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Course Schedule 
 
Session 1 - PDE and Level Set Fundamentals 
  8:30   Welcome - Breen 
  8:40   Introduction to PDEs with Applications - Sapiro 
  9:50   Introduction to Level Set Methods - Whitaker 
 
10:00  Break 
 
Session 2 – Level Set Software and Numerical Methods 
  10:30  Open Source Level Set Software (ITK) - Whitaker 
  10:45  Level Set Applications: Segmentation, Surface Processing and     
             Reconstruction - Whitaker 
  11:30  Numerical Methods and Algorithms for PDEs - Museth 
 
12:15  Lunch Break 
 
Session 3 – Implementation Details 
  1:45   Level Set Applications: Segmentation and Reconstruction From Sparse 
            Data - Museth 
  2:50   Introduction to GPU Computation - Lefohn 
  3:20   Level Set Application: Interactive Segmentation - Lefohn 
 
3:45  Break 
 
Session 4 – PDE Applications 
  4:15   Level Set Method for 3D Anisotropic Geometric Diffusion - Preusser 
  4:45   PDE Methods in Flow Field Post-Processing - Preusser 
  5:15   Algorithms for Solving Reaction-Diffusion Equations – Kirby 
  5:35   Reaction-Diffusion Models for Vector Visualization - Kirby 
 
6:00  Course Ends 
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Course Abstract 
 

Level set methods, an important class of partial differential equation 

(PDE) methods, define dynamic surfaces implicitly as the level set (iso-

surface) of a sampled, evolving nD function.  This course is targeted for 

researchers interested in learning about level set and other PDE-based 

methods, and their application to visualization.  The course material will 

be presented by several of the recognized experts in the field, and will 

include introductory concepts, practical considerations and extensive 

details on a variety of level set/PDE applications. 

 

The course will begin with preparatory material that introduces the 

concept of using partial differential equations to solve problems in 

visualization.  This will include the structure and behavior of several 

different types of differential equations, e.g. the level set, heat and 

reaction-diffusion equations, as well as a general approach to developing 

PDE-based applications.  The second stage of the course will describe the 

numerical methods and algorithms needed to implement the mathematics 

and methods presented in the first stage, including information on 

implementing the algorithms on GPUs.  Throughout the course the 

technical material will be tied to applications, e.g. image processing, 

geometric modeling, dataset segmentation, model processing, surface 

reconstruction, anisotropic geometric diffusion, flow field post-processing 

and vector visualization. 

 

 

Prerequisites 
 

Knowledge of calculus, linear algebra, computer graphics, visualization, 

geometric modeling and computer vision.  Some familiarity with 

differential geometry, differential equations, numerical computing and 

image processing is strongly recommended, but not required. 
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Introduction to PDE’s in image 
processing, visualization, computer 

vision, and computer graphics

Introduction to PDE’s in image 
processing, visualization, computer 

vision, and computer graphics

Guillermo SapiroGuillermo Sapiro
Electrical and Computer EngineeringElectrical and Computer Engineering

University of MinnesotaUniversity of Minnesota
guille@ece.umn.eduguille@ece.umn.edu

What is a discrete computer image?What is a discrete computer image?

Time

Consequences of discrete image 
representations
Consequences of discrete image 
representations

•• Classical image processing and computer Classical image processing and computer 
vision is based on discrete mathematics vision is based on discrete mathematics 
(most of it)(most of it)

• Sums instead of integrals

• Re-definition of classical continuous operators as a 
Laplacian, Minkowsky addition, etc

The PDE’s approachThe PDE’s approach

•• Images are Images are continuouscontinuous objectsobjects

•• Image processing is the results of Image processing is the results of iteration iteration 
of infinitesimal operations: of infinitesimal operations: PDE’sPDE’s

•• Differential geometryDifferential geometry on imageson images

•• ComputerComputer image processing is based on image processing is based on 
numerical analysisnumerical analysis

Why? Why Now? Who?Why? Why Now? Who?

•• Why now:Why now:
• Computers!!!

• People

•• Why:Why:
• New concepts

• Accuracy

• Formal analysis (existence, uniqueness, etc)

•• Consequences:Consequences:
• Many state of the art results

By this afternoon, 
we will be able to ...
By this afternoon, 
we will be able to ...
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noisy cleaned
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Shape preserving contrast 
enhancement
Shape preserving contrast 
enhancement

ExamplesExamples
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So, please stay…

(or buy my book                )

So, please stay…

(or buy my book                )

Publisher: Cambridge 
U. Press
ISBN:0521790751 

Guillermo Sapiro ®

What is it?What is it?

V=F(curvatures, etc)
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Image Inpainting:
An Overview

Image Inpainting:Image Inpainting:
An OverviewAn Overview

mountains.ece.umn.edu/~guille/inpainting.htmmountains.ece.umn.edu/~guille/inpainting.htm

OverviewOverview

•• Goal and backgroundGoal and background
• Art, biology, math, and engineering come together

•• Related workRelated work
•• InpaintingInpainting

•• FillingFilling --inin
•• Inpainting and image decompositionInpainting and image decomposition

•• 3D surface filling3D surface filling --inin

What is inpainting?What is inpainting?

•• Modifying an image in a nonModifying an image in a non --detectable formdetectable form

"Cornelia, Mother of the "Cornelia, Mother of the GracchiGracchi " by J. " by J. SuveeSuvee ((LouvreLouvre ).  Emile).  Emile --Male “The Restorer’s Handbook of easel painting”. Male “The Restorer’s Handbook of easel painting”. 

Another exampleAnother example

From Geary GalleryFrom Geary Gallery

Real world example:
Photo restoration
Real world example:
Photo restoration

•• Restorations courtesy of Photo Imaging Studio, Imag e Enigma, Restorations courtesy of Photo Imaging Studio, Imag e Enigma, AlleycatAlleycat DesignsDesigns

Real world example:
Object removal
Real world example:
Object removal

•• From D. King, “The Commissar vanishes”.From D. King, “The Commissar vanishes”.
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Real world example:
Object removal
Real world example:
Object removal

•• From D. King, “The Commissar vanishes”.From D. King, “The Commissar vanishes”.

Real world example:
Object removal
Real world example:
Object removal

•• From From www.newseum.orgwww.newseum.org

Lenin and friend Trotsky Where is Trotsky?

The goalThe goal Related work: FilmsRelated work: Films

•• e.g. e.g. KokaramKokaram et al., et al., GemanGeman et al.et al.

•• Doesn’t work for stills or static objectsDoesn’t work for stills or static objects

n-1 n+1 n 

Related work: Texture synthesisRelated work: Texture synthesis

•• HiraniHirani , , EfrosEfros , , HeegerHeeger , , 
DeBonetDeBonet , , SimoncelliSimoncelli , Zhu, , Zhu, 
etc.etc.

•• Not practical for rich Not practical for rich 
regionsregions

•• Not (originally) designed Not (originally) designed 
for structured regionsfor structured regions

•• “Copy” information “Copy” information 
instead of “see and instead of “see and 
interpolate”interpolate”

Related work: DisocclusionRelated work: Disocclusion

•• MasnouMasnou --Morel, Morel, NitzbergNitzberg --MumfordMumford , etc., etc.

•• Limitations: Topology, anglesLimitations: Topology, angles

See also Jacobs, Basri, Zucker, etc, and Chan-Shen ‘00, Zhu-Mumford
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Our ContributionOur Contribution

•• User only selects region to User only selects region to inpaintinpaint
•• Rich background  and topology not an issueRich background  and topology not an issue
•• Less than 1 minute on a PCLess than 1 minute on a PC

+ =

How conservators inpaintHow conservators inpaint

•• Minneapolis Institute of ArtMinneapolis Institute of Art

Approach 1: PDEsApproach 1: PDEs

Bertalmio, Sapiro, Caselles, Ballester,
SIGGRAPH 2000

Automatic digital inpaintingAutomatic digital inpainting

•• Propagate informationPropagate information

•• Evolutionary formEvolutionary form

0NL ====••••∇∇∇∇
→→→→

→→→→
••••∇∇∇∇====

∂∂∂∂
∂∂∂∂

NL
t 
I 

Digital inpainting (cont’d)Digital inpainting (cont’d)

•• L = smoothness estimator (L = smoothness estimator ( LaplacianLaplacian ))

•• N = N = isophoteisophote direction (time variant)direction (time variant)

The equationThe equation

•• Plus numerical schemes (Plus numerical schemes ( OsherOsher --MarquinaMarquina ))

•• Boundary conditionsBoundary conditions
• Gray values (in a band)

• Directions (in a band)

II)(
 t

I ⊥∇•∇=
∂
∂
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ExampleExample Example: Text removalExample: Text removal

Example: Photo restorationExample: Photo restoration Example: Special effectsExample: Special effects

Example: Special effectsExample: Special effects Example: Special effectsExample: Special effects
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Example: Scratch removalExample: Scratch removal Russian Venus Mission
Venera 9
Russian Venus Mission
Venera 9

From Don Mitchell

Russian Venus Mission
Venera 10
Russian Venus Mission
Venera 10

From Don Mitchell

Automatic image inpainting/interpolation for 

compression and  wireless transmission
(Rane-Sapiro-Bertalmio) JPEG and/or JPEG-2000 compa tible

Automatic image inpainting/interpolation for 

compression and  wireless transmission
((RaneRane--SapiroSapiro --BertalmioBertalmio ) JPEG and/or JPEG) JPEG and/or JPEG --2000 compatible2000 compatible

Transmitted

Automatic image inpainting/interpolation for 

compression and  wireless transmission
(Rane-Sapiro-Bertalmio) JPEG and/or JPEG-2000 compa tible

Automatic image inpainting/interpolation for 

compression and  wireless transmission
((RaneRane--SapiroSapiro --BertalmioBertalmio ) JPEG and/or JPEG) JPEG and/or JPEG --2000 compatible2000 compatible

Automatic
reconstruction

Approach 1: 
Concluding remarks
Approach 1: 
Concluding remarks

•• Technique imitates professionalsTechnique imitates professionals

•• Key conceptsKey concepts
• Information propagation

• Both gray values and directions are needed

• Use a band surrounding the region

•• Sharp resultsSharp results

•• Low complexityLow complexity
•• Texture is not (yet) reproduced Texture is not (yet) reproduced 
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Concluding remarks (cont.)Concluding remarks (cont.)

•• Connected to fluid dynamics (see Connected to fluid dynamics (see BertalmioBertalmio --
BertozziBertozzi --SapiroSapiro CVPR 2001)CVPR 2001)

•• Opens then door to high order Opens then door to high order PDE’sPDE’s
•• Extended to a Extended to a variationalvariational formulation:    formulation:    

Approach 2...Approach 2...

Approach 2: VariationalApproach 2: Variational

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, 
IMA Report 2000, IEEE Trans. IP 2001

How conservators fill-in 
(Minneapolis Institute of Art)

How conservators fill-in 
(Minneapolis Institute of Art)

Our approachOur approach

•• Jointly continue/interpolate levelJointly continue/interpolate level --lines lines 
(geometry) and gray values (photometry) (geometry) and gray values (photometry) 
in a smooth fashionin a smooth fashion

Interpolate the gray values 
given the edges
Interpolate the gray values 
given the edges

)(

d ||)min( θθ  
θ

  gradient normalized 
θ

div
I
I

div
t
I

III

II

Band

−−−−













∇∇∇∇
∇∇∇∇====

∂∂∂∂
∂∂∂∂

ΩΩΩΩ∇∇∇∇••••−−−−∇∇∇∇

∇∇∇∇====∇∇∇∇••••⇒⇒⇒⇒====

∫∫∫∫
ΩΩΩΩΥ

Theorem: The minimizer exists in BV space

ExampleExample
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The full functionalThe full functional

•• Solved via ESolved via E --L: Coupled 2nd order L: Coupled 2nd order PDE’sPDE’s

•• Implicit Implicit discretizationdiscretization usedused
•• Connected to Euler’s Connected to Euler’s elasticaelastica ((MumfordMumford ))

•• Theorem:Theorem: For p>1 the For p>1 the minimizerminimizer existsexists

)()()(),min( IIcIGbadivI
Band

p ∇∇∇∇••••−−−−∇∇∇∇++++∗∗∗∗∇∇∇∇++++∫∫∫∫
ΩΩΩΩ

θθ
Υ

θ ExamplesExamples

Ours

TV

ExamplesExamples ExamplesExamples

ExamplesExamples Approach 2:
Concluding remarks
Approach 2:
Concluding remarks

•• Technique imitates professionalsTechnique imitates professionals

•• Key conceptsKey concepts
• Information propagation

• Both gray values and directions are needed

• Use a band surrounding the region

•• Sharp resultsSharp results

•• Low complexityLow complexity
•• Texture is not (yet) reproducedTexture is not (yet) reproduced
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Inpainting and Image Decomposition:
PDEs + Variational
Inpainting and Image Decomposition:
PDEs + Variational

BertalmioBertalmio , , VeseVese, Sapiro, , Sapiro, OsherOsher , July 2002, July 2002
IEEE Trans. IP, 2003IEEE Trans. IP, 2003

Basic IdeaBasic Idea

Image decompositionImage decomposition ExampleExample

ExampleExample

OursTexture only
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Filling surface holesFilling surface holes

VerderaVerdera , , BertalmioBertalmio , , CasellesCaselles , Sapiro, , Sapiro, 
IEEE ICIP 2003IEEE ICIP 2003

Data and inspiration from Data and inspiration from LevoyLevoy and the and the 
Michelangelo ProjectMichelangelo Project

Inpainting from Sensor ArraysInpainting from Sensor Arrays

YatzivYatziv , Sapiro, , Sapiro, LevoyLevoy
IEEE ICIP 2004IEEE ICIP 2004

ExampleExample

Inpainting the ColorsInpainting the Colors

ColorizationColorization

Inspired by work of Levin et al.
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Basic IdeaBasic Idea

•• InpaintInpaint withwith
• Edges from monochromatic image (Chung-Sapiro, 

Caselles et al, Kimmel)

• Boundary conditions from given color strokes

See also Caselles et al., Kenney et. al., Perez et al.

Basic idea (cont.)Basic idea (cont.)

ExampleExample ExampleExample

MoviesMovies

•• Use 2D+time gradientsUse 2D+time gradients
• Color constancy

• All channels “sharing” spatial gradients

• All channels having same motion vectors

ConclusionConclusion

•• Inpainting 2D and 3D via Inpainting 2D and 3D via PDEsPDEs (flows)(flows)

•• Inpainting in a decomposition spaceInpainting in a decomposition space
•• Inpainting lightInpainting light --fieldsfields

•• Inpainting the colorsInpainting the colors

•• See also recent works such as Tensor Voting See also recent works such as Tensor Voting 
(CVPR’03), Edge directed (CVPR’03), Edge directed EfrosEfros (CVPR’03), Global (CVPR’03), Global 
inpainting (ICCV’03).inpainting (ICCV’03).



1

Isosurfaces, Level Sets, and PDEs

Ross Whitaker

SCI Institute, School of Computing

University of Utah

The Next Several Talks

1. Implicit surfaces and level-set geometry

2. Level sets, numerical schemes, and software

3. Applications of level sets and PDEs to
surface/volume processing

Overview

• Introduce implicit surfaces/level sets

• Geometry of level sets

• Application of level-set geometry

Isosurfaces

• Implicit representation

• Domain of volume – where surface lives

• Surface S is set of points

• Implicit formulation
Curve/Surface Model

Family of Embeded
Contours

Greyscale
Image/Volume

Isosurfaces How Do We Represent F(x)?

