
I n t e r a c t i v e D e f o r m a t i o n a n d

V i s u a l i z a t i o n o f L e v e l S e t

S u r f a c e s U s i n g G r a p h i c s

H a r d w a r e

A a r o n L e f o h n J o e K n i s s C h a r l e s H a n s e n R o s s W h i t a k e r

U n i v e r s i t y o f U t a h , S c h o o l o f C o m p u t i n g

T e c h n i c a l R e p o r t U U C S - 0 3 - 0 0 5

School of Computing
University of U tah

Salt Lake C ity UT 84112 USA

April 16, 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Deformable isosurfaces, implemented with level-set methods, have demonstrated a
great potential in visualization for applications such as segmentation, surface process
ing. and surface reconstruction. Their usefulness has been limited, however, by two
problems. First. 3D level sets are relatively slow to compute. Second, their formulation
usually entails several free parameters that can be difficult to tune correctly for specific
applications. The second problem is compounded by the first. This paper presents a
solution to these challenges by describing graphics processor (GPU) based algorithms
for solving and visualizing level-set solutions at interactive rates. Our efficient GPU-
based solution relies on packing the level-set isosurface data into a dynamic, sparse
texture format. As the level set moves, this sparse data structure is updated via a
novel GPU to CPU message passing scheme. When the level-set solver is integrated
with a real-time volume renderer operating on the same packed format, a user can visu
alize and steer the deformable level-set surface as it evolves. In addition, the resulting
isosurface can serve as a rcgion-of-intcrcst specifier for the volume renderer. This pa
per demonstrates the capabilities of this technology for interactive volume visualization
and segmentation.

(a) (b) (c)
Figure 1: (a) Interactive level set segmentation of a brain tum or from a 256 x 256 x 198 MRI
with volume rendering to give context to the segmented surface, (b) A clipping plane shows
the user the source data, the volume rendering, and the segmentation simultaneously, while
probing data values on the plane, (c) The cerebral cortex segmented from the same data.
The yellow band indicates the outline of the level-set model on the clipping plane.

1 I n t r o d u c t i o n

Level-set methods [1] rely on partial differential equations (PDEs) to model deforming isosur
faces. These methods have applications in a wide range of fields such as visualization, scien
tific computing, computer graphics, and computer vision [2, 3]. Applications in visualization
include volume segmentation [4, 5, 6], surface processing [7, 8], and surface reconstruction
[9, 10],

The use of level sets in visualization can be problematic. Level sets are relatively slow
to compute and they typically introduce several free param eters th a t control the surface
deformation and the quality of the results. The latter problem is compounded by the first
because, in many scenarios, a user must wait minutes or hours to observe the results of a
param eter change. Although efforts have been made to take advantage of the sparse nature
of the computation, the most highly optimized solvers are still far from interactive. This
paper proposes a solution to the above problems by mapping the level-set PDE solver to a
commodity graphics processor (GPU).

While the proposed technology has a wide range of uses within visualization and elsewhere,
this paper focuses on a particular application: the visualization and analysis of volume data.
By accelerating the PDE solver to interactive rates and coupling it to a real-time volume
renderer, it is possible to visualize and steer the com putation of a level-set surface as it
moves toward interesting regions within a volume. The volume renderer, with its global
visualization capabilities, provides context for the evolving level set. Also, the results of a
level-set segmentation can specify a region of interest for the volume renderer [11].

The main contributions of this paper are:

• An integrated system th a t demonstrates level-set computations can be intuitively con
trolled by coupling a real-time volume renderer with an interactive solver.

• The design of a GPU-based 3D level-set solver, which is approximately 15 times faster
than previous optimized solutions.

• A dynamic, packed texture format th a t enables the efficient processing of time-dependent,
sparse GPU computations.

• A novel message passing scheme between the GPU and CPU th a t uses autom atic
mipmap generation to encode messages and update textures.

• Real-time volume rendering directly from this packed texture format.

The following section discusses previous work and background for level sets, GPUs and
hardware accelerated volume rendering. Section 3 discusses the algorithmic and graphics
hardware details of our level-set solver and volume renderer. Section 4 describes our seg
mentation application and compares our results to previous implementations. In section 5,
we give conclusions, describe future research directions, and make suggestions for future
GPU improvements.

2 B a c k g r o u n d a n d R e l a t e d W o r k

2 . 1 L e v e l S e t s

This paper describes a new solver for an implicit representation of deformable surface models
called the method of level sets [1]. The use of level sets has been widely documented in the
visualization literature, and several works give comprehensive reviews of the method and the
associated numerical teehniques[2, 3], Here we simply review the notation and describe the
particular formulation th a t is relevant to this paper.

