-level or language-level interface for speci
fying portions of th e render s ta te . T here are two points of program m ability in m ost
m odern GPUs: th e vertex stage and th e fragm ent stage. Vertex program s (or shaders
as they are commonly referred to) control th e vertex transform ation and tex tu re co
ordinate pipeline stages. Fragm ent shaders allow a program m er to specify th e final
color of a fragm ent by com bining m ultiple texels, tex tu re coordinates, and colors w ith
a lim ited instruction set. A texe l is th e tex tu re m ap equivalence of a pixel.

A r en d e r pass is defined as one set of d a ta moving entirely th rough th e G PU pipeline.
The destination of a render pass is norm ally the color buffer, which can then be dis
played to a video m onitor. T he destination can alternatively be a non-displayable
buffer called a pixel buffer (pbuffer). Pbuffers can be sized differently th a n th e dis
play window and can also be associated w ith a tex tu re (render-to-texture). W hen
associated w ith a tex ture, th e pbuffer memory can be b o th rendered into and bound
as a tex tu re map. This will prove to be an im portan t feature when using G PU s as
com putational platform s. We have found th a t changing between destination buffers
is a very slow process, tak ing approxim ately 0.25 milliseconds. We have thus gone to
great lengths to avoid changing pbuffer targets.

A given G PU will support some num ber of tex tu re un its , N t , which determ ines how

F i g u r e 1 : T h e g ra p h ic s p ro c e s s in g u n i t (G P U) p ip e lin e .

m any tex tu res may be sim ultaneously applied in th e sam e render pass. Each tex tu red
vertex may be given up to N t separate tex tu re coordinates (location in a tex tu re m ap).
N ote th a t each of these coordinates m ay be for a one, two, or th ree dim ensional
tex ture. Also note th a t tex tu re coordinates will generally not fall exactly on a texel
location. The tex tu re sam pling can therefore be specified to use th e nearest texel or
com pute an in terpolated value a t th e tex tu re coordinate position. T he in terpolation is
linear, bi-linear, or tri-linear depending on th e dim ensionality of th e tex tu re map. N t
is between two and six in current hardw are and is expected to increase substantially
in fu tu re cards.

The rem aining sections will give specific hardw are examples in term s of th e ATI
Radeon 8500 G PU because it is th e G PU on which we have im plem ented my level
set solver. W hile fu ture N vidia G PU s will be supported , th e 8500’s fragm ent shader
features were th e m ost feature-rich a t th e tim e th is work began.

Vertex shaders are powerful tools for graphics applications, b u t for grid-based com
putations, such as a level set solver, nearly all of th e calculations are perform ed w ith
th e fragm ent shader. T he discussion will thus be focused on th e details of th e la tter.
The inpu t to a fragm ent shader program consists of up to N t tex tu re coordinates,
up to N t tex tures, two (r , g , b , a) colors, and up to N c fixed-point constants. Each
tex tu re coordinate may contain up to four, 32-bit floating-point values. All other
inputs are 8-bit, fixed poin t num bers. T he ou tp u t from a fragm ent shader is a single,
8-b it, fixed-point (r, g, b, a) 4-tuple. T he in ternal precision of th e tem porary registers
is generally higher precision th a n th e inpu t and ou tpu t. As w ith th e o ther lim itations,
it is expected th a t th e available precision will increase on fu tu re GPUs. In th e short
term , however, th e work proposed herein m ust address th e challenges presented by
com puting w ith fixed-point operations.

All fragm ent shader instructions are vector-type instructions th a t operate on all frag
m ents in a render pass. T he fragm ents are processed in parallel by m ultiple functional
units and an entire (r, g, b, a) 4-tuple is processed by each instruction. T he num ber of
instructions allowed in a fragm ent program , N f , is lim ited by th e G PU hardw are (the
ATI Radeon 8500 allows only sixteen). It is expected th a t fu ture hardw are releases
will substan tially increase th e num ber of allowed instructions. Fragm ent shaders have
a lim ited num ber of tem porary registers, N r , available to hold in term ediate com pu
ta tions. This is often th e same as th e num ber of tex tu re units. Ju st as w ith N t , N r
in current hardw are is between two and six.

In addition to sam pling th e inpu t tex tures, th e ATI Radeon 8500’s fragm ent shader
supports th e following operations: add, sub trac t, multiply, move, conditional choice
of two values and dot product. Division is supported only by divisors of two, four,

and eight. Instruction modifiers allow for th e instruction destination to m ask any of
th e four channels and for an instruction source to repeat any one channel on all four
channels. B ranching and subroutine calls do not exist.