• Linear combination of global basis functions
– “Blobby” models [Blinn 82]

– Deformation by modifying size, position, number,
etc.  [Muraki 91]

• Linear combination of local basis functions
– Local deformations defined by neighborhood

– Many degrees of freedom–arranged on grid

– Well defined relationship between surface motion
and grid values
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Local Basis Functions
A Volume-Based Surface Representation

Basis function

k

x

F(x)

Local Basis Functions

• Geometry defined by local operations

• Continuous mathematics on F(x)

• Grid value (voxel) manipulations determined by
well-defined numerical methods
– Level-set method [Osher & Sethian 88]

Visualizing Level Sets

• Direct volume rendering methods
– E.g. cast rays from viewpoint

– Transfer functions, root finding

• Extract surface primitives
– E.g. marching cubes [Lorensen & Cline, 87]

– Others

• Not subject of this talk

Geometry of Isosurfaces

• Surface normals

• Curvature

• Goal: express surface geometry in terms of
derivatives of F()

Surface Normals

• Exist for every point in U

• Gives normal to level-set passing through that
point

• Convention – inside or out (be consistent)

• How to compute?  (e.g. central differences)

Second-Order Surface Structure
(A Short Course in Differential Geometry)

cap

ridge

saddle

cup

valley

planar

k1

k2

• Surface shape approximated by quadratics
– Described by pair of principal curvatures

From Kindlmann et al. 2003
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Surface Curvature

• Principle curvatures

• Principle directions

• Invariants
– Gaussian curvature

– Mean curvature

– Deviation from flatness
• total curvature

Curvature of Isosurfaces

• Projection operator (tangent plane)

• Hession of F()

• Curvature (matrix) given by projected,
normalized Hessian of F()

Curvature of Isosurfaces

• Eigenvalues of W -> k1,k2, 0

• Eigenvectors of W -> e1,e2, n

• Trace of W -> 2H

• Norm of W -> D

• K = 4H2 - D2

• Note: derivatives must be taken using
appropriately smooth basis functions

Example – Principle Curvatures

Example

Gaussian Curvature Mean Curvature

Example

Total Curvature
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Application of Isosurface Curvature
• Kindlemann et al., Vis 2003

• Use curvature for NPR volume rendering
– Controlling thickness of silhouette edges

– Accentuating ridges/valleys

Use curvature to accentuate sharp
features

Use normals and curvature to control the
apparent width of silhouette edges

Volume NPR: results

Volume NPR: results Volume NPR: results

Volume NPR: results Volume NPR: results
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Summary

• Implicit surfaces

• Volumes

• Geometry of level sets

The Next Several Talks

1. Implicit surfaces and level-set geometry

2. Level sets, numerical schemes, and software

3. Applications of level sets and PDEs to
surface/volume processing

Level Set Introduction

Overview

• Deformable models

• Level-set equations

• Numerical/computational techniques

• Software

Freeform Deformable Surfaces

• E.g. “Snakes” [Kass et al. 86]

• Velocity v() at each point x on S

• Where does v() come from?
– Data (e.g. attraction to edges in images)

– Geometry (e.g. curvature, smoothness)

– User input

Level Sets –  Moving Isosurfaces

• Osher and Sethian 1988
– Method for modeling moving wave fronts
– Formulation and numerical scheme

• Strategy
– Function F() encodes the motion of the

moving interface
– Allows for a great deal of flexibility of

shapes and topologies
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Static vs Dynamic Formulation

• Static
– Single F, k varies
– Motion strictly inward or

outward
– Fast marching method O(N

lg M) – Sethian 95

• Dynamic
– Evolving F, k fixed
– General motions
– Front tracking schemes

Static Formulation

Dynamic Formulation Level-Set Equation Derivation

Total derivative is zero

Chain rule

Level set equation (PDE)

Initial k
level set

k level set
after update

k level set
after opposite
motion

Level-Set Equation Numerical Issues

• Analytical expressions approximated on discrete grid
– Finite forward differences in time

– Spatial derivatives approximated using kernels or stencils

– Special care must be taken in the first-order derivatives in
the LS equation (up-wind scheme)

• Must maintain monotonicity -> one-sided derivatives

1 0 -1

0 1/2 -1/2

1/2 -1/2 0
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Level-set motion

xi

ui

Δui

Up-wind 
difference

Down-wind 
difference

Down wind Up wind

Updates Proportional to 1st Derivatives

• Avoid creation of new level sets

xi

ui

ΔtΔui limited by 
up-wind difference

Overshoot creates
“new” level sets

Update Moves Value in Direction of (But
No Farther Than) Up-Wind Neighbor

Efficient Computational Schemes:
Front Tracking

• Solution important only
in proximity to ls (wf) of
interest

• Maintain computational
domain that moves with
wf

• Computational cost grows
with surface area not
volume

Narrow band/tube

Surface model (level set)

Time passes

“Outside” – not
computed

Boundary interference
Recompute band

Narrow-Band Method
Adalsteinson and Sethian 1995

…

Sparse-Field Method
Whitaker 1998

… …

• Update computational domain in layers

See also: Peng et al. 1999

Public Domain Software
Insight Toolkit (ITK)

• Large toolkit for multidimensional image processing
• NIH sponsored consortium–industry and academics
• Includes API (algorithms) and applications
• www.itk.org
• Includes a framework for PDE-based image processing

in N dimensions
• Others:

– Vispack
– Ian Mitchel http://www.cs.ubc.ca/~mitchell/ToolboxLS
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ITK PDE Solvers

• Purpose
– Nonlinear image processing – e.g. anisotropic diffusion

– Moving wave fronts – level set models

• Generic framework
– Separate solvers from equations (plug & play)

– Include instances/examples in toolkit

ITK PDE Solver Hierarchy

Dense

Finite Difference
Solver

Sparse

Narrow
Band

Diffusion

Other Solvers

Finite Difference
Function

Diffusion

Level
Set

Other Functions

Aniso. Diff
Curv. 

Limited

Segment.

Threaded
Sparse

4th Order

Constructing a PDE Filter

Input
Image

Output
Image

(Filtered)

Solver Object

Function
Object

Parameters

Image Processing
Nonlinear PDE Filtering

• N-dimensional implementations
• Scalar and Vector based methods (e.g. color, MRI)
• Anisotropic (P&M) and curvature-based variations

User-Defined Diffusion Filter

Anisotropic Diffusion Filter

Anisotropic Diffusion Framework

Finite Difference Solver

Input
Image

Output
Image

Finite Difference Solver

Dense Solver

Diffusion
Function

Vector-
Valued

Function

Curvature-
Limited
Function

Perona-
Malik

Function

Image Processing
Vector-Valued Anisotropic Diffusion Filtering
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• Sparse or Narrow-band solver

• Speed function – plugs into a generic level-set solver

• Surface motion/speed based on image features or
intensity

• Combine different terms in a plug and play manner

Level-Set Segmentation Framework

Data Fitting
Term

Regularization/
Smoothing

Surface Motion/
Segmentation

User-Defined LS Seg. Filter

Level-Set Segmentation Filter

Level-Set Segmentation Framework

Finite Difference Solver

Curvature
Function

Input
Image

Initial
Model

Output
Model

Finite Difference Solver

Sparse-Field Level-Set Solver

Speed
Function

Shape
Detection
Function

Active-
Contours
Function

Laplacian
Function

Threshold
Function

Canny
Edges

Function

Example: Interactive 2D
Segmentation

Seed surface DataScale

1/4

1/2

1/1

Example: Multiscale 3D
Segmentation

Applications of PDEs

Overview

• Surface Processing

• Surface Reconstruction

• Processing Seismic Data
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Surface Processing

• Goals
– Rich set of tools paralleling those available for images

– Scientific approach that does not depend on content

– Free from arbitrary decisions (user input)

• Why level sets?
– Topological changes are part of smoothing

– Shape based–free from parameterization

– Good for data-driven applications
• Not as useful when parameterization is part of model

Generalizing IP to Surfaces
E.g. Feature-Preserving Flows

• Image Processing
– Anisotropic smoothing (Perona & Malik)

– Markov Random Fields

Strategy
• Variational formulations of curvature

– Generalization of grad mag from IP
– Gradient of normal map
– Allowance for outliers

• Decouple the normals from surface
– Process normals
– Refit surface to normal map
– System of 2nd-order equations

• Tasdizen, Whitaker, Burchard, Osher, IEEE Vis 2002,
TOG October 2003.

Surface Filtering Strategy

Surface & Normals Process Normals Refit Normals

Output

Normal-Based Surface Filtering
Strategy

Input Surface
(Volume)

Normal Map
(Volume)

Process Normals
PDE/Variational

Refit Surface
PDE/Variational

Processed Surface
(Volume)

Extract Normals

Extract Normals

“Gaussian Smoothing”

Original model Isotropic 4th order smoothing
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Anisotropic Diffusion

Original model Anisotropic 4th order smoothing

Anisotropic Diffusion

Original model Anisotropic 4th order
smoothing

Anisotropic Scale Space More General Image Processing
Unsharp Masking/High Boost Filtering

High Boost More High Boost

Unsharp Masking of Surface
Normals

High Boost Filtering of Surfaces

Original High Boost
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Surface Reconstruction
• Surface Measurement Technologies

– LADAR, structured light, vision
– Tomography
– Sonar/ultrasound
– Radar

• New computational capabilities
• Applications

– Visualization
– Analysis

Goals

• Foundations
– Statistical framework

• Implementations
– Numerical
– Computational - parallelism

• Systems
– Practical-real data
– Computation time

3D Surface Reconstruction

• Noise

• Occlusions

• Geometric Distortion
(Calibration)

• Registration

Data Courtesy U.S. Naval Air
Warfare Center, China Lake, CA

Processing Measured Data
A Systems Approach

Bayesian reconstruction: maximizing the posterior – likelihood (data) + prior -> MAP

Measurement
Process

X A(X) B(X)

Noise
(Stochastic)

Measured
Data

X(β)

“Object”

MAP PET Reconstruction
(R. Leahy, USC)

Linear Reconstruction MAP Reconstruction

Range
finder

Scanning mechanism
(or sensor array)

Range image
(2D topology)

Object 
or scene

Line
of sight

u

v

Ω

Maximum Likelihood Estimates of
Surface Parameters

• Scanner Model
– Geometry

– Lines of sight

– Pose

• Sensor Model
– Noise

– Gaussian w/outliers

• Shape Optimization
– Parameters

– Free-form
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Progress
Example: Ladar Data From Indoor Scene

Surface Rendering of Single Scan Close Up View

Data Fitting + 4th Order Prior

Four Ladar Views Terrain Reconstruction

Deltasphere LADAR Scan Volumetric LADAR Reconstruction
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Tomographic Surface Reconstruction

Emitter

Detector
2D Images

Specimen

Contrast
Agent

Collaboration: Mark
Ellisman, NCMIR
UCSD

R. Whitaker, V. Elangovan, Medical Image Analysis, 2002.  V. Elangovan, R. Whitaker, MICCAI, 2001

Summary

• PDEs and geometric signal processing

• New modeling processing capabilities

• Real applications (real data) running at
interactive rates

Thanks!

• Sponsors:
– ONR, NSF, NIH, Exxon-Mobil

• Students and Colleagues:
– Ernesto Juarez-Valdes, Stan Osher, Tolga Tasdizen, Vidya

Elangovan, Paul Burchard, Suyash Awate, Won-Ki Jeong
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Fundamental Properties of Level Sets

Ken Museth
Graphics Group

Linköping University, Sweden
http://www.gg.itn.liu.se

2

Outline

Outline:

• Properties of the Level Set function

• Numerical Implementations

• Medical Segmentation

• Extremely high resolution Level Sets

[Model from Frantic Films]
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Euclidian Distance Function

• The level set function can in principle be any scalar function, but 
numerical stability requires Euclidian distance functions!
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Normal of a Level Set
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Mean Curvature of Level Sets
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Other Properties of Level Sets

• Consider a closed region Ω with a boundary Γ
• Size of Ω (area in 2D and volume in 3D):
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• Size of Γ (arc-length in 2D and area in 3D):
Dirac’s Delta function
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Numerical Implementation

• Smeared out 1’th order approximations (band-limited)
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• Minimization of area:

• Minimization of volume:
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Minimization of Area and Volume

Gradient decent of Euler-Lagrange EQ (Calculus of Variations )
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Summary of Properties

• Closest distance

• Interface normal

• Closest Distance Transform

• Mean curvature (3D)

• Volume (3D)

• Area (3D)
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Level Set Implementations

• Stability
• Explicit integration scheme: CFL time-step condition
• Implicit integration scheme: unconditionally stable
• Parabolic: infinite domain-of-dep. => central difference
• Hyperbolic:  finite domain-of dep. => upwind schemes

• Accuracy
• 1’th order forward Euler or higer order Runge-Kutta
• Parabolic: 2’nd or higher order central difference
• Hyperbolic: Gudonov with 1’th order FD or (W)ENO

• Efficiency
• Computational: Narrow band
• Storage: adaptive grids!
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Two Types of Level Set Equations

• Diffusion level set equations:
• Parabolic PDE’s
• Infinite domain of dependence
• Information has no particular direction
• Information is propagated at infinite velocity
• Use central-difference finite difference schemes!

• Advection level set equations:
• Hyperbolic PDE’s
• Finite domain of dependence
• Information has a direction
• Information is propagated at finite velocity
• Use upwind finite difference schemes!

14
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Advection example:

• Advection by vector field:

• Numerical implementation
• It’s hyperbolic so use upwind finite difference!

• Or higher order schemes like WENO [Liu et al., JCP 94]
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Advection example:

• Advection in normal direction:

• Numerical implementation:
• It’s hyperbolic so use upwind finite difference!

• This is called Godunov’s Method 
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Diffusion example: Geometric Heat EQ

• Mean Curvature flow in normal direction:

• Numerical implementation
• It’s parabolic so use central finite difference!
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Re-normalization

• Direct static approach – solve Eikonal EQ:

• Fast Marching Method - O(N log N)
• Fast Sweeping Method - O(N)

• Direct dynamic approach – solve LS EQ:

• Indirect approach – velocity extension!

1=∇φ

( )( )φφφ
∇−=

∂
∂ 1Sign

t
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• The key observations:
• The Eikonal EQ is a hyperbolic PDE!
• Information is propagated from the interface and out
• Characteristics are straight lines along the normals of the interface!
• Partition characteristics into groups according to their direction

Fast Sweeping Method

• Strategy: 
• Compute distances in alternating sweeps of groups of characteristics 
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• Initialization
• Define boundary condition:
• Freeze boundary values
• Set remaining points to large values

• Main Loop
• Solve Godunov’s upwind-scheme by Gauss-Seidel 

iterations
• When updating use:
• Alternating sweeping orderings: 2dim

Fast Sweeping Method

( ) Γ∈= xx rr for0φ

( ) ( ) ( )( )xxx oldnew
rrr φφφ ,Min=

O(N)
20
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FSM: 1D example

( )211 0,,Max1 +− −−= iiii VVVV
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FSM: 1D example

( )211 0,,Max1 +− −−= iiii VVVV
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FSM: 2D example
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FSM: 2D example
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Direct dynamic approach
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Trick: Velocity Extension
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Explicit Time Integration

• Forward Euler:

• 2. Runge-Kutta:

• 3. Runge-Kutta:
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CFL Condition

• Most explicit time integration schemes are only 
conditionally stable! 

• Stability requires that the slowest numerical wave is 
faster then the fastest physical wave:

• Level set front can only move one grid cell per iteration!

φφ
∇•=

∂
∂ V

t
r { } { }V

t
zyxMin r

Max,,
>

Δ
ΔΔΔ { }V

xt r
Max

Δ
<Δ

28
Ken Museth, Graphics Group, Linköping University

Parabolic Stability condition

• CFL is a necessary but not sufficient stability 
condition for parabolic PDE’s!

• Von Neumann stability analysis of explicit 
integration of parabolic curvature flow:

φακφ
∇=

∂
∂

t ( ) ( ) ( )
( )
α

ααα
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222
x
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Implicit Time Integration

( )φφ H
t
=

∂
∂

( ) ( )211 tOtH nnn Δ+Δ+= ++ φφφ

( ) ( ) ( )3
1

1

2
tOHHt

nn
nn Δ+⎥⎦

⎤
⎢⎣
⎡ +Δ+=

+
+ φφφφ

• Backward Euler:

• Crank-Nicolson:

• Implicit integrations schemes are unconditionally stable
• However still inaccurate for large time-steps!
• Complex to implement and often slow due to the necessity 

to solve a linear system

30
Ken Museth, Graphics Group, Linköping University

Semi-Lagrantian Integration

• This is a hyperbolic advection PDE 
• Can be integrated by the method of characteristics!
• Let’s look at a stream-line             going through     at

• Value is constant along such stream-lines (characteristics):

φφ
∇•=

∂
∂ V

t
r

( )txp ,0
rr

0xr 0=t

( ) ( )( ) ( ) 0000 0,,,, xxptxpVtxp
dt
d rrrrrrrr =−=

( ) ( )( )ttxptx ,,,~
00
rrr φφ ≡ 0

~
=∇•−

∂
∂=∇•+

∂
∂= φφφφφ V

tdt
pd

tdt
d rr
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• We simply track each point on the grid backward in time 
and use simple tri-linear interpolation! 

0 tΔ−

( )txp Δ−,rr( )0,xp rr

Semi-Lagrangian Integration

32

• We simply track each point on the grid backward in time 
and use simple tri-linear interpolation! 

• Since stream-lines correspond to tracking of (Lagrangian) 
mass-less particle this technique is call Semi-Lagrangian!

• Explicit and yet unconditionally stable!

( ) ( )( )ttxpttx ,,, Δ−=Δ+ rrr φφ

0 tΔ−

( )txp Δ−,rr( )0,xp rr

Semi-Lagrangian Integration

33

),,( tjiΓ ),,( tjiφ

positive

negative
zero

Solve PDE’s in narrow band embedding the interface

The Narrow Band Methods

34
Peng et al., J. of Comp. Phys., 155, pp. 410-438, 1999 

β
γ

δδ

{ }γφ <= ),,(:),,( kjikjiT

{ }γφ <±±±= )1,1,1(:),,( kjikjiN

Tubes  embedding zero-crossing

Accurate Level Set Implementation

35

for each grid point
// outside both tubes

if 
// inside both tubes

else if
// inside N tube

( )γφ <),( ji

),( ji
;0),( =jimask

;2),( =jimask
;)( idimindex1 =

;)( jdimindex2 =++
( )γφ <±± )1,1( ji

;1),( =jimask
;)( idimindex1 =

;)( jdimindex2 =++

;1=dim

( )2NO

Narrow Bands With Arrays

36

for 

if

);(   );( kindex2jkindex1i ==

;    to1 dimk =

( )2),( =jimask
;),( K=jiφ

for 

if

);(   );( kindex2jkindex1i ==
;    to1 dimk =

( )1),( ≥jimask
;),( K=jiφ

Ê Run over T tube:

Ê Run over N tube:

( )NO

Accessing Tube Elements
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Outline of Algorithm

Ê Update in T tube:

( ) ( )
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⎨

⎧
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32

if1
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∂
∂ )(C

t

Ê Re-initialize in N tube:

( )1)Sign( −∇=
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⎧
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)(if
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22
)Sign(

εφ
φφ
+

≈

38

for all grid point 
if     

add     to   and 
else

for all    ‘s neighbors    
if        

add     to 
if        but

for all    ‘s neighbors
add     to

newN

oldNji ∈),(

newT
γφ <),( ji

),( ji newNqp ∉),(

),( ji

newN

oldTji ∉),( newTji ∈),(

),( qp

newN),( ji
γφ <),( qp

),( ji newNqp ∉),(

[Nilsson, Breen and Museth, IEEE Vis05]

Fast Rebuild of Tubes

( )NO

Segmentation With Level Sets

Ken Museth
Graphics Group

Linköping University, Sweden
http://www.gg.itn.liu.se

40
Ken Museth, Graphics Group, Linköping University

• Separate interesting regions from background 
(uninteresting region) !