In an implicit model the surface consists of all points S = {x\(f>(x) = 0}, where <> : Ji'* • ,)i\
Level-set methods relate the motion of th a t surface to a PD E on the volume, i.e.

d(f>/dt = ^V(f) ■ v, (1)

where v, which can vary of space and time, describes the motion of the surface. W ithin this
framework one can implement a wide range of deformations by defining an appropriate v.
This velocity (or speed) term is often a combination of several other terms, including data-
dependent terms, geometric terms (e.g. curvature), and others. In many applications, these
velocities introduce free parameters, and the proper tuning of those parameters is critical to
making the level-set model behave in a desirable manner.

Solving level-set PDEs on a volume requires proper numerical schemes [1] and entails a
significant computational burden. Stability requires th a t the surface can progress at most

a distance of one voxel a t each iteration, and thus a large number of iterations are required
to compute significant deformations. The purpose of this paper is to offer a solution th a t is
relevant to a wide variety of level-set applications: th a t is, the ability to solve such equations
efficiently on commodity graphics hardware.

There is a special case of Eq. 1 in which the surface motion is strictly inward or outward. In
such cases the PD E can be solved somewhat efficiently using the fa s t m arching m ethod [2]
and variations thereof [12]. However, this case covers only a very small subset of interesting
speed functions. In general we are concerned with problems th a t require a curvature term
and simultaneously require the model to expand and contract, such as those discussed in
[8, 6 , 10].

Efficient algorithms for solving the more general equation rely on the observation th a t at
any one time step the only parts of the solution th a t are im portant are those adjacent to
the moving surface (near points where 0 = 0). In light of this observation several authors
have proposed numerical schemes th a t compute solutions for only those voxels th a t lie in a
small number of layers adjacent to the surface. Adalsteinson and Sethian [13] have proposed
the narrow band method, which updates the embedding, d>, on a band of 10-20 pixels around
the model, and reinitializes th a t band whenever the model approaches the edge. W hitaker
[14] proposed the sparse-field method, which introduces a scheme in which updates are
calculated only on the wavefront, and several layers around th a t wavefront are updated
via a distance transform at each iteration. A similar strategy is described in [15]. Even
with this very narrow band of computation, update rates using conventional processors on
typical resolutions (e.g. 2563 voxels) are not interactive. This is the motivation behind our
GPU-based solver.

2 . 2 S c i e n t i f i c C o m p u t a t i o n o n G r a p h i c s P r o c e s s o r s

Graphics processing units (GPUs) have been developed primarily for the computer gaming
industry, but over the last several years researchers have come to recognize them as a low
cost, high performance computing platform. Two im portant trends in GPU development,
increased programmability and higher precision arithm etic processing, have helped to foster
new non-gaming applications.

For many data-parallel computations, graphics processors out-perform central processing
units (CPUs) by more than an order of m agnitude because of their stream ing architecture
[16] and dedicated high-speed memory. In the streaming model of computation, arrays of
input da ta are processed identically by the same computation kernel to produce output
data streams. In contrast to vector architectures, the computation kernel in a streaming
architecture may consist of many (possibly thousands) of instructions and use tem porary
registers to hold interm ediate values. The GPU takes advantage of the data-level parallelism
inherent in the streaming model by having many identical processing units execute the

computation in parallel.

Currently GPUs must be programmed via graphics APIs such as OpenGL [17] or DirectX
[18]. Therefore all computations must be cast in terms of computer graphics primitives such
as vertices, textures, texture coordinates, etc. Figure 2 depicts the computation pipeline of
a typical GPU. A 'render pass is a set of da ta passing completely through this pipeline. It
can also be thought of as the complete processing of a stream by a given kernel.

Grid-based computations, such as the level-set partial differential equations, are solved by
first transferring the initial data into texture memory. The GPU performs the computation
by rendering graphics primitives th a t address this texture. In the simplest case, a two
dimensional array of data undergoes some computation by drawing a quadrilateral th a t has
the same number of grid points (pixels) as the texture. Memory addresses th a t identify
each fragment’s da ta value as well as the location of its neighbors are given as texture
coordinates. A fragment program (the kernel) then uses these addresses to read data from
texture memory, perform the computation, and write the result back to texture memory.
A 3D grid is processed as a sequence of 2D slices. This computation model has been used
by a number of researchers to map a wide variety of computationally demanding problems
to GPUs. Examples include m atrix multiplication, finite element methods, Navier-Stokes
solvers, and others 19. 20, 21]. All of these examples dem onstrate a homogeneous sequence
of operations over a densely populated grid structure.

Rumpf et. al. [22] were the first to show th a t the level-set equations could be solved using
a graphics processor. Their solver implements the two-dimensional level-set method using
a time-invariant speed function for flood-fill-like image segmentation w ithout the associated
curvature. Lefohn and W hitaker dem onstrate a full three dimensional level-set solver, with
curvature, running on a graphics processor [23], Neither of these approaches, however, take
advantage of the sparse nature of level-set PDEs and therefore they perform only marginally
better (e.g. twice as fast) than sparse or narrow band CPU implementations.