An especially powerful feature in program m able G PU s is dependent tex tu re reads.
This allows for th e com putation of tex tu re coordinates w ithin a fragm ent shader and
th e use of those coordinates to perform a lookup into ano ther tex ture. D ependent
tex tu re reads allows th e use of tex tu res as lookup tab les (LUTs). The ATI R adeon’s
hardw are allows for two sam ple stages per fragm ent shader. In th e first stage, up to
N t tex tu res are sam pled and m athem atical operations are perform ed on th e input.
The second stage begins when th e same tex tu res are sam pled again, bu t now w ith
th e possibility of using a com puted result as th e tex tu re coordinates for th e lookup.

G rid-based com putations on G PU s use tex tu re m aps to hold all input, in term ediate
and ou tp u t data. Each render pass renders to a tex tu re m ap via a pbuffer, and
th a t tex tu re is bound as inpu t to a la ter pass. As m entioned early, th e d a ta in
each tex tu re are 8-bit, fixed-point values. C om putations are perform ed by m apping
m ultiple tex tu re m aps to a single, p lanar quadrila teral (a c o m p u te slab) and using a
fragm ent shader to combine th e inputs into a single ou tpu t. For three-dim ensional
calculations, a stack of com pute slabs is used, and th e d a ta is stored in m ultiple two
dim ensional tex tures. Each com pute slab uses d a ta from th e slabs above and below
it in addition to its own.

3 D e s i g n

O ur system consists of an O penG L-based, 2D and 3D level set solver running on
an ATI Radeon 8500 graphics processing unit. An image and volume segm entation
program has been created based on th is solver. T he speed function for th is application
is created by com bining a pre-eom puted, data-driven speed w ith th e m ean curvature.

3.1 C o m p u t a t i o n Over v i e w

The 2D solver requires five render passes to com pute th e curvature speed term , a
pass to combine th e speed term s, th ree more passes to com pute th e up-w ind approx
im ation to V<p, and a single pass to combine th is inform ation and u p d a te <fi(t) to
(p(t + A t). If only tim e-invariant speed functions are used, <p can be advanced in six

instead of ten passes. Pseudocode for th e 2D solver is shown below. Each num bered
line represents a render pass, w ith th e inpu t tex tu res as function argum ents. D estina
tion pbuffers/tex tures are considered variables, and tem poraries are allocated using
register allocation strategies.

for(int t=0; t < numSteps; t++) {
// Compute first set of derivatives
Tex2D dl = derivl(phi[z]); //I

// Compute Curvature
Tex2D d2 = deriv3(phi[z]); // 2
Tex2D d3 = deriv4(phi[z]); // 3
Tex2D cx = curvX(dl, d2, d3, normalizeLUT); // 4
Tex2D curv = curvY(dl, d2, d3, cx, normlalizeLUT); // 5

// Sum the speed functions
Tex2D speed = sumSpeedC curv, G); // 6

// Upwind Computation
Tex2D minG = minGradC dl); 1 1 1
Tex2D maxG = maxGradC dl); // 8
Tex2D gMag = gradMagl(minG, maxG, speed, // 9

phi[z], 12NormLUT);

//Do PDE timestep update
Tex2D phi [z] = phiUp(gMag, multScaleLUT); // 10

}

The partition ing of th e com putation into render passes is d ic tated by N t, N r and
N j . T he current im plem entation a ttem p ts to exploit th e fact th a t entire 4-tuples are
processed in a single instruction, b u t parallelism is lim ited by lookup tab le accesses,
th e single ou tp u t lim itation, and of course com putational dependencies.

The 3D solver requires seven render passes per slab to com pute th e m ean curvature,
and a to ta l of sixteen render passes per slab to com pute an entire tim e step update.
For a 256x256xl75 d a ta set, th is m eans th a t 2800 render passes are required to u pdate
th e entire volume a single P D E tim e step. Pseudocode for th e 3D solver is shown
below.

for(int t=0; t < numSteps; t++) {
for(int z=0; z < numSlabs; z++) {

// Compute two sets of 4-vec derivatives
Tex2D dl = derivl(phi [z]); //I
Tex2D d2 = deriv2(phi[mz], phi[pz]); // 2