• Extract geometric structures
• E.g. interface between broken bone and tissue

• Segmentation with edges
• Based on intensity changes, i.e. derivative information!
• Edge detection

• Segmentation without edges 
• Separate regions with smoothly varying intensities
• Mumford-Shan segmentation [Chan-Vese]

Segmentation

41

Segmentation With Edges

• Interface between boundary is located at edges –
where the gradient has an extrema:

• Variational formulation:

( ) ( )( ) ( )( )∫
Ω

∇∇= xdxHxuEuF rrr φφ 00,

( )( )
( )[ ]xG

xuE rr
r

0
0 u1

1
∗∇+

=∇
ε

( ) ( )[ ] φφκφ
∇∇•∇∇+∇=

∂
∂

00 uEuE
t

42

Segmentation Without Edges

• Decompose image into segments with piece-
wise constant intensities

• Variational formulation:

• C is separating contour and u0 is an image
• A is average if u0 inside C and B outside

( ) ( ) ( ) ( )∫∫ −+−=+
)(

2
0

)(

2
021

CoutsideCinside
BxuAxuCFCF

( ) ( ) 0,0 21 => CFCF ( ) ( ) 0,0 21 >= CFCF ( ) ( ) 0,0 21 >> CFCF ( ) ( ) 0,0 21 == CFCF
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Euler-Lagrange Equations

( )

( )
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∫
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2
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44

Input Volume Initialization

• Linear filtering
• Classification
• Topology
• Morphology
• Interactive

Voxel-based
Methods

Fitted Surface

• Curvature 
• Discrete edges
• Grayscale features
• Iso-surface

Level-Set
Surface
Models

Two step procedure

[Whitaker, Breen, Museth and Soni, IEEE Vol. Graphics ’01]

Framework For Semi-Automatic Segmentation

45
Ken Museth, Graphics Group, Linköping University

InitializationInitialization Canny edgesCanny edges Gradient mag.Gradient mag.

Results - MRI Mouse Liver

46
Ken Museth, Graphics Group, Linköping University

Ventricles

Liver

Eyes

Skin

Final Mouse Embryo Composite

47
Ken Museth, Graphics Group, Linköping University

Segmentation From Multiple 
Non-Uniform Volume Datasets

48
Ken Museth, Graphics Group, Linköping University

[Museth, Breen, Zhukov and Whitaker, IEEE Visualization ’02]

Segmentation From Multiple 
Non-Uniform Volume Datasets
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Approximate initial surface
• Low-order global uniform re-sampling of input volumes
• Compute union to form single uniform volume.

Pull surface close to edges
• High-order local approximation of derivatives by Moving 

Least Squares. 
• Attraction to the discrete Canny edges.

Final surface deformation
• Attraction to 3D directional edges.
• Regularize with curvature based flow

Algorithm Overview

50

+ +

Complete Segmentation Pipeline

12812826 ×× 12816256 ×× 13128256 ××

51
Ken Museth, Graphics Group, Linköping University

Outline

Extremely High Resolution Level sets
• Previous work on compact narrow band methods
• DT-Grid: Dynamic Tubular Grid [J. Sci. Comp. 2005]
• H-RLE: Run-Length-Encoded Level Sets [TOG 2006]

[Model from Frantic Films]

52

• Fast Narrow Band Methods [Whitaker ‘96 and Peng et al. ’99]
• Computational complexity  linear in size of interface (area)
• Memory usage linear in size of the embedding (volume)!
• Efficient data structures – fast stencil access operations

• Adaptive Distance Fields [Frisken et al., SIGGRAPH ‘00]
• Memory usage scales with geometric features of interface!
• Relatively complex data structure - slow access operations
• Level set upwind schemes are limited to uniform sampling!

• Uniformly sampled Octrees [Losasso et al., SIGGRAPH 04]
• Computation and memory scales with size of interface
• Relatively complex data structure – slow access operations
• Doesn’t utilize main advantage of hierarchical tree structure

Imbalance between efficiency of computation and memory usage!

Problem Statement

53
Ken Museth, Graphics Group, Linköping University

• Dynamic Tubular Grid
• Based on “Compressed Row Storage” (CRS)
• Computational complexity linear in size of interface
• Memory usage linear in size of interface - smaller than octrees!
• Fast cache-coherent data structures – fast than octrees!
• Can employ standard FD-HJ schemes in any dimensions
• Out-Of-The-Box simulations!!!!

[Nielsen and Museth, Journal of Scientific Computing,  2005] 

Solutions 1: DT-Grid

54

DT-Grid 3:
Yellow: Y-index, value
Blue: Value
Cyan: Value-Index
Magenta: X-index, 

value-index

CRS Format  
(Sparse Matrices):
Blue: Y-index, value
Cyan: Value-index
White: NULL index

DT-Grid 1:
Yellow: Y-index, value
Blue: Value
Cyan: Value-Index
White: NULL index

DT-Grid 2:
Yellow: Y-index, value
Blue: Value
Cyan: X-index,

value-index

DT-Grid Data Structure

Narrow Band Level
Set
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Ken Museth, Graphics Group, Linköping University

DT-Grid of a 3D Sphere

Values P-column,
Connected
Component

X-coordinates

Y-coordinates

Z-coordinates

Values

56

Random Access

Time Complexity:
O(logC0+ logCx)

Look up (x,y)

x

57

Neighbor Access in Y-direction

Time Complexity: O(1)

Locator : uniquely defines 
a grid point in the recursive 
data structure.

58

Neighbor Access in X-direction

Assume we have a 
locator to the grid point.

Time Complexity:
O(logCx+1)

x

59

Sequential and Stencil Access

Time Complexity: O(1)

60

Rebuilding and Dilating the Narrow Band

Time complexity: O(MN) 
P-column XP-columns X-1,X,X+1

Original: Dilated by 3x3 stencil:
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Time and memory performance (1)

Volume conserving mean curvature flow

62
Ken Museth, Graphics Group, Linköping University

Time and memory performance

Smoothing away the Stanford Bunny (256 x 256 x 256) :

(using very accurate but slow numerical schemes!)

63
Ken Museth, Graphics Group, Linköping University

Out-Of-The-Box Level Sets

Narrow band metoder og Octrees

DT-Grid

64
Ken Museth, Graphics Group, Linköping University

Ê Hierarchical RLE Level Sets
• Combines benefits of DT-Grid with more flexibility for CG!
• Based on Run-Length-Encoding in each scan-line (p-column)!
• Allows for the representation of unclosed surfaces
• Can be augmented with arbitrary data fields like textures etc.
• Can encode non-symmetric narrow bands and arbitrary run-codes
• Optimized for fluid simulations with only interiour velocities

[Houston, Nielsen, Batty, Nilsson and Museth, ACM SIGGRAPH Sketch, 2005] 

Solutions 2: H-RLE Level Sets

[Houston, Nielsen, Batty, Nilsson and Museth, ACM TOG,  January, 2006] 

65
Ken Museth, Graphics Group, Linköping University

Un-closed surfaces

DT-Grid:

H-RLE LS:

66
Ken Museth, Graphics Group, Linköping University

Robust Mesh to Level Set Scan Converter

• High-resolution compact RLE level set scan 
Converted from 724 unclosed tri-mesh components
• Effective Resolution: 1691x1223x839
• Volume: 1.74 billion voxels
• Total memory usage: 229.6 MB (as oppose to 7GB!)
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Gigantic Level Set with sharp features

229.6 MB as oppose to 7GB!
[TOG ‘06]

68
Ken Museth, Graphics Group, Linköping University

Extreme scan convertion on a laptop!

• Scan convert on a laptop with 1GB
• Lucy Statue Model: 14 million 

vertices, 28 million triangles
• Effective Resolution: 

3000x1726x5144=26 billion voxels
• Total memory usage: 738 MB (as 

opposed to 128GB!)

[TOG ‘06]

69

Details at 3000x1726x5144

738 MB vs
128GB

[TOG ‘06]

70

Mesh To Level Set Scan Conversion

• Linear time complexity and memory consumption.

[TOG ‘06]

71

Shape Metamorphosis

• H-RLE level set morph at high resolution
• Source: Human model with resolution 512x797x145
• Target: Thai statuette with resolution 1000x1676x865
• Conversion Volume: 26 billion voxels

[TOG ‘06]

72
Ken Museth, Graphics Group, Linköping University

Shape Metamorphosis

[TOG ‘06]
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Bunny torture ☺

• Deformation the “Stanford Bunny” in the Enright vector field
• Effective grid resolution: 1024x1024x1024
• Maximum memory footprint: 96MB (vs. 5GB)
• Direct ray tracing with 400 million random accesses pr. second 
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74

A New Level Set Benchmark ☺

10243

[TOG ‘06]

75

A New Level Set Benchmark ☺

1003

76

Compact Fluid Simulations

[TOG ‘06]

77

Fluid In Non-Convex Simulation “Box”

[TOG ‘06]

78

Hierarchical RLE in Hollywood

[Scooby Doo 2, Frantic Films] [TOG ‘06]
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Introduction to GPU ComputationIntroduction to GPU Computation

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA

2

Motivation: GPU Compute Power

Molecular Dynamics (Buck)

Level-Set Surface Deformation (Lefohn) Cloud Simulation (Harris)

Motion Estimation (Strzodka)

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Motivation: GPU Compute Power

Figure courtesy of Ian Buck

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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(General-Purpose programming on 
Graphics Processing Units)

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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What is GPGPU?

“Use GPU as alternate 
parallel desktop compute platform”

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA

6

Motivation: Why GPGPU?
Beginning of desktop parallel computing age

GPUs are the first commodity, desktop, parallel architecture
NVIDIA and ATI GPUs 24 processors
IBM Cell 9   processors
Intel/AMD multicore 2   processors

Commodity
Inexpensive
Ubiquitous
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Data-Parallel Programming Basics
What is a data-parallel program?

Explicitly expresses data dependencies
Exposes parallelism

Stream programming is data-parallel model
Stream programs are dependency graphs

Kernels are graph nodes
Streams are edges flowing between kernels

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA

8

Dally et al., “Stream Processors: Programmability with Efficiency,”
ACM Queue, March 2004, pp. 52-62 

ftp://cva.stanford.edu/pub/publications/spqueue.pdf

Stream Program Basics
The stream programming model

Split algorithm into kernels based on dependencies
Example: Image processing

Streams Kernels

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Modern Graphics Pipeline

Vertex 
Buffer

Vertex 
Processor Rasterizer Fragment

Processor

Texture Buffer

Frame
Buffer(s)

VS3.0 GPUs

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Programming a GPU for Graphics

• Each fragment is shaded w/ 
SIMD program

• Shading can use values from 
texture memory

• Image can be used as texture 
on future passes

• Application specifies 
geometry rasterized

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA

11

GPU as a Stream Processor
Draw a screen-sized quad 
(creates stream of 
fragments)
Run kernel (fragment 
program) over stream of 
fragments
Read stream data from 
textures
Write stream of results to 
frame buffer

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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GPU as a Stream Processor
Streams Textures
Kernels Fragment program
map execution Draw single large quad

Write Data To 
Texture

Load 
Fragment 
Program

Configure 
OpenGL for 

1:1 Rendering

Draw Large 
Quad

Bind Textures

Bind Fragment 
Program

Write 
results to 

texture
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“Hello World“ GPGPU Example
3 x 3 convolution
CPU version

image = loadImage( WIDTH, HEIGHT );
blurImage = allocZeros( WIDTH, HEIGHT );

for (x=0; x < WIDTH; x++)
for (y=0; y < HEIGHT; y++)

for (i=-1; i <= 1; i++) 
for (j=-1; j <= 1; j++) 

float w = computeWeight(i,j);
blurImage[x][y] += w * image[x+i, y+j];

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example
GPU Version
1) Load image into texture

Figure courtesy of Mark Harris

2) Create blurImage texture to hold result

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example
GPU Version
3) Load fragment program (kernel)

Example shown in Cg

float4 blurKernel( uniform samplerRECT image, 
float2      winPos : WPOS,
out float4  blurImage ) 

{
blurImage = float4(0,0,0,0);

for (i=-1; i <= 1; i++) {
for (j=-1; j <= 1; j++) {

float2 texCoord = winPos + float2(i,j);
float  w        = computeWeight(i,j);
blurImage += w * texRECT( image, texCoord );

}
}

}

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example
GPU Version
4) Configure OpenGL to draw 1:1

No projection or rescaling

glMatrixMode( GL_PROJECTION );
glLoadIdentity();
gluOrtho2D(0, 1, 0, 1);
glViewport(0, 0, WIDTH, HEIGHT );
glMatrixMode( GL_MODELVIEW ); 
glLoadIdentity();

5) Bind image and blurKernel (texture and fragment program)
6) Bind blurImage as render target

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example
GPU Version
7) Execute kernel on each stream element

Draw quad of size [WIDTH x HEIGHT]

glBegin( GL_TRIANGLES );
glVertex2f(0, 0);
glVertex2f(2, 0);
glVertex2f(0, 2);

glEnd();

0 2

2

1

1

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example
What happened?

blurKernel executed on each element of image
Rendering replaced outer two loops of CPU version

blurKernel performed gather operation at each element

Result (blurImage) was written to framebuffer / texture
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GPGPU Languages
BrookGPU

Stanford University

kernel void blur( float4 image[][],
out float blurImage<> ) {

for (float i=-1; i <= 1; i++) {
for (float j=-1; j <= 1; j++) {

float2 coord = here.xy() + float2(i,j);
float  w     = computeWeight(i,j);
blurImage += w * image[coord.y][coord.x];

}
}

}

float4 image<WIDTH * HEIGHT>;
float4 blurImage<WIDTH * HEIGHT>;

blur( image, blurImage );

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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GPGPU Languages
Sh

University of Waterloo

fsh = SH_BEGIN_PROGRAM("gpu:fragment") {
ShInputNormal3f nv;       // normal (VCS)
ShInputVector3f lv;       // light-vector (VCS)
ShInputVector3f vv;       // view vector (VCS)
ShInputColor3f ec;        // irradiance
ShInputTexCoord2f u;      // texture coordinate

ShOutputColor3f fc;       // fragment color      

vv = normalize(vv);
lv = normalize(lv);
nv = normalize(nv);
ShVector3f hv = normalize(lv + vv); 
fc = kd(u) * ec; 
fc += ks(u) * pow(pos(hv|nv), spec_exp);

} SH_END;

Slide courtesy of Ian Buck

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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GPGPU Languages
Scout

Los Alamos National Labs
// Compute mean value 
render with(shapeof(pt)) {
// land and pt must have the same shape…
where(land) // Don’t color the continents…
image = 0;

else 
image = hsva(240 - norm(pt) * 240, 1.0, 1.0, 1.0);

}

// Compute mean value 
render with(shapeof(pt)) {
// land and pt must have the same shape…
where(land) // Don’t color the continents…
image = 0;

else 
image = hsva(240 - norm(pt) * 240, 1.0, 1.0, 1.0);

}

Slide courtesy of Patrick McCormick
Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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GPGPU Data Structures
Glift

University of California, Davis

typedef glift::ArrayGpu<vec2i, vec4f> ArrayType;

vec2i  size(WIDTH, HEIHT); 
ArrayType image( size );
ArrayType blurImage( size );

vec3i origin(0,0,0);
gpu_iterator it = blurImage.gpu_n_range(origin, size, 

vec2i(-1,-1), vec2i(1,1));

float4 main( NeighborIter2D it ) : COLOR {
for (float i=-1; i <= 1; i++) {
for (float j=-1; j <= 1; j++) {

float  w     = computeWeight(i,j);
blurImage += w * it.value( float2(i,j) ); 

}
}

}

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA

23

For Further GPGPU Information
Vivrant research community

Two major focuses
Application-specific results
New programming models for data-parallel computation

http://www.gpgpu.org/
Paper, forums, source code examples
ACM SIGGRAPH and IEEE Visualization course notes
GPU Gems II
Eurographics 2005 STAR report

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example

Source code for GPGPU examples
http://www.gpgpu.org/developer/
http://developer.nvidia.com
http://www.ati.com/developer/
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Summary
Many PDE solutions map very well to GPU

Local access patterns
Regular grids
Lots of math per memory access

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Summary
Desktop parallel computing is here to stay

Other architectures
Intel/AMD multi-core
IBM Cell
Next-gen GPUs
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Interactive LevelInteractive Level--Set Deformation Set Deformation 
On the GPUOn the GPU

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA

2

Problem Statement
Goal

Interactive system for deformable surface manipulation
Level-sets

Challenges
Deformation is slow
Deformation is hard to control

Solution
Accelerate level-set computation with GPU
Visualize computation in real-time

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Collaborators

University of Utah
Joe Kniss
Joshua Cates
Charles Hansen
Ross Whitaker
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Overview 
Why?