This paper presents a GPU com putational model th a t supports sparse and dynam ic grid
problems. These problems are difficult to solve efficiently with GPUs for two reasons. The
first is th a t in order to take advantage of the G PU ’s parallelism, the streams being processed
must be large, contiguous blocks of data, and thus grid points near the level-set surface
model must be packed into a small number of textures. The second difficulty is th a t the level
set moves with each time step, and thus the packed representation must readily adapt to the
changing position of the model. This requirement is in contrast to the sparse m atrix solver
presented in [24] and previous work on rendering with compressed data [25, 26]. Section 3
describes how our design addresses these challenges.

Vertices/
Texture

Coordinates
Vertex Rasterization
Program

M
 Fragment

Figure 2: The modern graphics processor pipeline.

2 . 3 H a r d w a r e - A c c e l e r a t e d V o l u m e R e n d e r i n g

Volume rendering is a flexible and efficient technique for creating images from 3D data
[27, 28, 29]. W ith the advent of dedicated hardware for rasterization and texturing, inter
active volume rendering has become one of the most widely used techniques for visualizing
moderately sized 3D rectilinear data [30, 31]. In recent years, graphics hardware has be
come more programmable, perm itting rendering features with an image quality th a t rival
sophisticated software techniques [32, 33, 34]. In this paper, we describe a novel volume
rendering system th a t leverages programmable graphics hardware to simultaneously render
the level-set solution and source data.

3 I m p l e m e n t a t i o n

This section gives a technical description of our implementation. We begin with a high-level
description of the algorithms used for both the sparse-grid, streaming, level-set solver and
the real-time volume renderer. We then cover some of the implementation details th a t are
specific to the architecture of current graphics processors.

3 . 1 A l g o r i t h m i c D e t a i l s

3.1.1 G P U L evel-S et S o lver

The efficient solution of the level-set PDEs relies on updating only those voxels th a t are on
or near the isosurface. The narrow band and sparse field methods achieve this by operating
on sequences of heterogeneous operations. For instance, the sparse-field method [14] keeps a
linked list of active voxels on which the computation is performed. Such algorithms are not
well suited for streaming architectures and thus the mapping of the sparse-field algorithm
to GPUs requires a very different approach.

The sparse GPU level-set solver decomposes the volume into a set of small 2D tiles (e.g. 16
x 16 pixels each). Only those tiles with non-zero derivatives are stored on the GPU (see
Fig. 3). These active tiles are packed, in an arbitrary order, into a large 2D texture on the
GPU. The 3D level-set PD E is computed directly on this packed format.

(a) (b)
Figure 3: The spatial decomposition scheme for packing active regions of the volume into
texture memory. The CPU-based tracks the location of each tile in texture memory.

Three-dimensional neighborhood information is reconstructed through texture coordinates
from all neighboring Liles. Two data structures, a packed m ap and unpacked m ap , are kept
on the CPU to track each tile!s packed and unpacked position. The packed map stores the
volumetric location of each tile in the sparse, GPU texture. The unpacked map stores a
pointer to an abstract tile object tha t contains the vertices and texture coordinates for the
actual texture data. There are two special tiles set aside for 'white and black regions. Tiles
that are not active (i.e. homogeneous in value) are either inside or outside of the level set,
and are mapped to either the white or black tile in texture memory. Also note that the
vertices are replicated for each tile because each tile needs its own set of texture coordinates
in order to find its neighboring Liles. A diagram of these mapping is shown in Fig. 3.

Neighbor lookups across Lile boundaries represent eighL special cases (four corners and four
edges) of LexLure lookups. We render geomeLry Lo draw only Lhose pixels in each special case
and send LexLure coordinaLes LhaL idenLify all 3D neighbors for Lhose cases. This meLhod
allows for all daLa poinLs in each case (e.g. all left-edge pixels from all Liles) Lo be processed
in Lhe same render pass, and Lhus Lake maximum advanLage of Lhe parallelism in Lhe GPU.

There are several imporLanL deLails LhaL make Lhis sLraLegy effecLive. FirsL, because acLive
Liles are idenLified by non-zero gradienLs, iL is crucial LhaL Lhe volume in which Lhe level-set
surface is embedded, <p, resemble a clamped disLance Lransform. In Lhis way regions on or
near Lhe model will have finiLe derivaLives, while Liles ouLside Lhis narrow band will be Hat.
(while or black), wiLh derivaLive values of zero (and Lhereby undergo no change for LhaL
iLeraLion). This is accomplished by adding an addiLional speed Lerm Lo Lhe velociLy Lerm
v(L) in Eq. 1. This rescaling Lerm, G r is of Lhe form,

G r = 4>(J<p - 0 |V 0 |, (2)

where <fi is Lhe value of Lhe embedding aL a voxel and |V<p| is Lhe gradienL in Lhe direcLion of
Lhe isosurface. The LargeL gradienL, g$, is seL based Lhe numerical precision of Lhe level-set
daLa. This speed Lerm is sLricLly a numerical consLrucL; iL does no I affecL Lhe movemenL of
Lhe zero level seL, i.e. Lhe surface model.