// Compute Curvature
Tex2D d3 = deriv3(phi[mz], phi [z], phi[pz]); // 3
Tex2D d4 = deriv4(phi[mz], phi[z], phi[pz]); // 4
Tex2D d5 = deriv5(phi[mz], phi[z], phi[pz]); // 5
Tex2D d6 = deriv6(phi[mz], phi [z], phi[pz]); // 6
Tex2D cx = curvX(dl, d3, d4, normalizeLUT); // 7
Tex2D cxy = curvY(dl, d3, d5, cx, normlalizeLUT); // 8
Tex2D curv = curvZ(dl, d2, d6, cxy, normalizeLUT); // 9

// Sum the speed functions
Tex2D speed = sumSpeed(curv, G);

// Upwind Computation
Tex2D minGl = minGradl(dl, d2);
Tex2D minG2 = minGrad2(minGl, dl, d2);
Tex2D maxG = maxGrad(dl, d2);
Tex2D gMagl = gradMagl(minG2, maxG, speed,

phi [z], 12NormLUT);
Tex2D gMag2 = gradMag2(gMagl);

// Do PDE timestep update
Tex2D phi[z] = phiUp(gMag2, multScaleLUT);

>
>

For th e rem ainder of th e discussion, only the three-dim ensional solver will be discussed
in detail, b u t th e two-dim ensional case can easily be derived from th e discussion.

3.2 Initialization

/ / 10

/ / 11
/ / 12
// 13
// 14

// 15

// 16

The initialization stage of the program loads two grayscale volumes into tex tu re mem
ory on the GPU: th e source image to be segm ented, I (x , y , z) , and the in itial level set

image, < p (x ,y ,z , 0). T he initial <p solution is a grayscale volume w ith pixel values of
255 inside a boundary (often a sphere), 127 on th e boundary and 0 outside (figure 2).

The scalar <p d a ta is packed into th e RGB channels of RGBA, 2D textures. T he slabs
are processed bo ttom to top and th e old version of each slab is stored in the a channel
of each RGB pbuffer in order for the next slab to use to com pute th e correct derivatives
in the ^-direction. Because these special render-to-tex ture buffers m ust be in RGB
or RGBA form at, th is packing b o th reduces m em ory usage and avoids th e costly
changing of destination buffers. N ote th a t th is packing relies on the ability to use a
buffer as b o th a tex tu re inpu t and a render destination in the th e sam e pass. W hile
th is behavior is explicitly disallowed by the render-to-tex ture specification, current
display drivers perm it th is operation. Because the render pipeline com putes pixels in
parallel w ith no guarantees of ordering, th e sam pling of neighbors in th is situa tion
can be undefined. If, however, one is careful to only sam ple neighborhoods of d a ta
which is not currently being w ritten , th en the usage has a clear meaning. We would
like to em phasize the im portance of th is feature and encourage G PU m anufactures
to allow for th is usage model.

The data-driven speed function, G (x , y , z) is com puted based on two thresholding
constants, 2|0 and Ihi, inpu t from th e user interface. This tim e-invariant, spatial
speed function is com puted as

Ihi ho

f I (x , y , z) - ho if I < I ave
\ I h i ~ I { x , y , z) otherw ise '

This d a ta is stored into tex tu re m em ory in 2D, lum inance textures. This speed
function a ttra c ts th e level set surface tow ards grayscale values in th e source image
th a t are E [Ii0, Ihi]- A graph of equation 6 is shown in figure 3 .

3.3 C o m p u t a t i o n Details

For th e sake of clarity, all quantities except for th e constan t scalars, i)0 and Ihi,
are assum ed to be th ree dim ensional sam plings and the operations thus apply to all
sam ple points (e.g. <p =>- 4> (x ,y ,z)) . This no ta tional convention closely m atches the
way in which the vector instructions are specified to th e GPU. It is also assumed

G (x , y)

Figure 2: 2 D s lice o f th e in i t ia l leve l s e t so lu tio n .

F i g u r e 3 : T h e d a ta -d r iv e n speed fu n c t io n . G . w ith I 6 [0 , 1] ,

th a t all quantities are sam pled a t th e sam e tim e step, t , unless a tim e argum ent is
explicitly given as in equation 19.