Motivation and previous work

How?
Intro to GPU computation
Streaming level-set algorithm
Real-time visualization
Segmentation application

Does it work?
Demonstration
User study

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Deformable Surfaces

Applications of Level-Sets
Fluid simulation
Surface reconstruction for 3D scanning
Surface processing
Image / Volume segmentation

IntroductionIntroduction

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Level-Set Method
Implicit surface

Distance transform 
denotes inside/outside

Surface motion

F = Signed speed in direction of normal

IntroductionIntroduction
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CPU Level-Set Acceleration

Initialize
Domain Compute Update

Domain

Narrow-Band/Sparse-Grid
Compute PDE only near the surface

Adalsteinson et al. 1995
Whitaker et al. 1998
Peng et al. 1999

Time-dependent, sparse-grid solver

IntroductionIntroduction

Level Set and PDE Methods for Visualization
Aaron Lefohn
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GPU Level-Set Acceleration
Strzodka et al. 2001

2D level-set solver on NVIDIA GeForce 2
No narrow-band optimization

Lefohn et al. 2002
Brute force 3D implementation on ATI Radeon 8500
No faster than CPU, but ~10x more computations
No narrow-band optimization

IntroductionIntroduction

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Overview 

Why?
Motivation and previous work

How?
Streaming narrow-band algorithm
Real-time visualization
Segmentation application

Does it work?
Demonstration
User study

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Sparse Volume Computation
CPU algorithm: Traverse list of active voxels
GPU algorithm: Compute all active voxels in parallel

Data structures change after each PDE time step

GPU Narrow-Band Solver

Initialize
Domain Compute Update

Domain

AlgorithmAlgorithm

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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GPU Narrow-Band Solver
• Goals

1. Leverage GPU parallelism
2. Perform sparse computation 
3. Minimize GPU memory usage
4. Fast update of sparse data structures
5. Interactive visualization

Algorithm Goals
AlgorithmAlgorithm

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Algorithm Solutions
Pack Active Voxels Into 2D Texture

Increase parallelism, reduce computation and memory use

Efficient GPU-to-CPU Message Passing
Fast update of packed data structure

On-The-Fly Decompression Volume Rendering
Interactive visualization without increasing memory use

AlgorithmAlgorithm
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Multi-Dimensional Virtual Memory
3D virtual memory
2D physical memory
16 x 16 pixel pages

Algorithm

A Dynamic, Sparse GPU Data Structure

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA

14

A Dynamic, Sparse GPU Data Structure
GPU: Computes PDE

Level-set computation (2D physical memory)
Issues memory requests

CPU: Manages memory
Memory manager
Page table (3D virtual memory)

Algorithm

CPU GPU

Physical Addresses for 
Active Memory Pages

Memory Requests

PDE 
Computation
15-250 passes

Algorithm

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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A Dynamic, Sparse GPU Data Structure
Problem

Neighbor lookups across page boundaries
Branching slow on GPU

Solution
Substreams

Create homogeneous data streams
Resolve conditionals with geometry
Lefohn 2003, Goodnight 2003, Harris 2003
Optimizes cache and pre-fetch performance

AlgorithmAlgorithm

Level Set and PDE Methods for Visualization
Aaron Lefohn
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GPU-to-CPU Message Passing

Problem: Active Voxel Set is Time-Dependent
GPU memory request mechanism
Low bandwidth GPU-to-CPU communication

Solution
Compress GPU memory request
Use GPU computation to save GPU-to-CPU bandwidth

Algorithm

Mipmapping

s +x -x +y -y +z -z φ

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Overview 

Why?
Motivation and previous work

How?
Streaming level-set algorithm
Real-time visualization (with Joe Kniss)
Segmentation application

Does it work?
Live demonstration
User study

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Direct Volume Rendering of Level Set
Reconstruct 2D Slice of Virtual Memory Space

On-the-fly decompression on GPU
Use 2D geometry and texture coordinates

Visualization
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Direct Volume Rendering of Level Set

Deferred Filtering: Volume Rendering Compressed Data
2D slice-based rendering: No data duplication
Tri-linear interpolation
Full transfer function and lighting capabilities

Visualization

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Overview 

Why?
Motivation and previous work

How?
Streaming level-set algorithm
Real-time visualization
Segmentation application

Does it work?
Demonstration
User study

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Level-Set Segmentation Application

Idea: Segment Surface from 3D Image
Begin with “seed” surface 
Deform surface into target segmentation

Application

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Demo
Segmentation of MRI volumes

1283 scalar volume

Hardware Details
ATI Radeon 9800 Pro
1.7 GHz Intel Pentium 4
1 GB of RAM

Results

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Movie

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA

24

GPU Narrow-Band Performance

Performance
10x – 15x faster than optimized CPU version (Insight Toolkit)
Linear dependence on size of narrow band

Bottlenecks
Fragment processor (~80%)
Conservative time step

Need for global accumulation register (min, max, sum, etc.)

Results
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Overview 

Why?
Motivation and previous work

How?
Streaming level-set algorithm
Real-time visualization
Segmentation application

Does it work?
Demonstration
User study (with Josh Cates)

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Evaluation User Study
Goal

Can a user quickly find parameter settings to create an 
accurate, precise 3D segmentation?

Relative to hand contouring

Evaluation

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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User Study Results
Efficiency

6 ± 3 minutes per segmentation (vs multiple hours)
Solver idle 90% - 95% of time

Precision
Intersubject similarity significantly better
94.04% ± 0.04% vs. 82.65% ± 0.07%

Accuracy
Within error bounds of expert hand segmentations 
Compares well with other semi-automatic techniques

Kaus et al., Radiology, 2001

Evaluation

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Summary
Interactive Level-Set System

10x – 15x speedup over optimized CPU implementation
Intuitive parameter tuning
User study evaluation

Algorithm Developments
Multi-dimensional virtual memory
GPU-to-CPU Message passing
Volume rendering packed data

Conclusions

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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That was two years ago…
GPUs have quadrupled in speed
New sparse-field CPU level-set methods

Template library for generic GPU data structures
“Glift : Generic, Efficient, Random-Access GPU Data 
Structures.”

ACM Transactions on Graphics (TOG) 
Greatly simplifies implementing data structures like this

Research on octree-based GPU PDE solver is in-
progress…

Level Set and PDE Methods for Visualization
Aaron Lefohn
University of California, Davis, USA
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Future Directions

Other Level-Set Applications
Surface processing, surface reconstruction, physical simulation

Integrate GPGPU Code Into Open Source Software
The Insight Toolkit (www.itk.org)?

“Interactive Visulation”
User-controllable PDE solvers
Combine automatic and by-hand methods
New visualization and computation challenges

Conclusions
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Questions?

For More Information
Google “Lefohn level set”
http://graphics.cs.ucdavis.edu/~lefohn/

Journal Papers Based on this Work
Lefohn, Kniss, Hansen, Whitaker, “A Streaming Narrow Band 
Algorithm: Interactive Computation and Visualization of 
Level Sets,” IEEE Transactions on Visualization and Computer 
Graphics, 10 (40), Jul / Aug, pp. 422-433, 2004

Cates, Lefohn, Whitaker, “GIST: An Interactive, GPU-Based 
Level-Set Segmentation Tool for 3D Medical Images,”
Medical Image Analysis, to appear 2004
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Overview

PDE methods in flow field post-processing
➤ Scale space concept of image processing

➤ Anisotropic nonlinear diffusion for flow visualization
➤ Implementation

➤ Phase separation for flow clustering

Anisotropic levelset diffusion

➤ Introduction
➤ Anisotropic levelset diffusion

➤ The importance of regularization
➤ Evaluation of curvature

4

Representation of images

An image (or texture) is a mapping
from a 2D or 3D domain into the real numbers.

������

�

���� � �� ��

5

➤ Filters generate a scale of images

Scale space concept in image processing

Fine Representation
(Original Version)

Coarse Representation
(Simpified Version)

���� ����� ����� ����� �����

���������
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The diffusion equation

➤ The scale                    of filtered images can be generated
by a parabolic PDE

➤ We call     the scale parameter (or scale)

➤ The choice of the diffusion tensor steers the behavior 
of the evolution

���� �������� 	 �

�

���������

�
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➤ (1) Conservation of Mass

➤ (2) Fick’s law

➤ Diffusion equation � substituting (2) into (1)

What is diffusion?

	 	 ����

���	 ����	

��� 	��������

The temporal change 
of a density     results 
from the flux    . 

�
	

The flux     can be 
expressed by the 
gradient of the 
density     .

	

�

8

Isotropic diffusion example
(The heat equation)

Initial image

���� ������� 	 �

9

Better isotropic diffusion example
[Perona, Malik ’87], [Catté, Lions, Morel, Coll ’92]

Initial image

���� ���������
������ 	 �

10

➤ Diffusion/Flux is aligned with  
the image gradient vector

➤ Diffusion/Flux is aligned with 
arbitrary vector

Isotropic vs. Anisotropic

11

Anisotropic diffusion example

Initial image

magnified

12

Anisotropic diffusion

➤ The flux is determined by

� 	

�

 �
� �

�
	 	 ����

� 	 
�

�

 �
� �

�



Rotate the 
coordinate 

system with 
matrix     .
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➤ For flow visualization we need local transformations of the 
coordinate system:


��� 	

�
�� ��
��� ���

�

Flow aligned diffusion

�

��

��

��

���� 	
� ���

�

 �
� �

�

���
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The flow aligned diffusion equation

➤ Given a vector field                          and a given initial 
image                          find a scale                     of 
representations which obey the following PDE

where the diffusion tensor is given by

� � �� ���

�� � �� �� ���������

���� ����������� 	 �

���� 	
� ���

�

 �
� �

�

���
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Choice of initial data

➤ Arbitrary initial data can be used. But to avoid artifacts a 
white noise should be used.

16

Modeling multi-scale visualization

➤ Larger scale    shall give a coarser representation of the 
flow field.

Incorporate a “clustering” of the resulting filaments.

➤ To this end use diffusion perpendicular to the flow field.

➤ The modified diffusion tensor is then

������� 	 
����

�

����� �
� �������

�

���

�
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Multiscale behavior

FlatSteep

Steep

Flat

���� ����
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Scale 3

Scale 7 Scale 11

Scale 1Initial image

Scale 15

Scale 50Scale 22 Scale 35

A first application example
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Contrast enhancement

➤ Contrast decreases due to the intrinsic behavior of diffusion
➤ Contrast enhancement can be modeled as a source term 

on the right hand side:

����

�
�� 
�

In the asymptotic 
limit 
values will be 
either zero or one.

���� ������� ������� 	 ����

���

20

Example and Application

Initial image Scale 1 Scale 2

Scale 3 Scale 4 Scale 5

Scale 6 Scale 7 Scale 8

21

Characterization and comparison of the results

➤ Generates streamlines
➤ Incorporates a continuous scaling possibility

➤ Anisotropic diffusion is an asymptotic limit of LIC (Line 
integral convolution)
(cf. [Cabral, Leedom ’93], [Stalling, Hege ’95] and many 
others …)

➤ Anisotropic diffusion is a parallel version of Spot Noise
(cf. [van Wijk ’91], [de Leeuw, van Wijk ’95] and others …)

22

➤ Use time-steps of size 

➤ Backward difference quotient in scale variable:

➤ Spatial discretization: Finite Element Methods (9-pt 
stencil) can resolve anisotropic diffusion better than Finite 
Difference Methods (5-pt stencil)

FEM-Discretization I

��� ����

�
������������� 	 �������

� ������ �

� �� 	 �����

�� �� ��

23

FEM-Discretization II

➤ Mesh consisting of quadrilaterals or hexahedrals (node of 
mesh = pixel of output texture)

➤ Piecewise bi- or trilinear function space (corresponding 
to bi- or trilinear interpolation in 2D resp. 3D)

➤ Computation of one step of the anisotropic diffusion means 
solving a system of equations for the nodal function values

��� ��������� 	 ������� � � ������

����� 	
��

	��

�����	�	���

24

Mass- and stiffness-matrices

➤ The shape functions      determine the image space and the 
matrices involved into the system of equations.

➤ Mass matrix

➤ Stiffness matrix

�	

�	
 	

�

�

�	����
�����

��	
 	

�

�


� ���

�

 �
� ��

�

�� ���	��� 	 ��
�����

	

�

�

�

 �
� ��

�

�����	��� 	 
�����
�����
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Algorithm

➤ Initialize      = white noise
➤ Set

➤ Set
➤ While

• Assemble 
• Assemble 
• Compute right hand side

• Solve the system 
•

•

➤ End while

��� ��������� 	������� � � ������
� ������� � ������

����

��
�	 �

� 	 � � �
� 	 �� 


�
� � ��	


�	 


Performance for 256x256 texture on standard CPU is approx. 2fps.

26

2D Application

Magneto-
Hydro-
Dynamics 
(MHD) 
Simulation

27

2D Application

Simulation of convective flow (Benard w. Boussinesq approximation)

Numerical data: E. Bänsch

28

3D Application

3D flow in a box with 2 interior walls.

29
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Time dependent flow visualization

➤ So far: static flow fields

Flow visualization delivers a multiscale of 
streamline-type patterns

➤ Now: time-dependent flow fields

Transport the resulting patterns with the flow

� 	 ����

� 	 ������

32

The material derivative

➤ Transport is formulated with the material derivative

➤ Transport PDE moves the density along the vector field    :

�

��
���� �� �	 �������� � ������ 	 �������

�

��
���� �� 	 �

�

This equation is also known 
as continuity equation.

33

The Transport Diffusion PDE

➤ Combine the diffusion equation and the transport equation:

➤ For the diffusion equation    means the (artificial) scale

➤ For the transport equation    means the (real) time

➤ There is an unwanted coupling between scale and time!
Multiscale-visualization is difficult!

�

��
�� �������������� 	 �

�
�

34

Scale versus Time

Scale

Time

Steady Flow Field  ����

Desired behavior

No separation between 
Scale and Time

35

Scale versus Time

➤ Compute short 
evolution of the 
time/scale coupled 
transport diffusion 
equation starting at 
different successive 
time-points

➤ Combine all results by 
an appropriate blending

Scale

Our approach

Time

36

Examples and Applications

Flow of pollutant through a saltdome.
Numerical data: J. Geiser
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Examples and Applications

Benard convective flow in a box with heating from below and 
cooling from above.

38

Remarks on implementation

➤ The proper discretization of the material derivative is not 
easy: The longer a density is transported the more it is 
blurred (numerical diffusion)

➤ Implementation for real-time visualization on CPUs is not 
feasible

➤ Realizations on graphics hardware are available for 2D and 
3D flow fields
(cf. e.g. IBVF and IBVF 3D, J. v. Wijk, A. Telea)

39

Bibliography
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Transport and diffusion in timedependent flow visualization
Proceedings IEEE Visualization 2001
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41

Clustering with Phase Separation (Cahn-Hilliard 
model)

➤ Phase separation and coarsening in (binary) metal alloys 
is described by minimizing the Energy

➤ describes the chemical 
energy (double-well potential)

➤ describes the interface 
energy between the phases

���� �	

�

�

�

��� �

�

�
�����

�




�




�����
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Results from phase separation

➤ Chemical energy is minimized � phases separate
➤ Interface energy is minimized � clusters grow bigger
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Anisotropic interface energy

➤ The interface energy is given by

➤ All interfaces are penalized equally

➤ Anisotropic energy penalizing interfaces which are not 
aligned with a given flow field:

�����

������ 	 ��

��� � 	 
����
�

 �
� �

�

��� � 
 


� 	
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����

44

Anisotropic phase separation

➤ Minimize the anisotropic energy

➤ The first variation of energy and a gradient descent 
approach leads to the PDE

���� �	

�

�

�

��� �

�

�
������ 	 ��

�

���� ��

����� ������������� 	 �

45

Examples and Applications

Convective flow in a 2D box. From left to right the scale increases. 

46

Varying anisotropy

Convective flow in a 2D box. From left to right     increases.�

47

Examples and Applications

➤ H. Garcke, T. Preusser, M. Rumpf, A. Telea, U. Weikard
and J, van Wijk
A Phase Field Model for Continuous Clustering on Vector 
Fields
IEEE Trans. Vis. Comp. Graphics, 7, 230-241, 2001. 
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Levelset-Evolution

➤ Consider motion of the level-set boundary of an image 

The image     then obeys
the level-set PDE

���� 	
��

����

�

���	 ��������

If depends only on the
shape of the level-sets
we call the evolution
to be geometric.

����

50

Consider variation of the normal           on 
the levelset .

����
��

�����

Curvature of Level-Sets

Projection onto
tangent space

Shape operator

���� ����
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Mean curvature

The shape operator

Analysis of Eigenvalues and Eigenvectors of Shape operator
leads to curvature notions

Principal curvatures

Gaussian curvature

" 	 ����� 

# 	��� 	 $�$�

$�� $�

52

The mean curvature motion (MCM)

➤ Speed of motion is equal to the mean curvature of levelsets

���	 ��������

���� 	 ����� 	���

�
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����
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53

Anisotropic level-set equation

➤ Instead of the mean curvature use the variation of an 
anisotropic normal to define the evolution speed

➤ Base the definition of the anisotropic normal on a 
regularized shape operator

���� 	 ���
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Curvature dependent diffusion tensor
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55

Anisotropic vs. isotropic level-set evolution

Anisotropic Levelset Method
Mean Curvature Motion

56

The importance of regularization

➤ Regularization acts as an estimate of the true (non-noisy) 
shape

➤ One can show that

➤ Levelsets are invariant under the evolution if the regularized 
shapes coincide with the non-regularized shapes

����
 � � �  � � ��� ���

57

Evaluation of curvature

➤ Evaluation of curvature (= computation of shape operator) 
plays an important role

Convolution with
compact
smoothing kernel

Local least squares
projection onto
polynomials

58

Examples and Applications

Anisotropic Levelset Method
Mean Curvature Motion

59
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Anisotropic Diffusion in
Vector Field Visualization on

Euclidean Domains and Surfaces
Udo Diewald, Tobias Preuûer, and Martin Rumpf

AbstractÐVector field visualization is an important topic in scientific visualization. Its aim is to graphically represent field data on two

and three-dimensional domains and on surfaces in an intuitively understandable way. Here, a new approach based on anisotropic

nonlinear diffusion is introduced. It enables an easy perception of vector field data and serves as an appropriate scale space method

for the visualization of complicated flow pattern. The approach is closely related to nonlinear diffusion methods in image analysis where

images are smoothed while still retaining and enhancing edges. Here, an initial noisy image intensity is smoothed along integral lines,

whereas the image is sharpened in the orthogonal direction. The method is based on a continuous model and requires the solution of a

parabolic PDE problem. It is discretized only in the final implementational step. Therefore, many important qualitative aspects can

already be discussed on a continuous level. Applications are shown for flow fields in 2D and 3D, as well as for principal directions of

curvature on general triangulated surfaces. Furthermore, the provisions for flow segmentation are outlined.