AfLer Lhe GPU updaLes Lhe level-set daLa, iL creates a compressed, encoded message. The
CPU reads Lhis message Lo deLermine Lhe sLaLus of all Liles for Lhe nexL pass. The GPU
eompuLes Lhis message in several sLeps. FirsL iL produces, for each pixel in an acLive Liles, an
eighL byte code (2 four-channel images) which indicates if a pixel has any nonzero derivaLives,

Texture Coordinates
& Vertex Indices

Figure 4: Flow diagram of the GPU-based level-set solver.

if it is a boundary pixel and has a nonzero derivative perpendicular to the boundary (for
each of the six cardinal directions), and if the pixel is white. The GPU down-samples these
images using the autom atic mipmap generation feature combined with a fragment program
th a t reduces each channel to a single bit. The result is small bit-vector image, one pixel per
tile, th a t encodes the overall color of the tile and derivative information within the tile and
across each boundary. This image (< 64KB) is read back by the CPU and decoded. Using
these eight bits the CPU can determine how to configure the tile for the next iteration. It
activates new tiles (white or black as appropriate), frees tiles th a t are 110 longer active, and
updates the packed and unpacked maps described above.

Figure 4 shows a flow diagram of the computation. The pseudocode for the GPU portion
of the computation is given in Fig. 5. Because of the packed representation and arbitrary
positioning of the tiles, the neighbor lookups are relatively expensive. Therefore our design
ensures th a t pixel neighborhood lookups occur only once, which is during the computation
of volume derivatives. To ensure modularity, we have encapsulated each render pass in a
function call, where the input textures are arguments and the output textures are the return
value(s). For increased generality the application can create level-set speed functions as
modules and pass them to the solver as function arrays. In the pseudocode below, d is an
array of four textures th a t contain 1st and 2nd partial derivatives, p is the packed level-set
texture, s is an array of evaluated speed function textures, and t is an array of 2 textures
containing active tile information.

3 . 2 V o l u m e R e n d e r i n g o f P a c k e d D a t a

Our volume renderer performs a full 3D (traiisfer-function based) volume rendering of the
original da ta simultaneously with the evolving level set. For rendering the original volume,
the input data and its gradient vectors are kept on the GPU as 3D textures. The volume
data is rendered on the GPU with multidimensional transfer functions as described in [34].

For rendering the evolving level-set model, we use a modification of the conventional 2D sliced
approach to texture-based volume rendering [30], We modify the conventional approach to
render the level-set solution directly from the packed tiles, which are stored in a single 2D
texture. The level-set data and tile configuration are dynamic, and therefore we do not
precompute and store the three separate versions of the data, sliced along cardinal views, as
is typically done with 2D texture approaches. Instead we reconstruct these views as needed.

f o r each l e v e l - s e t i t e r a t i o n , n
/ / Compute 19, 1 s t and 2nd P a r t i a l D erivs
f o r each 9 n e ighbor lookup c a se s , i

d = c o m p u te D e riv s [i](p)

/ / Compute speed term s
f o r each speed fu n c tio n , i

s [i] = sp e e d F u n c [i] (d, p , s rcD ata)

/ / Update l e v e l - s e t PDE
p = updateLS(d , speed , p)

/ / Send t i l e in fo rm a tio n message to CPU
t [0] = i n t e r i o r T i l e l n f o (d, p)

f o r each 8 t i l e boundary c a se s , i
t [l] = b n d r y T i le ln f o [i] (d, p)

message = m akeB itV ector(t)
u p d a te T ile s (message)

Figure 5: Pseudocode for the GPU-based level-sel solver.

= = = = = l | | l | | | | | | | | | | | | | | | | | | | |

(a) (b)

Figure 6: For volume rendering the packed level-sel model: (a) W hen the preferred slicing
direction is orthogonal to the packed texture, the tiles (shown in alternating colors) are
rendered inlo slices as quadrilaterals, (b) For slicing directions parallel Lo the packed lexlure.
the tiles are drawn onto slices as either vertical or horizontal lines.

The 2D slice-based rendering requires interpolation between two adjacent slices in the back-
to-front ordering along the appropriate cardinal direction. W hen reconstructing these two
slices on the fly from the packed level-set data, two cases must be considered. The first case
is when the preferred slice axis, based on the viewing angle, is orthogonal Lo the packed
texture. In this case the slices can be reconstructed using quadrilaterals, one for each tile
in the level-set model. If the preferred slice direction is parallel Lo the packed lexlure. we
must reconstruct those slices by rendering a row or column from each tile using lexlured
line primitives. Figure 6 illustrates the two cases for 2D slice-based rendering of the level-set
model.