Six render passes are required to com pute th e twenty-one different derivatives required
for th e curvature and upwind com putation. T he neighborhood, n , from which these
derivatives are com puted is specified w ith th e num bering scheme

6 7

00

CO 4 5
0 1 2

(7)

N ote th a t 4 denotes th e center pixel, and n f z represents th e ith sam ple on th e slab
above or below th e current one. N eighborhoods are sam pled by shifting th e tex tu re
coordinates by th e desired num ber of texels in each direction. The derivatives of <p
are defined as

D x
D y
d ‘

(n5 - « 3)/2
(n7 - n i) /2

0 / 2(: 4 Z

D +y == { n8 -- T ie) /2
D - y == {n-2 ~• «o)/2
TlJrz - ^ x “= i ' 4 z - 0 / 2

D + == n 5 -- n 4 V)~z -^ X “= (%* - 0 / 2
r)+

y = n 7 -- n 4 Tl+X -
y = (n 8 -- n 2) / 2

r\+
^ z - n +z- '<-4 — n 4 T)~x -y = («6 -- «o)/2
D ~ == n 4 -" '% T)+z -

y = i ' 4 z - 0 / 2
== n 4 -- m D ~ zy = (% z- 111 :)/2

D ~ =- r ii - - n7iz Tl+X _
JJ Z “= (O - 0 / 2
T)~x - U z ~= (O - 0 / 2
D + y == « - 0 / 2
j) —y

z = « ' r - 0 / 2

(8)

N ote th a t in order to re ta in as much precision as possible, <p is stored € [0, 255] b u t in
order for the derivatives to stay w ithin th e sam e range, they are com puted w ith (p/2.
The range [—127,+127] is represented by [0,255]. R esults of derivatives are shifted
by -127 w hen used and V<p is scaled by 2 in th e <p u pdate step (equation 19).

C urvature is com puted using the above derivatives and th e “difference of norm als”
m ethod introduced by W hitaker and Xue[l]. T he two norm als, n + and n - , are

c o m p u t e d b y

and

n

DT

4,/(D+)2-

4y (Dy)2-

4 / (£,+)2

n

4\/ (DT)2-

(D+X+Dy 2 /
) + (v 2

Uy

r + (
^D+y+Dx''

£)~̂~
(D+Z+DXS

r + (\ 2

dt

(Dyx+Dy' 2 /
) + (V 2

Dy
(DTy+Dx

f + (\ 2

D~

D7y+Dz

Dz y+Dz

Dv "+£>,

(9)

(10)

respectively. The com ponents of the divergence from equation 5 are then com puted
as

n-n..
(11)—- = n; — nT,

d x

On,,

and

— - = n 1 — n
d y y y

<9n2

(12)

(13)

Finally, th e curvature,
<7iir (7iih d n z . 4.

o x o y o z

is com puted. Note th a t th e norm alization of n + and are perform ed w ith a cube
m ap lookup tab le because division and square-root are not instructions available in
the R adeon 85QQ’s fragm ent shader hardw are. A lookup tab le is also used because
the in term ediate values in the norm alization m ay get quite large, b u t the end result is
w ithin the lim ited, available range. The constan t factor of four in equation 9 and 10
is necessary to keep th e resulting value E [0, 255].

The upwind approxim ation to V<p is then com puted using D +, D +, D +, D x , D y ,
and D ; . To begin,

V& nax =

is com puted followed by

V<Pmin

/m a ® (D + , 0)2 + m a x { —D ~ , 0)2

y J m a x (D + , 0)2 + m a x (- D ~ , 0)2

. /m a ® (D + , 0)2 + m a x (—D ~ , 0)2 .

y / m i n (D + , 0)2 + m i n (- D ~ , 0)2

y J m i n (D + , 0)2 + r n i n { - D - , 0)2

. y / m i n (D + , 0)2 + m i n (- D 0)2 .

(15)

(16)

Ju st as w ith th e norm alization of th e gradient vectors, th e euclidean norm s in th e
above equations are com puted w ith a lookup table. T he final choice of V<p is defined
by

' IV ^ n a x lh if -F1 > 0 (1?)

(18)

^ 1 11 <Pm in 112 otherwise

where F is com puted as th e linear com bination of FI and G:

F = CoG + CiH where c,\ = 1 — cq .

The (j){t + A t) values are th en com puted by

<p(t + A t) = <p(t) + A tcF \V < p\, (19)

where c is th e scaling by two necessitated by <p being stored in [0,255]. Due to
roundoff errors and other inconsistencies in th e G PU processing, c = 1.9 in th is
im plem entation. The next section discusses th is issue further. Because c m ust be
a floating-point value, it is passed into th e fragm ent shader as an “ex tra” tex tu re
coordinate.