Index TermsÐFlow visualization, multiscale, nonlinear diffusion, segmentation.

æ

1 INTRODUCTION

THE visualization of field data, especially of velocity
fields from CFD computations, is one of the funda-

mental tasks in scientific visualization. A variety of
different approaches has been presented. The simplest
method of drawing vector plots at nodes of some overlaid
regular grid in general produces visual clutter because of
the typically different local scaling of the field in the
spatial domain, which leads to disturbing multiple over-
laps in certain regions, whereas, in other areas, small
structures such as eddies cannot be resolved adequately.
This gets even worse if tangential fields on highly curved
surfaces are considered.

The central goal is to come up with intuitively better
receptible methods which give an overall, as well as a
detailed, view on the flow patterns. Single particle lines
only partially enlighten features of a complex flow field.
Thus, we want to define a texture which represents the field
globally on a 2D or 3D domain and on surfaces, respec-
tively. Here, we confine ourselves to stationary fields. In the
Euclidean case, we suppose v : 
! IRn for some domain

 � IRn, whereas, in the case of a manifoldM embedded in
IR3, we consider a tangential vector field v. We ask for a
method generating stretched streamline type patterns
which are aligned to the vector field v�x�. Furthermore,
the possibility of successively coarsening this pattern is
obviously a desirable property. Methods which are based
on such a scale of spaces and enhance certain structures of
images are well-known in image processing analysis.

Actually, nonlinear diffusion allows the smoothing of gray
or color images while retaining and enhancing edges [18].
Now, we set up a diffusion problem, with strong smoothing
along integral lines and edge enhancement in the orthogo-
nal directions. Applying this to some initial random noise
image intensity, we generate a scale of successively coarser
patterns which represent the vector field. Finite elements in
space and a semi-implicit time stepping are applied to solve
this diffusion problem numerically. Furthermore, a suitable
modification of the approach allows the identification of
topological regions.

Before we explain in detail the method, let us discuss
related work on vector field visualization and image
processing. Later on we will identify some of the well-
known methods as equivalent to special cases or asymptotic
limits of the presented new method, respectively.

2 RELATED WORK

The spot noise method proposed by van Wijk [25]
introduces spot-like texture splats which are aligned by
deformation to the velocity field in 2D or on surfaces in 3D.
These splats are plotted in the fluid domain, showing strong
alignment patterns in the flow direction. The original first
order approximation to the flow was improved by de Leeuw
and van Wijk in [6] by using higher order polynomial
deformations of the spots in areas of significant vorticity. In
an animated sequence, these spots can be moved along
streamlines of the flow. Furthermore, in 3D, van Wijk [26]
applies the integration to clouds of oriented particles and
animates them by drawing similar moving transparent and
illuminated splats.

The Line Integral Convolution (LIC) approach of Cabral
and Leedom [4] integrates the fundamental ODE describing
streamlines forward and backward in time at every
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pixelized point in the domain, convolves a white noise
along these particle paths with some Gaussian type filter
kernel, and takes the resulting value as an intensity value
for the corresponding pixel. According to the strong
correlation of this intensity along the streamlines and the
lack of any correlation in the orthogonal direction, the
resulting texturing of the domain shows dense streamline
filaments of varying intensity. Stalling and Hege [21]
increased the performance of this method, especially by
reusing portions of the convolution integral already
computed on points along the streamline. Forssell [10]
proposed a similar method on surfaces and Max et al. [17]
discussed flow visualization by texturing on contour
surfaces. Max and Becker [16] presented a method for
visualizing 2D and 3D flows by animating textures.

Shen and Kao [20] applied an LIC type method to
unsteady flow fields. Recently, a method [2] has been
presented which generates streakline type patterns by
numerical calculation of the transport of inlet coordinates
and inlet position. Interrante and Grosch [12] generalized
line integral convolution to 3D in terms of volume
rendering of line filaments.

In [24], Turk and Banks discuss an approach which
selects a certain number of streamlines. They are auto-
matically equally distributed all over the computational
domain to characterize, in a sketch-type representation, the
significant aspects of the flow. An energy minimizing
process is used to generate the actual distribution of
streamlines.

Especially for 3D velocity fields, particle tracing is a very
popular tool. But, a few particle integrations released by the
user can hardly scope with the complexity of 3D vector
fields. Stalling et al. [22] use pseudorandomly distributed,
illuminated, and transparent streamlines to give a denser
and more receptible representation, which shows the
overall structure and enhances important details.

Van Wijk [27] proposed the implicit stream surface
method. For a stationary flow field, the transport equations
v � r� � 0 are solved for given v and certain inflow and
outflow boundary conditions in a precomputing step. Then,
isosurfaces of the resulting function � are streamsurfaces
and can be efficiently extracted with interactive frame rates,
even for larger data sets.

Most of the methods presented so far have in common,
that the generation of a coarser scale requires a recomputa-
tion. For instance, if we ask for a finer or coarser scale of the
line integral convolution pattern, the computation has to be
restarted with a coarser initial image intensity. In the case of
spot noise, larger spots have to be selected and their
stretching along the field has to be increased. The approach
to be presented here will incorporate a successive coarsen-
ing as time proceeds in the underlying diffusion problem.

As already mentioned in the introduction, our method of
anisotropic nonlinear diffusion to visualize vector fields is
derived from well-known image processing methodology.
Discrete diffusion type methods have been known for a
long time. Perona and Malik [18] introduced a continuous
diffusion model which allows the denoising of images
together with the enhancing of edges. Alvarez et al. [1]
established a rigorous axiomatic theory of diffusive scale

space methods. Kawohl and Kutev [14] investigate a
qualitative analysis of the Perona and Malik model. The
recovering of lower dimensional structures in images is
analyzed by Weickert [28], who introduced an anisotropic
nonlinear diffusion method, where the diffusion matrix
depends on the so-called structure tensor of the image. A
finite element discretization and its convergence properties
have been studied by Kacur and Mikula [13].

Concerning the application of diffusion type methods on
surfaces, a general introduction to differential calculus on
manifolds can be found for instance in the book by
do Carmo [7]. Dziuk [8] presented an algorithm for the
solution of partial differential equations on surfaces and, in
[9], he discussed a numerical method for geometric
diffusion applied to the surface itself which coincides with
the mean curvature motion.

3 THE NONLINEAR DIFFUSION PROBLEM

Let us now derive our method based on a suitable PDE
problem. At first, we confine ourselves to the case of planar
domains in 2D and 3D. Here, nonlinear anisotropic
diffusion applied to some initial random noisy image will
enable an intuitive and scalable visualization of compli-
cated vector fields. Therefore, we pick up the idea of line
integral convolution, where a strong correlation in the
image intensity along integral lines is achieved by convolu-
tion of an initial white noise along these lines. As proposed
already by Cabral and Leedom [4], a suitable choice for the
convolution kernel is a Gaussian kernel. On the other hand,
an appropriately scaled Gaussian kernel is known to be the
fundamental solution of the heat equation. Thus, line
integral convolution is nothing else than solving the heat
equation in 1D on an integral line parameterized with
respect to arc length. On pixels which are located on
different integral lines, the resulting image intensities are
not correlated. Hence, the thickness of the resulting image
patterns in line integral convolution is of the size of the
random initial patterns, in general, a single pixel. Increasing
this size, as has been proposed by Kiu and Banks [15], leads
to broader stripes and, unfortunately, less sharp transitions
across streamline patterns. As described so far, line integral
convolution is a discrete pixel-based method. If we ask for a
well-posed continuous diffusion problem with similar
properties, we are led to some anisotropic diffusion, now
controlled by a suitable diffusion matrix.

To begin with, let us at first introduce a general nonlinear
diffusion method from image processing and then discuss
the selection of the appropriate diffusion tensor and the
righthand side. Here, we consider first the case of an image
in Euclidean space either in 2D or 3D. In Section 6, we then
generalize this with respect to textures on surfaces. We
consider a function � : IR�0 � 
! IR which solves the
parabolic problem

@
@t �ÿ div A�r���r�� � � f��� in IR� � 
;

��0; �� � �0 on 
;
@
@� � � 0 on IR� � @
:

for given initial density �0 : 
! �0; 1�. Here, �� � �� � � is a

mollification of the current density, which will later on turn
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out to be necessary for the well-posedness of the above

parabolic, boundary, and initial value problem. In our

setting, we interpret the density as an image intensity, a

scalar grayscale orÐwith a slight extension to the vector

valued caseÐas a vector valued color. Thus, the solution

���� can be regarded as a family of images f��t�g
t2IR�

0

, where

the time t serves as a scaling parameter. Let us remark that,

by the trivial choice A � 1 and f��� � 0, we obtain the

standard linear heat equation with its isotropic smoothing

effect. In image processing, �0 is a given noisy initial image.

The diffusion is supposed to be controlled by the gradient

of the image intensity. Large gradients mark edges in the

image which should be enhanced, whereas small gradients

indicate areas of approximately equal intensity. Here,

denoising, i.e., intensity diffusion, is considered. For that

purpose we prescribe a diffusion coefficient

A � G�kr��k�;
where G : IR�0 ! IR� is a monotone decreasing function
with limd!1G�d� � 0 and G�0� � � , where � 2 IR� is
constant (cf. Fig. 1), e. g. G�d� � �

1�kdk2 . If we would replace
the mollified gradient r�� as argument of G by the true
gradient r�, which leads to the original Perona Malik
model, we would, in general, obtain a backward parabolic
problem in areas of high gradients which is no longer well-
posed [14]. The invoked mollification avoids this short-
coming and comes along with a desirable presmoothing
effect. Nevertheless, the enhancing of steep gradients and,
thereby, edges in the image, known from backward
diffusion, is retained if we adjust the mollification carefully.
A suitable choice [13] for this mollification is a convolution
with the heat equation kernel, i.e., we define �� � ~��t �
�2=2� where ~� is the solution of the heat equation with initial
data �. Then, � is the width of the corresponding Gaussian
filter. Fig. 2 gives an example of such an image smoothing
and edge enhancement by nonlinear diffusion. The function
f��� may serve as a penalty which forces the scale of images
to stay close to the initial image, e.g., choosing
f��� � 
��0 ÿ ��, where 
 is a positive constant.

Now, we incorporate anisotropic diffusion. For a given
vector field v : 
! IRn, we consider linear diffusion in the
direction of the vector field and a Perona Malik type
diffusion orthogonal to the field. Let us suppose that v is
continuous and v 6� 0 on 
. Then, there exists a family of
continuous orthogonal mappings B�v� : 
! SO�n� such
that B�v�v � kvke0, where feigi�0;���;nÿ1 is the standard base

in IRn (cf. Fig. 3). We consider a diffusion matrix A �
A�v;r��� and define

A�v; d� � B�v�T ��kvk�
GkdkIdnÿ1

� �
B�v�;

where � : IR� ! IR� controls the linear diffusion in the

vector field direction, i.e., along streamlines, and the edge-

enhancing diffusion coefficient G��� introduced above acts

in the orthogonal directions. Here, Idnÿ1 is the identity

matrix in dimension nÿ 1. We may either choose a linear

function � or, in the case of a velocity field which spatially

varies over several orders of magnitude, we select a

monotone function � (cf. Fig. 4) with

��0� > 0 and

lim
s!1��s� � �max:

In general, it does not make sense to consider a certain

initial image. As initial data �0, we thus choose some

random noise of an appropriate frequency range. This can,

for instance, be generated by running a linear isotropic

diffusion simulation on a discrete white noise for a short

time. Hence, patterns will grow upstream and downstream,

whereas the edges tangential to these patterns are succes-

sively enhanced. Still, there is some diffusion perpendicular

to the field which supplies us for evolving time with a scale

of progressively coarser representation of the flow field. If

we run the evolution for vanishing righthand side f , the

image contrast will, unfortunately, decrease due to the

diffusion along streamlines. The asymptotic limit would

turn out to be an averaged gray value. Therefore, we

strengthen the image contrast during the evolution, select-

ing an appropriate function f : �0; 1� ! IR (cf. Fig. 4) with
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Fig. 1. The shape of G��� which, applied to the gradient of the mollified

image intensity, serves as a diffusion coefficient in image processing.
Fig. 2. The noisy image on the left is successively smoothed by

nonlinear diffusion. On the right the resulting smoothed image with

enhanced edges is shown.

Fig. 3. The coordinate transformation B(v).



f�0� � f�1� � 0

f > 0 on �0:5; 1� and f < 0 on �0; 0:5�:
If weÐat first glanceÐneglect the diffusive term in the
equation, one realizes that perturbations below the average
value 0:5 are pushed toward the zero value and, accord-
ingly, values above 0:5 are pushed toward 1. Well-known
maximum principles ensure that the interval of gray values
�0; 1� is not enlarged running the nonlinear diffusion. Here,
the first property of f is of great importance. Finally, we end
up with the method of nonlinear anisotropic diffusion to
visualize complex vector fields. We thereby solve the
nonlinear parabolic problem

@

@t
�ÿ div A�v;r���r�� � � f���;

starting from some random initial image �0, and obtain a
scale of images representing the vector field in an intuitive
way (cf. Fig. 5).

The corresponding variational formulation is obviously
given by

�@t�; �� � �A�v;r���r�;r�� � �f; ��;
for all � 2 C1�
�, where �:; :� denotes the L2 product on the
domain 
. Our later finite element implementation will be
based on this formulation by restriction to finite dimen-
sional function spaces.

4 COUPLED SYSTEM OF DIFFUSION EQUATIONS

If we ask for pointwise asymptotic limits of the evolution,

we expect an almost everywhere convergence to ��1; �� 2
f0; 1g due to the choice of the contrast enhancing function

f���. Analytically, 0:5 is a third, but unstable, fix point of the

dynamics. Thus, numerically, it will not turn out to be

locally dominant. The space of asymptotic limits signifi-

cantly influences the richness of the developing vector field

aligned structures. We may ask how to further enrich the

pattern which is settled by anisotropic diffusion. This turns

out to be possible by increasing the set of asymptotic states.

We no longer restrict ourselves to a scalar density �, but

consider a vector valued � : 
! �0; 1�m for some m � 1, and

a corresponding system of parabolic equations. The

coupling is given by the nonlinear diffusion coefficient

G��� which now depends on the norm kr�k of the Jacobian

of the vector valued density r� and the righthand side f���.
We define

f��� � h�k�k��
with h�s� � ~f�s�=s for s 6� 0, where ~f is the old righthand

side from the scalar case and h�0� � 0. Furthermore, we

select an initial density which is now a discrete ªwhiteº

noise with values in B1�0� \ �0; 1�m. Thus, the contrast

enhancing now pushes the pointwise vector density � either

to the 0 or to some value on the sphere sector Smÿ1 \ �0; 1�m
in IRm (cf. Fig. 6). Again, a straightforward application of

the maximum principle ensures ��t; x� 2 Smÿ1 \ �0; 1�m for

all t and x 2 
.
Fig. 7 shows an example for the application of the vector

valued anisotropic diffusion method applied to a 2D flow

field from a MHD simulation convective flow field.

Furthermore, Fig. 8 shows results of this method applied

to several time steps of a convective flow field. An

incompressible BeÂnard convection is simulated in a rectan-

gular box with heating from below and cooling from above.

The formation of convection rolls will lead to an exchange

of temperature. We recognize that the presented method is

able to nicely depict the global structure of the flow field,

including its saddle points, vortices, and stagnation points

on the boundary. Fig. 9 shows results for the same data sets

obtained by line integral convolution (here, we used the

implementation of Stalling and Hege [21]). Finally, Fig. 10

shows a different application to a porous media flow field.
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Fig. 4. The graphs of the velocity dependent linear diffusion ����,
respectively, the scalar contrast enhancing right hand side f���.

Fig. 5. A vector field from a 2D magneto-hydrodynamics simulation
(MHD) is visualized by nonlinear diffusion. A discrete white noise is
considered as initial data. We run the evolution on the left for a small
and, on the right, for a large constant diffusion coefficient �.

Fig. 6. A sketch of the vector valued contrast enhancing function f which
leads to asymptotic states ��1; �� 2 f0g [ �Smÿ1 \ �0; 1�m� . Here, the
components of the density are interpreted as blue, respectively green,
color values. The arrows indicate the direction of contrast enhancement.



5 APPLICATION IN 3D

The anisotropic nonlinear diffusion problem has been

formulated in Section 3 for arbitrary space dimension. It

results in a scale of vector field aligned patterns which we

then have to visualize. In 2D, this has already been done in

a straightforward manner in the above figures. In 3D, we

have somehow to break up the volume and open up the

view to inner regions. Otherwise, we must confine

ourselves with some pattern close to the boundary

representing solely the shear flow.

Here, a further benefit of the vector valued diffusion
comes into operation. We know that, for m � 2, the
asymptotic limitsÐwhich differ from 0Ðare, in mean,
equally distributed on S1 \ �0; 1�2. Hence, we reduce the
informational content and focus on a ball-shaped neighbor-
hood B��!� of a certain point ! 2 S1 \ �0; 1�2. Now, we can
either look at isosurfaces of the function

��x� � k��x� ÿ !k2;

where the isolevel �2 allows us to depict the boundary of the
preimage of B��!� with respect to the mapping � (cf. Fig. 11
and Fig. 12). Alternatively, we might use volume rendering
to visualize this type of subvolumes. A detailed discussion
of the latter approach is beyond the scope of this paper.

6 ANISOTROPIC DIFFUSION ON SURFACES

In the above sections, we have discussed anisotropic
diffusion in vector field visualization on domains which
are subsets of two and three-dimensional Euclidean space.
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Fig. 7. Different snapshots from the multiscale based on anisotropic
diffusion are depicted for a 2D MHD simulation vector field. Here, we
consider a two-dimensional diffusion problem and interpret the resulting
density as a color in a blue/green color space.