For efficiency the renderer reuses data wherever possible. For instance, lighting for the level-
set solution uses gradient vectors computed in the level-set update stage. The rendering of

the source data relies on precomputed gradient data—the gradient magnitude is used by the
transfer function and the gradient direction is used in the lighting model.

3 . 3 G r a p h i c s H a r d w a r e I m p l e m e n t a t i o n D e t a i l s

This subsection describes implementation details th a t are specific to the current generation
of graphics hardware. Suggestions for future graphics hardware features are given in Sec. 5.

The level-set solver and volume renderer are implemented in programmable graphics hard
ware using vertex and fragment programs on the ATI Radeon 9700 GPU. The programs
are w ritten in the OpenGL ARB _vertex_program and ARB-fragment .program assembly lan
guages. The bulk of the computations are performed in fragment programs, but vertex
programs are used to efficiently compute texture coordinates for neighbor lookups; therefore
minimizing both AGP bandwidth and valuable fragment instructions.

Critical to the performance of the system are two capabilities pertaining to render pass des
tination buffers. The first capability, relatively recent on GPUs, is the ability to output
multiple, high-precision 4-tuple results from a fragment program. Multiple outputs enable
us to perform the expensive 3D neighborhood reconstruction only once and use the gathered
data to compute all derivatives in the same pass. The second feature crucial to the perfor
mance is the ability to quickly change render pass destination buffers. As discussed in [24],
current display drivers require the OpenGL render context to change in order to change ren
der targets. This operation is unnecessary and expensive—it can take up to 0.3 milliseconds.
To avoid this overhead we allocate a single buffer with many render surfaces (front, back,
auxO, etc.) and switch between them. W hen the complexity of the com putation requires
more intermediate buffers, we use sub-regions of larger buffers to augment this multisurface
approach.

There is a subtle spccd-vcrsus-mcmory tradeoff th a t must be carefully considered. The
packed level-set texture can be as large as 20482 (the largest 2D texture currently allowed
on GPUs). In order to minimize the memory costs of the intermediate buffers (derivatives,
speed values, etc.), the level-set da ta is updated in sub-regions. Minimizing the number of
these sub-regions is im portant because adding a large number of render passes introduces a
significant amount of overhead and reduces computational efficiency. We currently use 5122
sub-regions when the level-set texture is 20482 and use a single region when it is smaller.

4 A p p l i c a t i o n a n d R e s u l t s

This section describes an application for interactive volume segmentation and visualization,
which uses the level-set solver described previously. The system combines interactive level-
set models with real-time volume rendering on the GPU. We show pictures from the system

(also sec the associated video) and present timing results relative to our current benchmark
for level-set deformations, which is a highly optimized CPU solution.

4 . 1 V o l u m e V i s u a l i z a t i o n a n d A n a l y s i s

For segmenting volume data with level sets, the velocity usually consists of a combination
of two term s [4, 51

V(p
a D (x) + (1 - a)V

IW I
(3)

where D is a data term th a t forces the model toward desirable features in the input data,
the term V • (V<p/| V<p|) is the mean curvature of the surface, which forces the surface to have
less area (and remain smooth), and a € [0,1] is a free param eter th a t controls the degree of
smoothness in the solution. There are several variations on this approach in the literature,
e.g. [35],

This combination of a data-fitting speed function with the curvature term is critical to the
application of level sets to volume segmentation. Most level-set data terms D from the
segmentation literature are equivalent to well-known algorithms such isosurfaces, flood fill,
or edge detection when used without the smoothing term (i.e. a — 1) . The smoothing
term alleviates the effects of noise and small imperfections in the data, and can prevent the
model from leaking into unwanted areas. Thus, the level-set surface models provide several
capabilities th a t complement volume rendering: local, user-defined control; smooth surface
normals for better rendering of noisy data; and a closed surface model, which can be used
in subsequent processing or for quantitative shape analysis.

For the work in this paper we have chosen a simple speed function to dem onstrate the effec
tiveness of in teractiv ity and real-tim e visualization in level-set solvers. The speed function
we use in this work depends solely on the input data I at the point x. Thus it is a grey scale
transform ation of the input intensity:

D (I) = e - \I - T\ , (4)

where T controls the brightness of the region to be segmented and e controls the range of
greyscale values around T th a t could be considered inside the object. W hen the model lies
on a voxel with a greyscale level between T — e and T + e, the model expands and otherwise
it contracts. The speed term is gradual, as shown in Fig. 7, and thus the effects of the D
diminish as the model approaches the boundaries of regions with greyscale levels within the
T ± e range. To control the model a user specifies three free parameters, T, e, and a, as
well as an initialization. The user generally places the initialization inside the region to be
segmented. Note th a t the user can alternatively initialize the solver with a preprocessed
(thresholded, flood filled, etc.) version of the source data.