3.4 Object Oriented O p e n G L F r a m e w o r k

The current level set solver is bu ilt w ith modules from an object-oriented framework
th a t has been built on top of OpenGL. T he design a ttem p ts to provide a framework

in which re-usable O penG L code can easily be w ritten . Unlike o ther object-oriented
O penG L encapsulations such as GI.T 29 and 0penlnventor[30], my framework is de
signed for low-level O penG L developers ra th e r th a n high-level graphics program m ers.
It also does not a ttem p t to encapsulate any w indowing-related calls o ther th a n th e
handling of pbuffers. It is expected th a t G LU T or some other windowing u tility will
be used.

The new framework defines a set of reusable and extensible m odules th a t can be
com posited into higher-level objects. The multi-level approach is very flexible in th a t
a user can choose to work a t any level from raw O penG L code to m anipulating entire
render passes. M ultiple levels can be used w ithin th e sam e application. A nother goal
of th e library is to encapsulate all hard ware-specific O penG L code into pluggable
m odules so th a t m ultiple G PU architectures can be easily supported by an appli
cation. In addition all O penG L extensions from N vidia and ATI are autom atically
loaded. This framework is referred to as Glift. A class tree of Glift is shown in
figure 4.

The design supports two types of O penG L calls: those th a t se t/u n se t pipeline s ta te
and those th a t in itia te processing of d a ta th rough th e pipeline. A th ird type of call,
pipeline s ta tu s queries, are not currently supported bu t could be added later. All
O penG L calls th a t se t/u n se t s ta te are encapsulated by th e class tree based on th e
Attribute interface. This interface specifies a bind() and re le a se () v irtual m ethod.
O penG L calls th a t move d a ta th rough th e pipeline are encapsulated by th e class tree
based on th e Drawable interface. Drawable sim ply specifies a draw() m ethod. A
th ird class tree based on th e Renderable interface combines all th e Attributes and
Drawables th a t specify an entire render pass.

In addition, all G lift objects support a compile() m ethod th a t a ttem p ts to compile
th e O penG L com m ands encapsulated by th e object into a display list. N ote th a t
th is feature provides a way to “compile away” th e abstrac tion penalty th a t m ight
otherw ise exist. My experience thus far has shown, however, th a t th e current level
set solver is com pletely G PU -bound and th e Glift abstrac tion layers do not affect th e
execution speed of th e code.

G lift is designed to provide a m inim al am ount of pre-encapsulated O penG L s ta te
and have obvious extension points for adding more functionality as desired. As Glift
m atures, more functionality can come pre-defined by th e library. The following is a
list of current extension points:

Command

- PBuffer
- PixelShader

- ProgShader

Compilable -

r Attribute

r GenAttrib

PixelShaderATI

Shader

- Texture

r MultiTexture
SingleTexture BasicTexture

EmptyTexture

- Drawable -

r RawPrim -

r MultiPrim SubdivPlanarQuad

SinglePrim -

r PrimGL

LineLoopGL

LinesGL

LineStripGL

PointsGL
PolygonGL

QuadsGL

QuadStripGL

TriangleFanG L
TriangleGL

TriangleStripGL

WrappedPrim PlanarQuad

ShadedPrim
RenderPass

DrawAlgorithm DrawAlgArr

TexCoordGen

r QuadTexGen
ScaleTexGen2D

- TexConst

TexTrans

F i g u r e 4 : C la ss tree f o r th e G lift , o b je c t-o r ie n te d O p e n G L fr a m e w o r k .

C l a s s N a m e P u r p o s e

GenAttrib
PixelShader
VertexShader
WrappedPrim
MultiPrim
RenderPass

DrawAlgorithm

TexCoordGen

Defining any b ind /release a ttr ib u te th a t is no t already defined.
Defining interfaces to hardware-specific fragm ent shaders
Defining interfaces to hardware-specific vertex shaders
Defining high-level drawables th a t contain only a single Prim G L object
Defining high-level drawables th a t contain m ultiple Prim G L objects
Defining a render pass with functionality different th an
has been provided
Defining a drawing algorithm other th a n th e s tandard
(g lB egin(.. .) /g lE n d (...) or vertex array m ethod
Defining tex tu re coordinate generation algorithm s

To build a render pass, th e a ttr ib u tes are first combined into a Shader object. The
Drawables are then defined and p u t into a MultiPrim. T he Shader object and the
Multiprim (or any other RawPrim) are com bined into a ShadedPrim object. A t th is
point, any tex tu re coordinate pertu rba tions (tex ture coordinate offsets and tex tu re
coordinate constants) th a t are defined by th e shader are applied to th e tex tu re coor
dinates for th e prim itives. In addition, if m ultiple tex tu res are specified in th e shader,
m ultiple sets of tex tu re coordinates are generated. This ShadedPrim object (or any
Drawable) is combined optionally with a tex tu re a n d /o r pbuffer destination into a
RenderPass.