Fig. 8. Convective patterns in a 2D flow field are displayed and
emphasized by the method of anisotropic nonlinear diffusion. The
images show the velocity field of the flow at different time steps. The
resulting alignment is thereby with respect to streamlines of this time
dependent flow.

Fig. 9. LIC image generated for one of the data sets that have already

been processed in Fig. 8 by nonlinear diffusion (cf. lower left image in

Fig. 8).

Fig. 10. Field aligned diffusion clearly outlines the principal features of a
porous media flow in the vicinity of a salt dome. Lenses of lower
permeability force the flow to pass through narrow bridges. We depict
two time steps of the diffusion process.



In what follows, we will outline how to carry over this

methodology to display tangential vector fields on surfaces.

Important examples are results from meteorological simu-

lations, flow fields on streamsurfaces, or vector fields in

differential geometry. The applications presented here will

focus on the latter case and present multiscale textures on

surfaces representing the principal directions of curvature.

Based on the well-established intrinsic differential calculus

on manifolds [7], we can pick up the same diffusion

problems with an appropriate reinterpretation of the

operators. Thus, let us first briefly review the basic notation

of manifolds, differential calculus, and geometric diffusion.
For a detailed introduction to geometry and differential
calculus, we refer to [7] and [5, chapter 1]. For the sake of
simplicity, we assume our surfaces to be compact em-
bedded manifolds without boundary. Thus, we consider a
smooth manifoldM, which we suppose to be embedded in
IR3. Let x : 
!M ; � 7! x��� be a coordinate map from an
atlas of M. For each point x on M, the embedded tangent
space T xM is spanned by the basis f@x@�1

; @x@�2
g. By TM, we

denote the tangent bundle. On M, the metric g��; �� as a
bilinear form on T M� TM is prescribed by the metric
tensor g � �gij�ij with

gij � @x

@�i
� @x
@�j

;

where � indicates the scalar product in IR3. The inverse of g
is denoted by gÿ1 � �gij�ij. Based on the metric, we can
define the integration of a function f onM. We split up an
integral over M into separate integrals over subsets which
are in the image x�
� of some coordinate map x and defineZ

x�
�
f :�

Z



f�x����
����������
det g

p
d�:

Integrating either a product of two functions f , g on M or
the product of two vector fields v, w on TM, we obtain the
following scalar products on C0�M� and C0�T M�, respec-
tively:

�f; g�M :�
Z
M
fg dx;

�v; w�T M :�
Z
M
g�v; w� dx:

Next, we have to introduce the fundamental intrinsic
gradient and divergence operators on M. The gradient
rMf of f is defined as the representation of df with respect
to the metric g. We obtain, in coordinates,

rMf �
X
i;j

gij
@�f � x�
@�j

@x

@�i
:

Furthermore, we define the divergence divMv for a vector
field v 2 TM as the dual operator of the gradient byZ

M
divMv �dx :� ÿ

Z
M
g�v;rM�� dx
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Fig. 11. The incompressible flow in a water basin with two interior walls
and an inlet (on the left) and an outlet (on the right) is visualized by the
anisotropic nonlinear diffusion method. Isosurfaces show the preimage
of @B��!� under the vector valued mapping � for some point ! on the
sphere sector. From top to bottom, the radius � is successively
increased. A color ramp blue±green±red indicates an increasing
absolute value of the velocity. The diffusion is applied to initial data,
which is a relatively coarse grain random noise.

Fig. 12. Nonlinear anisotropic diffusion applied to the same 3D data set

as in Fig. 11, but with a fine grain white noise as initial data.



for all � 2 C10 �M�.
Finally, with these differential operators at hand, we can

discuss a general and intrinsic diffusion on a manifold in
analogy to diffusion in Euclidean space: We ask for a
solution � : IR�0 �M! IR of the parabolic equation

@

@t
�ÿ divM�ArM�� � f���

on IR�0 �M for given initial data ��0; �� � �0 on M. Here,
we suppose A to be some positive definite symmetric
endomorphism on TM. Testing with any function � 2
C1�M�t�� and integrating over M, we obtain the varia-
tional formulation

�@t�; ��M � �ArM�;rM��TM � �f���; ��M:
Now, we consider our actual goal, which is the generation
of a texture by nonlinear anisotropic diffusion to represent a
given vector field v 2 TM on the surface. Thus, we suppose
A to depend on the vector field v and the norm of the
gradient of a convoluted intensity ��:

A � A�v; krM��k�:
For no vanishing v, let w 2 T xM be some unit vector
normal to v, i.e., g�v; w� � 0. Hence, f v

kvk ; wg is a basis of
T xM and, with respect to this basis, we define, as before in
the Euclidean case,

A�v; d� � ��kvk�
Gkdk

� �
:

As righthand side f���, we pick up the one already
introduced in Section 3 and again assume �0 to be a

random noise, either scalar or vector valued, but now
prescribed on the surfaceM. Furthermore, we have to give
a suitable definition of the regularizing presmoothing to
obtain �� from the original intensity �. Again, we proceed in
analogy to the Euclidean case and define �� as the result of
the above diffusion problem with A � Id at time t � �2

2 and
for initial data �.

Finally, the resulting family f��t�gt�0 of intensities onM
gives a multiscale of representations of the given vector
field v. Fig. 13 and Fig. 14 show results on different surfaces.
We consider the principal directions of curvature as
tangential vector fields on which we apply the anisotropic
diffusion method. On the underlying triangular grids, the
shape operator, whose eigenvalues are the principal
curvatures, is approximated as follows: Locally, we regard
a single triangle T and all the neighboring triangles which
have a nonzero intersection with T as a graph over the
plane containing T and calculate the L2 projection of this
piecewise linear graph onto the set of quadratic graphs
which are tangential to the plane. Then, we evaluate the
constant shape operator on this graph. Let us emphasize
that the L2 projection is always defined, although the local
graph property of the triangular grid might not hold in
certain degenerate cases.

7 DISCRETIZATION IN 2D AND 3D

In what follows, we discuss the discretization and im-
plementation of the field aligned diffusion method. We will
first focus on domains in 2D and 3D Euclidean space. For
this purpose, a finite element discretization in space and a
semi-implicit backward Euler or second order Crank
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Fig. 13. The principal directions of curvature are visualized by anisotropic diffusion on a minimal surface.

Fig. 14. For both principal directions of curvature, different timesteps of the anisotropic diffusion are displayed on the surface of a presmoothed

Stanford bunny. In addition, the corresponding principle curvature values are color coded.



Nicolsson scheme in time are considered. Here, we have
restricted ourselves to regular grids in 2D and 3D generated
by recursive subdivision. On these grids, we consider
bilinear, respectively, trilinear, finite element spaces.
Numerical integration is based on the lumped masses
product ��; ��h [23] for the L2 product ��; �� in the variational
formulation and a one point quadrature rule for the bilinear
form �Ar �;r ��. Semi-implicit means, for the schemes
considered here, that the nonlinearity A��� is evaluated at
the old time. Finally, in each step of the discrete evolution,
we have to solve a single system of linear equations. We
obtain, for a backward Euler discretization,

�Mk � �Lk�Ak����k�1 �Mk��k � �Mk �fk:

Here, ��k � ���ki �i is the vector of nodal intensity values at
time tk � k� , where � is the selected time step size.
Furthermore, if we denote the ªhat shapedº multilinear
basis functions by �i and the diffusion tensor with respect
to the discrete intensity at time tk by Ak,

Mk :� ��i;�j�h
� �

ij

Lk�Ak� :� �Akr�i;r�j�
ÿ �

ij

are the lumped mass matrix and nonlinear stiffness matrix,
respectively. Finally, the components of the righthand side
�fk are evaluated by ��fk�i � f���ki �.

The global matrices Mk and Lk�Ak� are assembled from
local matrices mE and lE with respect to a single element.
Their entries correspond to all pairings of local basis
functions. Due to the applied lumped mass integration,
we immediately verify

mE
ij �

1

2n
�ijjEj;

where jEj is the volume of the rectangular element E and �ij
the usual Kronecker symbol. For the nonlinear stiffness
matrix we obtain

lEij�A� � jEj ��kV k� r�i � VkV k
� �

r�j � VkV k
� ��

�

G�kDk� r�i ÿr�i � V

kV k2
V

 !

� r�j ÿr�j � V

kV k2
V

 !#
:

where V � v�cE� for the center of mass cE of E, D the
gradient of the presmoothed discrete intensity at cE , and
f�igi the set of local basis functions.

In each time step, the computation of the prefiltered
intensity vector ��n� is based on a single implicit time step
�2=2 for the corresponding discrete heat equation scheme
with respect to initial data ��n.

In our implementation, the regular grids are procedu-
rally interpreted as quadtrees, respectively octtrees [19].
Finally, no matrix is explicitly stored. The necessary matrix
multiplications in the applied iterative CG solver are
performed in successive tree traversals. Hierarchical BPX
type [3] preconditioning is used to accelerate the conver-
gence of the linear solver. The computation of a single time

step on a 2572 grid performed on a Silicon Graphics
workstation with an R10000 processor requires 1:2 seconds.
Computing time in 3D is currently much more expensive.
But, there is still a great potential to speed up the algorithm
considerably, for instance, by taking into account better
ordering strategies for the unknowns which correspond to
the anisotropy. This will be exploited in the future.
Furthermore, the code is prepared to incorporate spatial
grid adaptivity if possible (cf. Fig. 17).

8 DISCRETIZATION ON SURFACES

The discretization of the proposed anisotropic diffusion
method on surfaces is completely analogous to the above
Euclidean case. We only have to replace the discrete
differential operators and bilinear forms by their intrinsic
geometric counterparts. We suppose the surface M to be
approximated with a sufficiently fine triangular grid Mh

consisting of nondegenerate triangles T with maximal
diameter h. Thus, we only focus on the computation of
the local mass matrix mT and the local nonlinear stiffness
matrix lT �A�, respectively. We obtain again by lumped mass
integration

mT
ij �

1

3
�ijjT j;

where jT j is the area of the triangle T . Next, let us consider,
for every triangle T , the reference triangle T̂ � IR2 with
independent variables �1; �2 and nodes �0 � �0; 0�,
�1 � �1; 0�, and �2 � �0; 1�. Then, an affine coordinate
mapping X maps T̂ onto T and its nodes �i onto the
corresponding nodes Pi of T on the discrete surface in IR3.
Hence, the corresponding metric tensor is as in the
c o n t i n u o u s c a s e g i v e n b y gij � @X

@�i
� @X@�j , w h e r e

@Xk

@�i
� Pi

k ÿ P 0
k . Hence, we can evaluate gradients of the

linear basis functions �l corresponding to the nodes Pl by

rMh
�l �

X
i;j

gij
@�l

@�j
�Pi ÿ P 0�;

where the derivatives of �l with respect to the reference
coordinates � are

@�l

@�1

@�l

@�2

 !
� ÿ1
ÿ1

� �
;

1
0

� �
;

0
1

� �
:

Finally, we calculate the local nonlinear stiffness matrix

lTij�A� �

jT j ��kV k� rMh
�i � VkV k

� �
rMh

�j � VkV k
� �

�
�

G�kDk� rMh
�i ÿrMh

�i � V

kV k2
V

 !

� rMh
�j ÿrMh

�j � V

kV k2
V

 !#
:

where V � v�cT � for the center of mass cT of T , D the
geometric gradient of the presmoothed discrete intensity on
T , and ª�º still indicates the scalar product in IR3.
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9 COMPARISON TO OTHER METHODS

So far, we have introduced a novel approach which
provides us with an intuitive understanding of complex
vector fields. We have discussed a variety of important
properties and advantages. Let us now rank this method
among other visualization methods and compare it with
different techniques. Here, we especially pick up the line
integral convolution method and the spot noise approach.

For stationary vector fields, we obtain similar results by
all methods. Thin field aligned patterns are generated. Line
integral convolution leads to comparable results with the
essential difference that the PDE-based method carries a
nice scale space property, i.e., evolving a longer time in the
anisotropic diffusion method, we obtain a successive
coarsening of the resulting pattern representing the vector
field.

Furthermore, in a restricted sense, line integral convolu-
tion (LIC) and spot noise can be regarded as special cases of
the anisotropic nonlinear diffusion method. LIC with
Gaussian filter kernel can be identified as the asymptotic
limit of the latter method for a concentration of the edge
enhancing function G��� at 0. Other filter kernel shapes
correspond to different, in general, nonlinear diffusion
processes along streamlines. Further on, generating a single
deformed spot on the computational domain, as proposed
in [6], can be regarded as an early time step in the diffusion
starting with initial data, that is, a characteristic function of
a circular disk. If we release a bunch of such disks as initial
data in such a way that the evolving patterns do not
overlap, then the resulting image is comparable to spot
noise. Thus, the original spot noise technique can be
regarded as a parallel version of short time diffusive vector
field visualization.

10 TOWARD FLOW SEGMENTATION

The above applications already show the capacity of the
anisotropic nonlinear diffusion method to outline the flow
structure not only locally. Indeed, especially for larger
evolution times in the diffusion process, the topological
skeleton of a vector field becomes clearly visible. We will
now investigate a possible flow segmentation by means of
the anisotropic diffusion. Let us restrict this to the two-
dimensional case of an incompressible flow with vanishing
velocity v at the domain boundary @
. Then, topological
regions are separated by homoclinic, respectively, hetero-
clinic, orbits connecting critical points in the interior of the
domain and stagnation points on the boundary. Critical
points, by definition, points with vanishing velocity v � 0,
may either be saddle points or vortices. Furthermore, we
assume critical points to be nondegenerate, i.e., rv is
regular. Saddle points are characterized by two real
eigenvalues of rv with opposite sign, whereas, at vortices,
we obtain complex conjugate eigenvalues with vanishing
real part. Stagnation points on @
 are similar to saddles. For
details we refer to [11]. In each topological region, there is a
family of periodic orbits close to the heteroclinic, respec-
tively, homoclinic, orbit. This observation gives reason for
the following segmentation algorithm. At first, we search
for critical points in 
 and stagnation points on @
. We

calculate the directions which separate the different

topological regions. In the case of saddle points, these are

the eigenvectors of rv. Next, we successively place an

initial spot in each of the sectors and perform an

appropriate field aligned anisotropic diffusion. Let us

suppose that a single sector is spanned by vectors

fs�; sÿg, where the sign � indicates incoming and outgoing

direction. The method presented in Section 3 would lead to

a closed pattern along one of the above closed orbits for

time t large enough. To fill out the interior region, we

modify the diffusion as follows: Up to now, the Perona

Malik diffusions enhance edges of the current image in both

directions normal to the velocity. Henceforth, we select an

orientation for a ªone sidedº diffusion (cf. Fig. 15), i.e., we
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Fig. 15. A sketch of the four sectors at a critical point, the initial spot for

the diffusion calculation and the oriented system fv; v?g.

Fig. 16. Nonlinear diffusion segmentation is applied to a velocity field
from a BeÂnard convection. Several time steps are shown starting from
initial seed spots in critical point sectors. Here, we have placed these
seeds as close as possible in terms of the grid size in the sectors
spanned by the eigenvalues of the Jacobian of the velocity. Only to
emphasize the evolution process, a single grayscale image from the
diffusion calculation (cf. Fig. 8) is underlying the sequence of
segmentation time steps.



select a unique normal v? to v and consider the diffusion
matrix

A�v;r��� � B�v�T �
G��r�� � v?���

� �
B�v�;

where � is a positive constant and �s�� :� maxfs; 0g.
Furthermore, we consider a nonnegative, concave function
f : IR�0 ! IR�0 with f�0�; f�1� � 0 as a source term in the
diffusion equation. If the orientation of fs�; sÿg, coincides
with that of fv; v?g, then linear diffusion in the direction
toward the interior will fill up the complete topological
region. A segmentation of multiple topological regions at
the same time is possible if we carefully select the sectors to
release initial spots. Fig. 16 shows different time steps of the
segmentation applied to a convective incompressible flow.
So far, we have seen that anisotropic diffusion has strong
provisions for flow segmentation as well. In a certain sense,
we thereby identify the complement of what is usually
extracted in topology recognition. An outstanding advan-
tage of the new method is its numerical stability and its self-
sharpening effect due to the edge enhancing strategy. We
pay for this by a higher computational complexity. If we
apply a standard implementation on a uniform grid of size
n2, the segmentation cost is at least O�n2� compared to an
O�n� count of grid cells met by the direct ODE integration to
compute the homoclinic and heteroclinic orbits correspond-
ing to the critical points. Fig. 17 shows an adaptive quadtree
which allows the same resolution quality for the segmenta-
tion function � as on a full grid, but now at a much lower
cost. We thereby consider a piecewise linear and continuous
finite element space on the adaptive quadtree.

11 CONCLUSIONS

We have introduced a new method based on the solution of
a nonlinear anisotropic diffusion problem for the post
processing of vector data. The method can be applied on 2D
or 3D domains, as well as on two-dimensional surfaces
embedded in IR3. From a mathematical point of view, one of

the major advantages is that it is based on a physically
intuitive continuous model, i.e., streamline aligned diffu-
sion. Most of the properties can be discussed on this level.
Finally, it is discretized in an appropriate way making use
of recent and efficient numerical algorithms.

From the authors' point of view, exciting future research
directions are further investigations of flow visualization in
3D. The exploiting of adaptive finite element paradigms
and ordering strategies for the unknowns will be especially
key issues to reducing the computing costs.

Furthermore, a visualization approach based on aniso-
tropic diffusion and applicable for time dependent vector
fields is a challenging topic. Finally, the anisotropic
diffusion flow segmentation also carries provisions for the
identification of interesting flow regions in 3D, such as
recirculation zones and vortex cores.