Figure 7: A speed function based on image intensity causes the model to expand over regions
with greyscale values wit1 ' 11 'n 1 1 11 erwise.

Figure 8: The GUI for the volume analysis application. Users interact via slice views, a 3D
rendering, and a control panel.

4 . 2 I n t e r f a c e a n d U s a g e

The application in this paper consists of a graphical user interface th a t presents the user
with two slice viewing windows, a volume renclerer. and a control panel (Fig. 8). Many of
the controls are duplicated throughout the windows to allow the user to interact with the
data and solver through these various views. Two and three dimensional representations of
the level-set surface are displayed in real time as it evolves.

The first 2D window displays the current segmentation as a yellow line overlaid on top of the
source data. The second 2D window displays a visualization of the level-set speed function
th a t clearly delineates the positive and negative regions. The first window can be probed
with the mouse to accomplish three tasks: set the level set speed function, set the volume
rendering transfer function, and draw 3D spherical initializations for the level-set solver. The
first two are accomplished by accumulating an average and variance for values probed with
the cursor. In the case of the speed function, the T is set to the average and e is set to the
standard deviation. Users can modify these values, via the GUI. while the level set deforms.
The spherical drawing tool is used to initialize and /or edit the level-set surface. The user
can place either white (model on) or black (model off) spheres into the system.

The volume renclerer displays a 3D reconstruction of the current level set isosurface as well as
the input data. In addition, an arbitrary clipping plane, with texture-mappecl source data,
can be enabled via the GUI (Fig. lb). Just as in the slice viewer, the speed function, transfer
function, and level-set initialization can be set through probing on this clipping plane. The
crossing of the level-set isosurface with the clipping plane is also shown in bright yellow.

Figure 9: (top) Volume rendering of a 2563 MRI scan of a mouse thorax. Note the level set
surface which is deformed to segment the liver, (bottom) Volume rendering of the vasculature
inside the liver using the same transfer function as in (a) with the level-set surface is being
used as a region of interest specifier.

The volume renderer uses a 2D transfer function to render the level set surface and a 3D
transfer function to render the source data. The level-set transfer function axes are intensity
and distance from the clipping plane (if enabled). The transfer function for rendering the
original da ta is based on the source data value, gradient magnitude, and the level-set data
value. The la tter is included so th a t the level set model can function as a region-of-interest
specifier. All of the transfer functions are evaluated on-the-fly in fragment programs rather
than in lookup tables. This approach perm its the use of arbitrarily high dimensional transfer
functions, allows run-time flexibility, and reduces memory requirements [36].

We dem onstrate our interactive level-set solver and volume rendering system with the fol
lowing three data sets: a brain tum or MRI (Fig. 1), an MRI scan of a mouse (Fig. 9). and
transmission electron tomography data of a gap junction (Fig. 10). In all of these examples
a user interactively controls the level-set surface evolution and volume rendering via the
multiview interface. The initializations for the tum or and mouse were drawn via the user
interface while the gap junction solution was seeded with a thresholded version of the source
data.

Figure 10: Segmentation and volume rendering of 512 x 512 x 61 3D transmission electron
tomography. The picture shows cvtoskeletal membrane extensions and eonnexins (pink sur
faces extracted with the level-set models) near the gap junction between two cells (volume
rendered in cyan).

4 . 3 P e r f o r m a n c e A n a l y s i s

Our GPU-based level-set solver achieves a speedup of ten to fifteen times over a highly-
optimized, sparse-field, CPU-based solver. All benchmarks were run on an Intel Xeon 1.7
GHz processor with 1 GB of RAM and an ATI Radeon 9700 Pro GPU. The level-set solver
runs at rates varying from 70 steps per second for the tum or segmentation to 3.5 steps per
second for the final stages of the cortex segmentation (Fig. 1). In contrast, the CPU-based,
sparse field implementation ran at 7 steps per second for the tum or and 0.25 steps per second
for the cortex segmentation.

A profile of the the level-set solver reveals the following distribution of execution time: 70%
on GPU arithmetic instructions, 15%. on texture memory reads, 10%. on CPU performing
bit vector readback and updating the active tiles, and 5%. on transferring data across the
AGP bus. These estimates were made based on the profiling techniques described in [37].
Creating the bit vector message consumes approximately 15%. of the GPU arithm etic and
texture instructions. The entire sparse algorithm adds a 15%.-20%. computation overhead,
but for most applications the speedup over a dense GPU-based implementation far eclipses
this additional overhead.

5 C o n c l u s i o n s

This papers demonstrates a new tool for interactive volume exploration and analysis tha t
combines the quantitative capabilities of deformable isosurfaces with the qualitative power
of volume rendering, set solver interactive By relying on graphics hardware the level-set
solver operates at interactive rates (approximately 15 times faster than previous solutions).