Glift has been used to build a ComputeSlab class th a t serves as a base class to all
th e render passes in th e level set solver. T he subclasses of ComputeSlab define only
the ir inpu t tex tu res (SingleTexture pointers), th e shading language being used, the
destination pbuffer, tex tu re coordinate pertu rba tions, and th e fragm ent shader (po
ten tia lly in m ultiple languages). A ComputeSlab can be though t of as a function call
where th e inpu t tex tu res are th e argum ents, th e fragm ent program is th e subroutine
code, and th e destination pbuffer holds th e results.

4 R e s u l t s

We have bu ilt a two- and three-dim ensional, G PU -based level set solver and used
it to create an image and volume segm entation application. To our knowledge, this
is th e first level set solver im plem ented on a G PU th a t includes curvature flow. For
two dim ensions and small three-dim ensional datasets, th e program runs a t interactive

o
v

Figure 5: In i t ia l le v e l s e t s o lu t io n (w h ite l in e) s u p e r im p o s e d on a s lice o f M R I d a ta
c o u r te s y o f D a v id W e in s te in .

rates. This allows users, for the first time, to use parameters such as the fraction of
curvature flow as visualization parameters to achieve the desired segmentation.

Figure 5 shows the source image for a 2D segmentation with the initial level set
solution as a white circle near the center. The segmentation was accomplished in
three stages. Each stage consisted of enough time steps (500) to allow the level set
solution to converge. The grayscale thresholding constants, I j0 and Ihi were set to 0.3
and 0.55 respectively for all three stages, in the first stage, the speed function was
composed entirely of G with no curvature flow included. This created the noisy image
surface shown in figure 6. The second stage (figure 7) used a speed function with 50%
curvature flow. Note that much of the fine detail has been lost due to the smoothing
effect of the curvature. In the last stage, only 5% curvature was used in the speed
function (figure 8) in order to regain much of the fine detail present in 6 but without
the noise. These segmentations qualitatively match the results of a floating-point,
software level set solver.

In the current version of the solver, one time step on a 256 x 256 image takes 4 millisec
onds with curvature flow enabled and 2 milliseconds without it. This is approximately
the same speed as a highly-optimized, sparse-field software implementation. This re
sult is disappointing but not surprising, given the fact that the GPU-based solver
is computing an update at every pixel whereas the software implementation is only
computing updates on or near the isosurface.

F i g u r e 1 0 s h o w s a b r a i n s u r f a c e e x t r a c t e d f r o m a 2 5 6 a ’2 5 6 a ’1 7 5 , M R I d a t a s e t (f i g u r e

Figure 6: L e v e l s e t s o lu t io n a f te r th e f i r s t s e g m e n ta t io n s ta g e (w h ite l in e) . G ra ysca le
th re sh o ld v a lu e s w ere s e t to I\0 = 0.3 a n d I hi = 0.55, a n d n o c u r v a tu r e f lo w w a s used.

Figure 7: L e v e l s e t s o lu t io n a f te r th e s e c o n d s e g m e n ta t io n s ta g e (w h ite l in e) . G ra ysca le
th re sh o ld v a lu e s w ere s e t to I\0 = 0.3 a n d I hi = 0.55, a n d 50% c u r v a tu r e f lo w w a s
used.

Figure 8: L e v e l s e l s o lu t io n a f te r th e th ir d s e g m e n ta t io n s ta g e (w h ile l in e) . G ra ysca le
th re sh o ld v a lu e s were, s e l lo l i Q — 0.3 a n d i/„; = 0.55, a n d 5% c u r v a tu r e f lo w w a s used .

Figure 9: S lic e o f th e 256a’256a’175 M R I d a ta fr o m w h ic h f ig u r e s 10 a n d 11 w ere
se g m e n te d .