Further results and the algorithm running on an n�m
2D vector array is available as a source code at http://
www.iam.uni-bonn.de/FktAna_NumMath/Num_Vis/
projekte/flow_visualization/.
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Reaction-Diffusion Models for Vector
Visualization:

Algorithms and Implementations
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Outline
I. Introduction
   A. Motivation
   B. Basic 2D Vector Visualization Discussion

II. Reaction-Diffusion Equations
     A. Uses in Engineering (Examples)
     B. Mathematical Discussion
     C. Use within Visualization

III. Numerical Solution
      A. Spatial Discretization
      B. Time Discretization
      C. Implementation Discussion

IV. Visualization Examples

V. Summary
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Back to the Application
Why are we interested?
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Motivation
Visualization Goals

• Create a visualization of a vector field that combines
the advantages of dense and sparse
representations.

• Dense representations such as Spot Noise and LIC
show global orientation but without augmentation
lack local magnitude and direction.

• Sparse representations such as streamlines and
glyphs give local magnitude and direction but due to
occlusion can miss features.

• Represent other scalar values such as uncertainty
within the visualization without overloading.

Scientific Computing and Imaging Institute, University of Utah

Motivation

Proposed Solution: Use a Reaction-Diffusion
model to create an irregular spatio-temporal
pattern.

Scientific Computing and Imaging Institute, University of Utah

Motivation
Challenges
– Creating a pattern that represents a vector field.

– Computationally expensive.

– Difficult to form stable patterns.
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Examples of Reaction - Diffusion Models
In Engineering

Alan Turing (1952) - The chemical basis of
morphogenesis.

Describes the chemical process between two morphigens, a and b.
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Examples of Reaction - Diffusion Models
In Engineering

Gray-Scott Equations:  Mathematical Biology
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Examples of Reaction - Diffusion Models
In Engineering

FitzHugh-Nagumo Equations: Electrocardiology
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Reaction - Diffusion Previous Research

– Reaction - Diffusion for texture generation
• Turk et al. 1991
• Witkin et al. 1991
• Fowler et al. 1992
• Chambers et al. 1995

– Reaction - Diffusion for tensor visualization
• Kindleman et al. 2000

– Diffusion for vector visualization
• Preußer et al. 1999
• Garcke et al. 2001

– Advection for vector visualization
• Shen et al. 1996
• Weiskopf et al. 2004
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Reaction - Diffusion Properties

What is “Reaction” Anyway?

u(0) = 1, v(0) = 1
α= β = 0
s = 1.0

Scientific Computing and Imaging Institute, University of Utah

Turing Equations: Alpha and Beta control the pattern formed

Reaction - Diffusion Properties

α

β

10 22
7.5

16.5
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Reaction - Diffusion Properties

Changes in the Spot Pattern
For Different Reaction Rates
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Reaction - Diffusion Properties

How do we use diffusion?

Embedding the vector field in the diffusion tensor:
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Reaction - Diffusion Properties
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Reaction - Diffusion Properties
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Reaction - Diffusion Properties

Adding Inhomogeneous Anisotropic Diffusion
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Reaction - Diffusion Properties

Different “Tricks” With The Diffusion
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Reaction - Diffusion Implementation

Basic Finite 
Difference
Operators
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Reaction - Diffusion Implementation
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Reaction - Diffusion Implementation

uij variable information 

i

j

σij variable information 
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Reaction - Diffusion Implementation
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j
uij variable information 

σij variable information 
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Reaction - Diffusion Implementation
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uij variable information 

σij variable information 
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Reaction – Diffusion Implementation
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Reaction – Diffusion Implementation
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Reaction - Diffusion Implementation
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Reaction - Diffusion Implementation

Initial Conditions: u=1

u=0

Boundary Conditions:
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Reaction - Diffusion Implementation

Sensitivity to Initiation Condition Perturbation

Variance = 0.01 Variance = 0.001
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Reaction - Diffusion Implementation

Sensitivity to 
Resolution

Reaction Rate

Diffusion
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Reaction - Diffusion Implementation
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Reaction - Diffusion Implementation
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Example:
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Reaction - Diffusion Implementation

Forward-Euler For Reaction/Diffusion
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Reaction - Diffusion Implementation

Forward-Euler for Reaction
Backward-Euler For Diffusion
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Reaction - Diffusion Implementation
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Reaction - Diffusion Implementation

Forward-Euler For Reaction
Crank-Nicholson For Diffusion
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Reaction - Diffusion Implementation
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Reaction - Diffusion Examples

Circular Swirl

Scientific Computing and Imaging Institute, University of Utah

Reaction - Diffusion Examples

Saddle Source
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Reaction - Diffusion Examples

MHD Fusion
Data

Complex CFD
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Augmentation and streamline placement

Input
to LIC

Mosaic Seed points for streamlines

Scientific Computing and Imaging Institute, University of Utah

Summary

•  Reaction-Diffusion provides one means of accomplishing vector visualization
-  Pros:  

a. Reasonably easy to implement with Finite Differences
b. Both CPU and GPU friendly

- Cons:
a. Fickle to things like reaction rates, initial conditions
b. Does not provide “controlled” pattern spacing
c. Computationally intensive (due to running to steady state)

• Reaction-Diffusion can be used to augment other procedures



Display of Vector Fields Using a Reaction-Diffusion Model

Allen R. Sanderson, Chris R. Johnson, and Robert M. Kirby∗

Scientific Computing and Imaging Institute, University of Utah

ABSTRACT

Effective visualization of vector fields relies on the ability to con-
trol the size and density of the underlying mapping to visual cues
used to represent the field. In this paper we introduce the use of a
reaction-diffusion model, already well known for its ability to form
irregular spatio-temporal patters, to control the size, density, and
placement of the vector field representation. We demonstrate that it
is possible to encode vector field information (orientation and mag-
nitude) into the parameters governing a reaction-diffusion model to
form a spot pattern with the correct orientation, size, and density,
creating an effective visualization. To encode direction we texture
the spots using a light to dark fading texture. We also show that it
is possible to use the reaction-diffusion model to visualize an addi-
tional scalar value, such as the uncertainty in the orientation of the
vector field.

An additional benefit of the reaction-diffusion visualization tech-
nique arises from its automatic density distribution. This benefit
suggests using the technique to augment other vector visualiza-
tion techniques. We demonstrate this utility by augmenting a LIC
visualization with a reaction-diffusion visualization. Finally, the
reaction-diffusion visualization method provides a technique that
can be used for streamline and glyph placement.

Keywords: Vector Field Visualization, Flow Visualization,
Reaction-Diffusion, Vector Fields

1 INTRODUCTION

Visualizing vector fields is important for many computational ap-
plications, including fluid dynamics, wind and water currents in
climate modeling, bioelectric fields in neuroscience, and magnetic
fields in nuclear fusion. To meet the needs arising from this diverse
set of applications, many different techniques for visualizing vector
fields have been developed [1, 3, 7, 8, 19, 22, 31, 33, 30]. Each
technique has strengths and weaknesses in its ability to represent
the magnitude, orientation, direction, uncertainty and topological
structures of the associated vector field.

For instance, the simplest method for displaying a vector field is
to place glyphs representing the vector direction and magnitude at
regular intervals. However, because of scaling differences, overlap
between the glyphs can occur. This can produce visual clutter and
occlusion [25]. The problem is further compounded when data are
displayed in three dimensions. Displaying normalized vector val-
ues can reduce the clutter but at a loss of information. Even when
the visual clutter can be overcome, displaying vector fields using
regular intervals may not be appropriate. This is because the grid
spacing may not correspond to the underlying vector field.

More complicated techniques, such as streamlines, can provide
powerful visual cues [10]. However, enough streamlines must be
placed to provide cues without causing visual clutter. Streamlines

∗e-mail: {allen,crj,kirby}@sci.utah.edu

may be placed selectively to reduce the clutter, but such selective
placement may cause critical areas to be missed [28].

With the exception of a glyph-based method, no technique is sin-
gularly able to visualize uncertainty in vector fields. In [17] Pang
et al. demonstrated several different glyphs for characterizing un-
certainty in vector fields. However, as a glyph based method it can
also succumbs to clutter and occlusion.

Given the various shortcomings in many of the current vector
field visualization techniques, the main goal of this work was to
develop an automated method that uses the vector magnitude, ori-
entation, direction, and uncertainty to control the shape, size, ori-
entation, direction, and density of the objects used to represent the
vector field. At the same time, we wanted a method that would be
mesh independent and produce a visualization that would be natural
and pleasing to the eye. To achieve these goals, we have explored
the use of a reaction-diffusion model for vector field visualization.

2 BACKGROUND AND PREVIOUS WORK

Because of its importance to scientific computing applications, cre-
ating effective techniques for visualizing vector fields is an active
area of research. Given the large number of techniques that have
been developed, it is not practical to review each technique; a very
complete review can be found in [18]. Instead, we focus on three re-
lated areas for visualizing vector fields: the use of random patterns,
selective placement, and reaction-diffusion.

The use of random patterns for visualizing a vector field has been
explored by van Wijk [29], Cabral and Leedom [3], Shen et al. [23],
and others using either spot or white noise to form a dense repre-
sentation of the vector field by integrating an ODE that represents
the basis for a streamline. By dense, we mean that there is value
for each grid location. Others, such as Preußer, [20] have formu-
lated the problem as a PDE describing nonlinear anisotropic diffu-
sion. With the ODE and PDE formulations the resulting image has
a brush-stroke appearance of variable thickness. While this type of
image is useful for showing the vector orientation, it fails to pro-
vide information about magnitude and direction. These shortcom-
ings have been addressed in various forms by adding directional
[23, 30] and magnitude [5, 13] cues.

More recent work has focused on creating images that are less
dense, but still contain useful information about the vector field,
e.g. [12, 24, 28]. Turk and Banks [28] explored a method to bundle
similar streamlines until an energy function is minimized. Once the
function is minimized, the streamlines can be replaced with variable
sized curved arrows to show direction and magnitude. Kirby et al.
[12], were able to achieve similar results using a random placement
of variable sized arrows. Once an arrow is placed, a Poisson distri-
bution disk based on the vector magnitude is used to prevent other
arrows from being placed near it. However, because the arrow rep-
resents just the value at a single location rather than representing
the values in a neighborhood of the sample, it is possible to create
the illusion that an area is homogeneous when it is not.

Computer graphics applications have also made use of a
reaction-diffusion model to generate texture maps [27, 32]. These
types of textures are useful for forming patterns that are natural
looking and are typically applied to organic models such as ani-
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mals. Turk explored the use of different reaction models to produce
a variety of patterns [27]. At the same time, Witkin and Kass [32]
used anisotropic diffusion to form different patterns. These patterns
can be classified as either spot or stripe patterns.

Rather than forming the texture and then applying it to a model
using a traditional texture mapping, Turk exploited the fact that a
reaction-diffusion model can be used on an irregular grid. This
allowed him to create textures directly on a tessellated surface,
avoiding any warping between model space and parameter space.
It is possible to make use of this same property to texture isosur-
faces, which is a very common visualization tool. In a similar vein,
Chambers and Rockwood [4] employed a reaction-diffusion model
to generate a solid texture, which is used on a surface and on a vol-
ume. Like Witkin and Kass, Chambers and Rockwood also used an
anisotropic diffusion technique to form stripe patterns.

Although the reaction-diffusion model was initially mentioned
by Cabral and Leedom as a possible model for visualizing data [3],
the first researchers to use the method were Kindlmann et al.[11].
They created a solid texture using a reaction-diffusion model based
on tensor values from diffusion-weighted magnetic resonance im-
ages. This anisotropy formed elliptical “blobs,” which were then
volume rendered. Our approach is similar in that we also use a ten-
sor but rather than having tensor data supplied we create the tensor
from vector data. This gives several additional degrees of freedom
that can be used to encode additional data.

Perhaps the most closely related work is that of Garcke et al. [6]
were they use the vector field to define the amount anisotropy in
the diffusion. Further, they are able to incorporate a shaped particle
to show direction as well as orientation. They use both methods to
create visualizations of clustered vector fields.

We now present a more detailed look at reaction-diffusion, and
describe how it can be used to visualize vector field data.

3 REACTION DIFFUSION

In 1952 Turing [26] proposed a reaction-diffusion model for de-
scribing the chemical process between two morphogens within a
series of cells. Due to the dynamics of the system, the morphogens
both react and diffuse which changes their concentration within
each cell. With time, the morphogens may form a stable pattern
representing the dynamic equilibrium of the system. The pattern
formation is not dependent on the initial state of the system; the
dynamics of the system drives the concentrations toward an equi-
librium state.

Turing described the reaction-diffusion of a two morphogen
model as a set of nonlinear partial differential equations:

¶a

¶t
= F(a,b)+da∇

2a (1)

¶b

¶t
= G(a,b)+db∇

2b (2)

where a and b are the morphogen concentrations; F and G are the
functions controlling the production rate of a and b, respectively; da

and db are the diffusion rates, and ∇
2a and ∇

2b are the Laplacians
of a and b, respectively. Turing further defined F and G as:

F(a,b) = s(a −ab) (3)

G(a,b) = s(ab−b−b) (4)

where a and b again are the morphogen concentrations, a and b are
the formation and degradation rates of a and b respectively, and s is
the reaction rate.

For the state to change, there must be some perturbation in the
initial conditions which is a stable solution. This perturbation can

arise from a non-uniformity in either the initial concentrations, a
and b, or the formation and degradation rates, a and b. A nonuni-
form formation and degradation rate can be interpreted as being the
natural variation within each cell.

After the system is put into motion, the morphogen concentra-
tions will change until a dynamic equilibrium is reached and thus
a stable pattern is formed. Although the pattern is stable, the mor-
phogen concentration in each cell will continue to change. How-
ever, the change is statistically very small.

Turing’s equations are just one specific instance of reaction-
diffusion phenomena. Other similar variations can be found in the
literature, including those in [16]. In this paper, we have focused on
the use of Turing’s model because it provides results that are indica-
tive of reaction-diffusion in general. We note that the techniques
provided in this paper can be similarly applied to other reaction-
diffusion systems.

3.1 Mapping the Reaction-Diffusion Kinetics

In order to use a reaction-diffusion model for visualization, a map-
ping must be established between the vector field and the reaction-
diffusion model. There are three possibilities: a mapping between
the vector field and the reaction kinetics, a mapping between the
vector field and the diffusion kinetics, or a combination of both. Be-
cause of the instabilities associated with a reaction-diffusion model,
we have focused on finding a mapping for the vector magnitude to
the reaction kinetics and the vector orientation to the diffusion ki-
netics.

3.2 Reaction Kinetics

Within Turing’s reaction kinetics there are several free variables.
We first mapped the patterns formed as a function of the two re-
action values, a and b. The patterns formed can be described as
being finger print or spot patterns. However, these formed only in-
side a very narrow band of values for a and b. On either side of
this band a stable pattern did not occur. For this work we chose a
and b to be 16±1% and 12±1% respectively, which produced spot
like patterns.

The other free parameter in the reaction kinetics is the reaction
rate s. Changing the reaction rate changes the size of the pattern
formed. This provides an ideal mapping to a scalar value such as the
vector magnitude. Thus, it is possible to create patterns of varying
size with the size directly relating to the vector magnitude.

It should be noted that similar results can be obtained by varying
the diffusion rates da and db. As such, it is neither the reaction
nor the diffusion rates that changes the size, but rather their relative
difference. For simplicity and clarity, we vary only the reaction rate
for each cell.

3.3 Diffusion Kinetics

The diffusion kinetics as written in Equations (1) and (2) have one
free parameter per equation, the diffusion rates da and db. As pre-
viously noted, changing the diffusion rate changes the size of the
pattern formed, and for our purposes it is fixed. However, this is
not the only free parameter in the diffusion equation. If we relax
the isotropic diffusion condition and use anisotropic diffusion we
are able to create a broader range of patterns. Assuming anisotropy,
the reaction-diffusion equation can be generalized as:

¶u

¶t
= H(u,v)+(∇ ·su∇)u, (5)

where su is a symmetric positive definite diffusion tensor into
which we will encode the vector field of interest.
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Assume that we are working on a finite domain [a1,b1] ×
[a2,b2] ∈ R2, and that we are given a regularly-spaced computa-
tional grid of size Nx ×Ny. At each point (xi,y j), i = 1, . . . ,Nx, j =

1, . . . ,Ny suppose that we are given a vector �vi j = (ui j,vi j)
T . To

embed this vector field into a tensor field, define qi j = arctan
vi j

ui j
∈

[0,2p].
We can now define a rotation matrix and its inverse based upon

the angle determined above:

Ri j =

(
cosqi j sinqi j

−sinqi j cosqi j

)
(6)

R−1
i j = RT

i j =

(
cosqi j −sinqi j

sinqi j cosqi j

)
(7)

We now define a principal diffusivity matrix Λ which is a di-
agonal matrix and gives the diffusivity coefficients along the two
principal axes of diffusion:

Λi j =

(
(l1)i j 0

0 (l2)i j

)
(8)

where (l1)i j is the diffusivity in the first principal direction and
(l2)i j is the diffusivity in the second principal direction.

With the definitions above we can define a diffusivity tensor sij

based on our vector field as

sij = RT
i jΛi jRi j. (9)

We then combine the spatially nonuniform anisotropic diffusion
matrix with a discrete finite difference Laplacian as outlined in [9]
in a manner that maintains second-order convergence. With this
control, we now have our desired mapping between the vector ori-
entation and the diffusion kinetics. Witkin and Kass [32] took a
similar approach for creating 2D texture patterns but assumed a spa-
tially uniform anisotropic diffusion matrix.