This mapping relics on a novel dynamic, packed texture and a GPU-to-CPU message passing
scheme. While the GPU updates the level set, it renders the surface model directly from
this packed texture format. Future extensions and applications of the level-set solver include
the processing of multivariate da ta as well as surface reconstruction and surface processing.
Most of these only involve changing only the speed functions.

Another promising area of future work is to adapt these volume processing algorithms to
leverage the evolving capabilities of GPUs. For instance, a current lim itation with the pro
posed method is volume size. The efficiency of our memory usage is hampered by inflexibili
ties in the GPU memory model and instruction set. We have identified several new features
th a t would alleviate this shortcoming. First, in order to spread the packed representation
across multiple textures, we would need an efficient mechanism for rendering to subregions
of a 3D buffer. Alternatively, a mechanism for dynamically specifying the source texture of
a read operation would provide a similar capability i.e. more indirection in texture reads.
Another promising strategy for reducing memory usage is the development of better com
pression schemes. B etter compression schemes could be facilitated by the addition of integer
data types and bitwise operations into the fragment processor.

Current GPU capabilities also limit the computational efficiency of the proposed algorithms.
We could achieve better computational efficiency within each tile if we could avoid processing
pixels th a t arc not sufficiently close to the surface, i.e. we could achieve an even narrower
band of computation. This would require a more flexible depth and /or stencil culling mech
anism in which multiple data buffers could access a single depth/stencil buffer. We could
save additional fragment instructions by computing all texture addresses in the vertex stage.
This would require more per-vertex interpolants. For instance, the sampling of a 3 x 3 x 3
kernel requires at least 21, 4-tuple interpolants.

A c k n o w l e d g m e n t s

The authors would like to thank Gordon Kindlmann for his nrrd library (used for dataset ma
nipulation and I/O), part of the teem toolkit available a t h t t p : //www. c s . U tah . ed u /^g k /teem .
Milan Ikits’ G L E W sofware was also used extensively for OpenGL extension management.
We also would like to thank Steve Lamont at the National Center for Microscopy and Imaging
Research a t the University of California San Diego for the transmission electron tomogra
phy data. In addition, Simon Warfield, Michael Kaus, Ron Kikinis, Peter Black and Ferenc
Jolesz provided the tum or database. The mouse data was supplied by the Center for In
Vivo Microscopy at Duke University. This work was supported by grants #ACI0089915 and
#CCR0092065 from the National Science Foundation.

R e f e r e n c e s

[1] S. Osher and J. Sethian. “Fronts propogating with curvature-dependent speed: Algorithms
based on Hamilton-Jacobi formulations.” Journal of Computational Physics, vol. 79. pp. 12
49. 1988.

[2] J. A. Sethian. Level Set Methods and Fast Marching Methods Evolving Interfaces in Compu
tational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge
University Press. 1999.

[3] R. Fedkiw and S. Osher. Level Set Methods and Dynamic Implicit Surfaces. Springer. 2002.
[4] R. T. Whitaker. “Volumetric deformable models: Active blobs.” in Visualization In Biomedical

Computing 1994 (R- A. Robb. ed.). (Mayo Clinic. Rochester. Minnesota), pp. 122 134. SPIE.
1994.

[5] R. Malladi. J. A. Sethian. and B. C. Vemuri. “Shape modeling with front propogation: A
level set approach.” IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 17. no. 2.
pp. 158 175. 1995.

[6] R. Whitaker. D. Breen. K. Museth. and N. Soni. “A framework for level set segmentation of
volume datasets.” in Proceedings of ACM Intnl. Wkshp. on Volume Graphics, pp. 159 168.
June 2001.

[7] T. Tasdizen. R. Whitaker. P. Burehard. and S. Osher. “Geometric surface smoothing via
anisotropie diffusion of normals.” in Proceedings of IEEE Visualization, pp. 125 132. October
2002.

[8] D. Breen and R. Whitaker. “A level-set approach to 3d shape metamorphosis.” IEEE Trans
actions on Visualization and Computer Graphics, vol. 7. no. 2, pp. 173 192. 2001.

[9] R. Whitaker and V. Elangovan. “A direct approach to estimating surfaces in tomographic
data.” Medical Image Analysis, vol. 6. pp. 235 249. 2002.

[10] K. Museth. D. Breen. L. Zhukov, and R. Whitaker. “Level-set scgmcntationfrom multiple
non-uniform volume datasets.” in IEEE Visualization 2002, pp. 179 186. October 2002.

[11] T. Yoo. U. Neumann. H. Fuchs. S. Pizer. T. Cullip. J. Rhoades, and R. Whitaker. “Direct
visualization of volume data.” IEEE Computer Graphics and Applications, vol. 12. no. 4,
p p . 63 71. 1992.

[12] M. Droske. B. Meyer. M. Rumpf. and C. Schallcr. “An adaptive level set method for medical
image segmentation.” in Proc. of the Annual Symposium on Information Processing in Medical
Imaging (R. Leahy and M. Insana. eds.). Springer. Lecture Notes Computer Science. 2001.