Figure 10: B r a in su r fa c e s e g m e n te d u s in g th e G P U -based , le v e l s e t so lv e r . B o th th e
d a ta -d r iv e n a n d c u r v a tu r e speed t e r m s w ere u se d to o b ta in th is su r fa c e .

Figure 11: B ra ,in su r fa c e s e g m e n te d u s in g a C P U , softwa.re-ba.sed. so lv e r . T h e s a m e
d a ta -d r iv e n a n d c u r v a tu r e speed, t e r m s used, f o r th e G P U -b a se d s e g m e n ta t io n s w ere
also used, to o b ta in th is su r fa c e .

9) using our G PU -bascd level set solver. F igure 11 shows th e brain surface extracted
from the same d a ta set using a floating-point, software solver. N ote th a t th e sur
faces are qualitatively similar. O ur solver is approxim ately two tim es faster th an
th e software im plem entation despite th a t it is perform ing roughly ten tim es as m any
calculations. If th e G PU solver were only processing th e voxels near th e isosurface,
th e theoretical speedup is g reater th a n tw enty tim es over th e software version. N ote
th a t G PU s are also increasing in power a t a faster ra te th a n CPU s so this gap will
continue to increase over time.

5 D i s c u s s i o n

We have im plem ented a two- and three-dim ensional level set solver, th a t includes
m ean curvature flow, on th e ATI R adeon 8500. All com putations are perform ed in
8-bit, fixed-point arithm etic. In 2D, th is solver runs a t approxim ately the sam e speed
as an optim ized software im plem entation. A 3D exam ple running on a 256s’256sl75
d a ta set runs a t twice th e speed of th e CPU -based solution. A lthough these results
are encouraging, they are m erely a proof of concept.

Fu ture work will take advantage of m ore the powerful fragm ent program s of the next
generation of GPUs. It currently takes sixteen render passes per slice for a single
P D E tim e step update. This num ber will be significantly reduced on new G PU s due
to an increased instruction lim it, a richer instruction set, and the ability to ou tp u t
more th a n four values per pass.

O ur solver is com puting PD E updates a t all pixel/voxel locations, and is thus not
tak ing advantage of th e sparse na tu re of th e moving wavefront. We estim ate th a t
speedups of a t least tw enty five tim es are possible by com puting only those values
near th e surface. Fu ture work will explore th e use of dep th and stencil culling, hier
archical spatial decom positions, compression of th e dynam ic tex tu re data , and other
possibilities to achieve th is optim ization.

A c k n o w l e d g e m e n t s

The au thors would like to th an k Jeff Royle, Evan H art, and Jason M itchell a t ATI
Technologies, Inc. for m any discussions related to th is work. We would also like to

than k Joe Kniss and M ilan Ikits for the ir m any useful discussions on th e software
design. This work has been funded by grant #N 000140110033 from th e Office of
Naval Research and gran t #A CI0089915 from th e N ational Science Foundation.

R e f e r e n c e s

[1] R. W hitaker and X. Xue, “Variable-conductance, level-set curvature for image
denoising,” in I E E E In te r n a t io n a l C on ference o n Im a g e Processing, pp. 142 145,
O ctober 2001.

[2] A. M arquina and S. Osher, “Explicit algorithm s for a new tim e dependent model
based on level set m otion for non-linear deblurring and noise removal,” S I A M
J o u r n a l on S c ien t i f ic C o m p u tin g , vol. 22, pp. 387 405, 2000.

[3] T. Tasdizen, R. W hitaker, R B urchard, and S. Osher, “G eom etric surface
sm oothing via anisotropic diffusion of norm als,” in I E E E V isu a l iza t io n 2002,
p. To appear., O ctober 2002.

[4] K. M useth, D. Breen, R. W hitaker, and A. B arr, “Level-set surface editing op
erato rs,” in A C M S I G G R A P H , p. To appear., 2002.

[5] R. M alladi and J. A. Sethian, “A unified approach to noise removal, image en
hancem ent, and shape recovery,” in I E E E T ra n sa c t io n s o n Im a g e Processing,
vol. 5, pp. 1554 15568, 1996.

[6] V. Elangovan and R. W hitaker, “From sinogram s to surfaces: A direct approach
to th e segm entation of tom ographic d a ta ,” in M edica l Im a g e C o m p u t in g a nd
C o m p u te r -A s s i s te d In te r v e n t io n (M I C C A I) , pp. 213 223, Oct. 2001.

[7] R. W hitaker, “Reconstructing te rra in m aps from dense range d a ta ,” in I E E E
In te r n a t io n a l C on ference on Im a g e Processing, pp. 165 168, O ctober 2001.