3.4 Directional Texturing

The final step in the mapping process is to encode directional infor-
mation in the pattern created. Up to this point we have described the
use of a reaction-diffusion model for generating non-specific pat-
terns. The most common pattern formed using a reaction-diffusion
model is a spot pattern. The exact formation of the spot pattern will
be discussed in the following section. Assuming an oriented ellip-
tical spot pattern, we show the direction by texturing the spots with
a contrasting light to dark fading texture. The texturing is local for
each spot using the following steps:

Step 1: Assuming dark spots on a light background, normalize
the image values to be between 0 and 255.

Step 2: Find the centroid of each spot by first thresholding to
remove all pixels with a value greater than 64. Second, thin the
remaining pixels to into single pixels [21]. Label the remaining
single pixels as the centroid.

Step 3: For each centroid find all connected pixels with a value
less than 128.

Step 4: For each connected pixel, calculate the dot product be-
tween the vector form by the centroid and the connected pixel and
the underlying vector field value at the centroid.

Step 5: Normalize the dot product to be between 0 and 1 based
on the minimum and maximum dot product values within the spot.

Step 6. If the normalized dot product is less than .9, interpolate
between the minimum and maximum gray scales in the spot. This
becomes the new gray scale value that gives the dark to light fad-
ing on the spot. Otherwise the gray scale is set to be 255, which
produces a contrasting light tip on the spot.

The texturing does not change the size or orientation of the spots;
merely highlights the direction using values that maintain their nat-
ural appearance in the image. A light to dark fading provides di-
rectional cues because the fading has a natural strong to weak as-
sociation. Wegenkittl et al. [30], took a similar approach to create
oriented streamlines. The texturing is fully demonstrated in the fol-
lowing section.

4 IMAGE FORMATION

A reaction-diffusion image is created using a forward Euler inte-
gration on the discrete version of Equation (5) for a and b until a
dynamic equilibrium state is reached, at which time, a stable pattern
will have formed. We have found that using a cell size of 1.0 and a
step size of 0.5 provides a balance between numerical stability and
the pattern formation.

Figure (1a) shows a spot pattern created with the Turing model.
Analysis of the image shows that the spot placement is balanced.
That is, there is a uniform density of spots with equal spacing
around them. This balancing process can be observed during the
integration process when a spot begins to form in an area of lower
concentration. Other nearby spots adjust themselves so they are
not too close to the newly formed spot. Sometimes this adjustment
may come in the form of a change in the position of the spots or
when one or more of the spots disappears and its concentration is
absorbed by remaining spots. This natural organization is one of
the properties of reaction-diffusion equations that makes them very
useful for visualization purposes.

Circular spots alone do not show magnitude, orientation, or di-
rection. As discussed previously, to show magnitude we scale the
spots using the reaction rate, s to reflect the vector magnitude, Fig-
ure (1b). To show orientation we compress the spots into elliptical
shapes by applying an anisotropic diffusion matrix where the values
along the principal axis have a 3:1 ratio. Next, we rotate the diffu-
sion matrix for each vector so that the ellipse’s major axis is aligned
with the vector field. Once the system comes to a dynamic equilib-
rium and the spots have formed, the light to dark texture is applied
to each spot to show direction, Figure (2a). Figure (2b) shows the
magnitude, orientation, and direction combined.

Figure 1: (a) Reaction-Diffusion visualization of circular spots of constant

size and (b) variable size.

We now show the application of our reaction-diffusion model
to visualize a set of idealized vector fields. Our goal was to see
if it was possible to capture the nature of different types of vector
fields. These fields include the electric field from a dipole and an
electrostatic charge, Figure (3); and a vector field for a saddle and a
sink, Figure (4). In each vector field the magnitude and orientation
changes smoothly. The properties of vector field can easily be dis-
cerned as the ellipsoidal spots have the correct size and orientation.
In the case of the circular, saddle, and sink vector fields, a change
in the vector magnitude occurs as the vector field moves away from
the center and is shown by a corresponding change in the spot size.
However, in Figures (2-4), the images have several spots that did
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Figure 2: (a) Reaction-Diffusion visualization of a circular vector field

showing orientation and direction and (b) magnitude, orientation, and di-

rection.

not form very well, appearing to be smeared together. This is at-
tributable to the variance of the formation and degradation factors,
a and b which need to have enough variance to perturb the system
but not so much as to cause irregularities in the patterns.

Figure 3: (a) Reaction-Diffusion visualization the electric field from a

dipole and (b) an electrostatic charge.

Figure 4: (a) Reaction-Diffusion visualization of a saddle vector field and

(b) a sink vector field.

One of the unique features of using a reaction-diffusion model
with anisotropic diffusion as we have done is that the spot, although
appearing random, naturally align themselves into pseudo stream-
lines. Further, when the vector field is curved, the spots are not
perfectly elliptical, but rather a bean-like shape. This is due to the
spatially nonuniform anisotropy influencing the overall spot shape.
Another feature of the reaction-diffusion model is that, due to the
diffusion, faint streaks emanate from the ends of the spots. These
streaks act to connect the spots, further aiding in visualizing the
vector field.

This aligning, bending, and streaking all give the observer cues
to the underlying vector field. But critical areas may also be of
interest. This is another area where the reaction-diffusion model
gives visual cues. For instance, at locations where the vector field is
diverging, the spots are no longer elliptical but assume odd shapes.
If the vector field is diverging equally in all directions the spots will
be circular. As such, oddly shaped or circular spots could indicate,

critical areas, or as will be demonstrated in the next section, the
location of a large uncertainty in orientation. These are locations
the observer may want to inspect further. For instance, in Figures
(2-4) the spots are elliptical and are aligned with the vector field
throughout the image except at the critical areas.

We have shown that it is possible to view different vector fields
using a reaction-diffusion model. However, when implementing the
reaction-diffusion method, a question regarding resolution arises:
what is the minimum resolution required for individual features to
be seen? By its nature, the process of diffusion acts to smooth,
lowering high concentrations and raising low concentrations. As
such, it is possible to lose individual features that are significantly
different than their neighbors.

To determine the minimum resolution at which features can be
seen, we oversampled a vector field until it was possible to see the
impact of a single vector that was significantly different in both
magnitude and orientation than its surrounding, otherwise constant
neighbors. This is demonstrated in Figures (5) and (6) for both mag-
nitude and orientation, respectively. It is not until there is an over-
sampling of eight times the original sample that the magnitude will
significantly impact its neighbors to be visually noticeable. Simi-
larly, it takes an oversampling of eight times for the angle to im-
pact its neighbors. Unfortunately, for large vector fields, oversam-
pling is not always practical because it may require significantly
more computational time. As such, when visualizing a vector field
without oversampling features less than eight nodes in size may be
smoothed out.

Figure 5: Effect of a single value on the spot size with an oversampling of

0, 1, 2, 4, 8, 16, 32, and 64 times.

Figure 6: Effect of a single value on the spot orientation with an oversam-

pling of 0, 1, 2, 4, 8, 16, 32, and 64 times.

4.1 Uncertainty Measurements

In the previous examples, we have fixed the amount of anisotropy
in the diffusion matrix. However, this is not necessary. If we allow
the anisotropy to vary, we can map and visually represent another
variable. In this case, we define the amount of anisotropy to be the
ratio of the values along the principal axes in the diffusion matrix.
When the amount of anisotropy is small, the spot formed is circular.
Where when the anisotropy is high, the spot formed is elliptical, at
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times, almost to the point of being a thick line. This difference is
very well suited to mapping an orientation uncertainty. When the
orientation uncertainty is very small the spot maintains its ellipti-
cal shape, reflecting a precise orientation. When the uncertainty is
very high, the spot is more circular, reflecting the uncertainty in the
orientation. In the previous examples, the ratio of the values along
the principal axes in the diffusion tensor was fixed at 3:1. We now
allow it to vary between 5:3 and 7:1. This is demonstrated in Fig-
ure (7) where the uncertainty is a function of the angular position.
In a subsequent example, instead of encoding the uncertainty, we
encode the vorticity of the vector field,

w i j = (∇×ui j), (10)

which can be visualized as a scalar in 2D.

Figure 7: Reaction-Diffusion visualization of orientation uncertainty. The

orientation uncertainty is a function of the angular position.

4.2 Augmentation and Automatic Streamline/Glyph Place-
ment

Figure (8) shows our reaction-diffusion model for visualizing an
idealized vector field that contains three saddles and two vortexes.
To augment the LIC image we have taken Kirby et al.’s [12]
painter’s approach by using a LIC image as an undercoat with the
reaction-diffusion as the topcoat. In addition to the trending pattern
formed by the spots, the brush stroke appearance from the LIC im-
age enhances the ability of the observer to follow the vector field,
while the spots provide magnitude and direction.

Figure 8: Reaction-Diffusion visualization of multiple vector fields using

an underlying LIC image as a base coat.

One of the features of using a reaction-diffusion model is that it
also provides a mechanism for automatic streamline or glyph place-
ment. By finding the centroid of each spot using standard image
processing techniques [21], it can serve as a seed point for placing a
streamline, Figure (9) or a glyph, Figure (10). Although there is one
streamline per spot in Figure (9), there appears to be fewer stream-
lines because of the their alignment and slight overlap. Because
the density of the spots is based on the magnitude of the underly-
ing vector field in Figure (10) it was possible to scale the arrow
glyphs to reflect the vector magnitude without causing occlusion.
Further, because of the density relationship, the number of glyphs
also reflects, albeit inversely, the magnitude of the vector field. If
a uniform density is desired then all that needs to be done is to
run the reaction-diffusion using a constant magnitude term which
would then determine the density.

Figure 9: Automatic streamline placement based on the spot centroids in

Figure (8).

Figure 10: Automatic arrow glyphs placement based on the spot centroids

in Figure (8).
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5 RESULTS AND DISCUSSION

We now apply our reaction-diffusion model to a numerical simula-
tion of the nonlinear magneto-hydrodynamics (MHD) that occur in
the DIII-D tokamak nuclear fusion reactor. The vector field shown
in Figures (11-13) is a reoriented two-dimensional slice of the mag-
netic field in the Tokamak reactor. In Figure (11), just the magni-
tude and vorticity of the vector field is visualized with no orienta-
tion information. The greater the vorticity, the more symmetric the
spots become. This gives a good example of how this technique can
be used for visualizing two scalar values. Figure (12) is the same
vector field showing the orientation and direction. Finally, in Fig-
ure (13), the vector field is shown with magnitude, orientation, and
direction. In Figure (14), we have encoded the magnitude, orienta-
tion, direction, and vorticity of the vector field. Although the spots
in Figure (14) appear in different locations than in Figure (13) a
comparison of the two images shows a significant difference in the
spot shape in those areas with high vorticity.

Figure 11: Reaction-Diffusion visualization of a MHD Magnetic vector

field. Magnitude and Vorticity are shown.

Figure 12: Reaction-Diffusion visualization of a MHD Magnetic vector

field. Orientation and direction are shown.

Figure 13: Reaction-Diffusion visualization of a MHD Magnetic vector

field. Magnitude, orientation, and direction are shown.

Figure 14: Reaction-Diffusion visualization of a MHD Magnetic vector

field. Magnitude, orientation, direction, and vorticity are shown.

5.1 Relationship to Other Vector Field Visualization Tech-
niques

It is also possible to set the reaction rate to zero and use just the
diffusion tensor to create other types of visualizations. To produce
a LIC-like image, we change the diffusion tensor to be 1D, Figure
(15a). To produce convective patterns, such as those proposed by
Preußer [20], we use a highly anisotropic 2D diffusion tensor, Fig-
ure (15b). This shows that the diffusion model used is consistent
with previously published results.

Figure 15: (a) Visualization with a LIC like appearance and (b) with a

convective patterns using just the diffusion kinetics.

5.2 Comparison with Other Vector Field Visualization Tech-
niques

We now compare the reaction-diffusion images with four differ-
ent vector field visualization techniques. Figure (16) shows vector
glyphs at regular intervals [25], Figure (17) shows oriented ellipses
based on a Poisson distribution [12], Figure (18) shows a line inte-
gral convolution [3], and Figure (19) shows image guided stream-
lines [28]

Placing glyphs at regular intervals is much simpler and quicker
than using a reaction-diffusion model, but, as previously discussed,
occlusion can be a problem. Using a random Poisson distribution
solves the occlusion problem but fails to provide any organization,
which is often a key to producing an effective visualization. Using a
reaction-diffusion model overcomes the occlusion problem because
the spots have a density that is based upon the vector magnitude.
Another problem with regular and random intervals is that they may
mislead the eye by forming a pattern that may not be part of actual
vector field. Conversely, the reaction-diffusion model forms spots
in a pattern that follows the underlying structure of the field.

When comparing the reaction-diffusion method to LIC, we can
see that both techniques visualize the vector field in a manner that
is natural and easy to observe by producing a dense image repre-
sentation of the vector field field. With reaction-diffusion images,
different reaction rates produce spots at different densities. The less
dense the spots, the greater the chance that areas of interest may
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be missed. However, images with a high density of spots may be
difficult to view because of the Moray patterns that can form. As
such, the density of the spots is a critical component for an effec-
tive reaction-diffusion vector field visualization. Currently, the only
way to control the density is by using different reaction rates. How-
ever, we are also investigating different reaction-diffusion models,
such as the Gray-Scott model.

Unlike traditional LIC images, which do not contain magnitude
or direction information, the reaction-diffusion model is able to nat-
urally incorporate this information into the visualization. Including
the magnitude and direction greatly enhances the visualization. LIC
images, along with other noise-based techniques, can be extended
to show the magnitude, but these techniques do so at a loss of vec-
tor field detail because of blurring used to emphasize the magnitude
[5, 13].

Next, we compare the reaction-diffusion image to a visualization
using the image-guided streamline technique developed by Turk
and Banks [28]. Both techniques are similar in that both are able to
show magnitude, orientation, and direction. However, the reaction-
diffusion technique represents magnitude more intuitively than the
image guided technique. This is because instead of using length to
represent magnitude the reaction-diffusion technique uses a width,
which is more intuitive.

Figure 16: Uniform sampled vector glyph image of the vector field used in

Figure (11).

Figure 17: Randomly placed ellipse image of the vector field used in Figure

(11).

Figure 18: LIC image of the vector field used in Figure (11).

Figure 19: Image guided streamlines generated by Turk and Bank’s algo-

rithm of the vector field used in Figure (11).

One of the drawbacks of using a reaction-diffusion model com-
pared to the other techniques is the computational expense. Using
an explicit formulation, the patterns take 15-25k iterations to form
and become stable. Using a GPU implementation based on Lefohn
et al. [15] this takes less than a minute. Whereas it is possible to
produce LIC images at interactive rates [2]. We are currently inves-
tigating GPU based multi-grid and implicit integration techniques,
which should reduce the computational expense.

An additional problem that can occur during pattern formation
is that spots can form and fail to separate, as shown in Figure (3a).
Where this happens is random and appears to be dependent on the
initial conditions. We have observed that it tends to happen more
frequently with smaller spots.

One of the greatest benefits of using a reaction-diffusion model is
the ability to seamlessly integrate uncertainty measurements in the
model. None of the other techniques, with the exception of vector
glyphs, are able to show uncertainty as part of their representation
[17]. Although vector glyphs can show uncertainty, occlusion re-
mains a problem in their use.

An additional benefit is that the reaction-diffusion technique can
be used alone or to augment other techniques. Furthermore, it is
possible to use the centroids of the spots to provide a set of seed
points for placing streamlines and scaled glyphs.

6 CONCLUSIONS AND FUTURE WORK

We have introduced the use of a reaction-diffusion model that can
produce patterns with different shapes, sizes, orientations, and di-
rections for visualizing vector fields. We are able to control the
pattern formation by mapping two of the vector field components,
orientation and magnitude, to the diffusion and reaction kinetics, re-
spectively. In addition, we also can map an orientation uncertainty
to the diffusion kinetics. This mapping produces a spot pattern that
is highly representative of the underlying vector field. To show di-
rection we have applied a light to dark fading texture to each spot.

The principle advantage of the reaction-diffusion model over ex-
isting vector field visualization techniques is that the pattern size
and density that naturally arises from the reaction-diffusion model
accurately represents the underlying vector field. Further, the shape
of the pattern (e.g. the spots) not only contains information con-
cerning magnitude, orientation, and direction but also may contain
other information, such as uncertainty or vorticity.

We have also demonstrated the use of the reaction-diffusion
model for the automatic placement of streamlines or glyphs and
shown how it can be augment other techniques. Although we have
not used color to highlight certain features, one could easily incor-
porate color to further enhance the visual attributes.

Future work includes extension of the reaction-diffusion algo-
rithm to three dimensions. In such an extension, the reaction kinet-
ics remain the same; only the diffusion kinetics must be extended.
The output is a three-dimensional texture that can be volume ren-
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dered using various techniques or may be applied to two dimen-
sional surfaces. The image generated would have similar charac-
teristics to those generated by Kindlmann and Weinstein [11] and
Chambers and Rockwood [4] and unfortunately suffer from the
same visualization problems.

Finally, there are a number of perceptual issues that require fur-
ther investigation, including a formal user study such as the one
performed by Laidlaw et. al. [14] to determine the effectiveness
of the reaction-diffusion visualization technique in comparison to
other vector field visualization techniques. One area of particular
interest is quantifying the effectiveness of the natural patterns that
form from using a reaction-diffusion model.
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8 APPENDIX

One of the difficulties in using a reaction-diffusion model is the in-
herent instability of the system. Below are the parameters used to
obtain the stable pattern shown in Figure (1a), which are applied to
Eqs. (1-4) using a discrete central difference Laplacian on a uni-
form grid.

a = 4.0

b = 4.0

Da = 1.0 / 4.0

Db = 1.0 / 16.0

a = 16.0 ±1%

b = 12.0 ±1%

s = 1.0 / 64.0
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