[13] D. Adalstcinson and J. A. Sethian. “A fast level set method for propogating interfaces.” Journal
of Computational Physics, pp. 269 277. 1995.

[14] R. T. Whitaker. “A level-set approach to 3D reconstruction from range data.” International
Journal of Computer Vision, vol. October, no. 3. pp. 203 231. 1998.

[15] D. Peng. B. Mcrriman. S. Osher. H. Zhao, and M. Kang. “A pde based fast local level set
method.” J. Comput. Phys., vol. 155. pp. 410 438. 1999.

[16] J. D. Owens. Computer Graphics on a Stream Architecture. PhD thesis. Stanford University.
Nov. 2002.

[17] M. Segal and K. Akeley. “The OpcnGL graphics system: A specification (version 1.2.1).”
http://www.opengl.org. 2003.

[18] Microsoft Corporation. “Direct3D.” http://www.microsoft.com/directx. 2002.
[19] M. Rumpf and R. Strzodka. “Using graphics cards for quantized FEM computations.” in

TASTED Visualization, Imaging and Image Processing Conference, 2001.

http://www.opengl.org
http://www.microsoft.com/directx

[20] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra, “Physically-based visual simulation
on graphics hardware,” in Proc. SIG G RAPH /EG Graphics Hardware Workshop ’02, ACM,
2002,

[21] W. Li, X. Wei, , and A. Kaufman, “Implementing lattice boltzmann computation on graphics
hardware,” in The Visual Computer, (Heidelberg, Germany), Springer-Verlag, to appear 2003.

[22] M. Rumpf' and R. Strzodka, “Level set segmentation in graphics hardware,” in International
Conference on Image Processing, pp. 1103 1106, 2001.

[23] A. Lcfohn and R. Whitaker, “A gpu-based, three-dimensional level set solver with curvature
flow'.” University of Utah tech report UUCS-02-017, December 2002.

[24] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, “The gpu as numerical simulation engine,”
in AC M SIGGRAPH, p. To Appear, 2003.

[25] A. C. Beers, M. Agrawala, and N. Chaddha, “Rendering from compressed textures,” in Proceed
ings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 373
378, ACM Press, 1996.

[26] M. Kraus and T. Ertl, “Adaptive Texture Maps,” in Proc. SIG G RAPH /EG Graphics Hardware
Workshop ’02, pp. 7 15, 2002.

[27] M. Lcvoy, “Display of surfaces from volume data,” IEEE Computer Graphics & Applications,
vol. 8, no. 5, pp. 29 37, 1988.

[28] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume Rendering,” in ACM Computer Graph
ics (SIGGRAPH ’88 Proceedings), pp. 65 74, August 1988.

[29] P. Sabella, “A Rendering Algorithm for Visualizing 3D Scalar Fields,” in ACM Computer
Graphics (SIGGRAPH ’88 Proceedings), pp. 51 58, August 1988.

[30] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering and Tomographic Recon
struction Using Texture Mapping Hardware,” in ACM Symposium On Volume Visualization,
1994.

[31] O. Wilson, A. V. Gelder, and J. Wilhelms, “Direct Volume Rendering via 3D Textures,” Tech.
Rep. UCSC-CRL-94-19, University of California at Santa Cruz, June 1994.

[32] C.Rezk-Salama, K.Engel, M. Bauer, G. Greiner, and T. Ertl, “Interactive Volume Rendering
on Standard PC Graphics Hardware Using Multi-Textures and Multi-Stage Rasterization,” in
Siggraph/Eurographics Workshop on Graphics Hardware 2000, 2000.

[33] K. Engel, M. Kraus, and T. Ertl, “High-Quality Pre-Integrated Volume Rendering Using
Hardware-Accelerated Pixel Shading,” in Siggraph/Eurographics Workshop on Graphics Hard
ware 2001, 2001.

[34] J. Kniss, G. Kindlmann, and C. Hansen, “Multi-Dimensional Transfer Functions for Interactive
Volume Rendering,” Trasactions on Visualization and Computer Graphics, vol. 8, pp. 270 285,
July-Scptcmbcr 2002.

[35] V. Caselles, R. Kimmcl, and G. Sapiro, “Geodesic active contours,” in Fifth International
Conference on Computer Vision, pp. 694 699, IEEE, IEEE Computer Society Press, 1995.

[36] J. Kniss, S. Premoze, M. Ikits, A. Lcfohn, and C. Hansen, “Gaussian transfer functions for
multi-field volume visualization.” Under review: IEEE Visualization 2003.

[37] C. Ccbcnoyan and M. Wloka, “Optimizing the graphics pipeline.” Game Developer’s Confer
ence 2003, http://developer.nvidia.com/, 2003.

http://developer.nvidia.com/