[8] N. Foster and R. Fedkiw, “P ractica l anim ation of liquids,” in A C M S I G G R A P H ,
pp. 23 30, 2001.

[9] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen, “Physically based modelling and
an im ation of fire,” in A C M S I G G R A P H , p. To A ppear., 2002.

[10] D. Enright, S. M arschner, and R. Fedkiw, “A nim ation and rendering of complex
w ater surfaces,” in A C M S I G G R A P H , p. To A ppear., 2002.

[11] J. A. Sethian, L eve l S e t M e th o d s a n d F ast M a rc h in g M e th o d s E vo lv in g In te r fa ce s
in C o m p u ta t io n a l G eo m etry , F lu id M echan ics , C o m p u te r V is ion , a n d M a ter ia ls
Science . Cam bridge University Press, 1999.

[12] D. A dalsteinson and J. A. Sethian, “A fast level set m ethod for propogating
interfaces,” J o u r n a l o f C o m p u ta t io n a l P h ys ics , pp. 269 277, 1995.

[13] E. T. W hitaker, “A level-set approach to 3D reconstruction from range d a ta ,”
In te r n a t io n a l J o u r n a l o f C o m p u te r V is io n , vol. O ctober, no. 3, pp. 203 231,
1998.

[14] E. Lindholm, M. J. K ilgard, and H. M oreton, “A user-program m able vertex
engine,” in A C M S I G G R A P H . pp. 149 158, 2001.

[15] A. T. Inc. h ttp ://w w w .ati.com /developer/index .litm l.

[16] N. C orporation h ttp ://developer.nv id ia .com .

[17] M. R um pf and E. Strzodka, “Level set segm entation in graphics hardw are,” in
In te r n a t io n a l C on ference on Im a g e P rocess ing , pp. 1103 1106, 2001.

[18] M. J. H arris, G. Coombe, T. Scheuerm ann, and A. Lastra, “Physically-based
visual sim ulation on graphics hardw are,” in Proc. S I G G R A P H / E G G raphics
H ardw are W o rksh o p ’02, ACM, 2002.

[19] J. H art, “M ultipass program m ing for personal high-perform ance com puting.”
NSF G ran t 0113968, 2001.

[20] M. E um pf and E . Strzodka, “Using graphics cards for quantized FEM com pu
ta tio n s ,” in I A S T E D V isua liza t ion , Im a g in g a n d Im a g e P rocess ing C onference ,
2001.

[21] M. Segal and K. Akeley, “T he O penG L graphics system: A specification (version
1.2.1).” h t tp : / /w w w .opengl.org.

[22] M. C orporation, "Direct 3D." h ttp ://w w w .m icroso ft.com /d irectx .

[23] K. Proudfoot, W. E. M ark, S. Tzvetkov, and P. H anrahan, “A real-tim e procedu
ral shading system for program m able graphics hardw are,” in A C M S I G G R A P H ,
pp. 159 170., 2001.

[24] O. A EB, “O penG L 2.0 shading language.” h ttp ://w w w .openg l.o rg .

[25] N. C orporation, “Cg language.” h ttp ://w w w .cgshaders.org/articlesC g_Specification.pdf.

http://www.ati.com/developer/index.litml
http://developer.nvidia.com
http://www.opengl.org
http://www.microsoft.com/directx
http://www.opengl.org
http://www.cgshaders.org/articlesCg_Specification.pdf

[26] M. C orporation, “High level shading language.”
h ttp : / / w w w .m icrosoft.com /directx.

[27] S. Osher and J. Sethian, “Fronts propogating w ith curvature-dependent speed:
A lgorithm s based on H am ilton-Jacobi form ulations,” J o u r n a l o f C o m p u ta t io n a l
P hysics , vol. 79, pp. 12 49, 1988.

[28] M. Grayson, “A short note on th e evolution of surfaces via m ean curvatures,”
J o u r n a l o f D ij fe ren ta i l G e o m e tr y , vol. 58, p. 555, 1989.

[29] N. S tew art, “O penG L C + + too lk it.” h ttp ://w w w .n ige ls .com /g lt.

[30] SGI, “O pen inventor.” h ttp ://o ss .sg i.co m /p ro je c ts /in v en to r/.

http://www.microsoft.com/directx
http://www.nigels.com/glt
http://oss.sgi.com/projects/inventor/

