88 research outputs found

    CAR SOCIETY: LIFE CYCLES AND LIFESTYLES

    Get PDF

    Development of a Flood Warning Simulation System:A Case Study of 2007 Tewkesbury Flood

    Get PDF
    Many flood warning systems were developed for 2D environments and limited on specific flood hazard. With the purpose of overcoming these disadvantages, it is necessary to propose new methodologies and techniques for 3D real time flood simulation. In this paper, a novel flood hazard warning system has been proposed. It describes and defines the relationship between the different parts of the simulation system in order to offer not only numeric data or figures, but also more meaningful and appealing 3D visual information. Consequently, the performance of this simulation system depends on the quality of the three sub systems: 3D real world modelling system with GIS data, 3D environment reconstruction system and 3D flood simulation system. A new flooding model has been developed which can handle dynamic flood behaviour and predict inundation areas in real time. In order to validate our flood warning system, the region of Tewkesbury in England has been simulated with a potential flood. The flood spreading process is shown during different time and the detailed inundation area is presented for further disaster evaluation. The study achieved two main objectives: implementing a useful flood simulation with real world model and reconstructed environment for flood hazard warning; producing a friendly simulation system interface for either a decision maker or experienced user

    Translating the complexities of flood risk science using KEEPER - a knowledge exchange exploratory tool for professionals in emergency response

    Get PDF
    Within flood risk management (FRM) decision making, there is a growing interest in participatory approaches to engage and integrate stakeholder expertise. Decision support tools are becoming common features in the FRM ‘toolkit’, yet there is a limited application of participatory methodologies in the construction of such tools. This paper reports on completed FRMRC research (Flood Risk Management Research Consortium, UK http://www.floodrisk.org.uk/) and the construction of a geographic information system-based flood risk assessment tool, KEEPER – a Knowledge Exchange Exploratory tool for Professionals in Emergency Response. An iterative methodology was used to engage emergency professionals throughout the research process, allowing a mixing of scientific and professional expertise in the co-production of KEEPER. KEEPER was both instrumental in facilitating participation and knowledge exchange, and informing recommendations for future tools in practice. This paper argues that participation is both essential for supporting pragmatic flood research and as a means of enhancing communication across traditionally divided communities

    Assessing the controllability of Arctic sea ice extent by sulfate aerosol geoengineering

    Get PDF
    In an assessment of how Arctic sea ice cover could be remediated in a warming world, we simulated the injection of SO2 into the Arctic stratosphere making annual adjustments to injection rates. We treated one climate model realization as a surrogate “real world” with imperfect “observations” and no rerunning or reference to control simulations. SO2 injection rates were proposed using a novel model predictive control regime which incorporated a second simpler climate model to forecast “optimal” decision pathways. Commencing the simulation in 2018, Arctic sea ice cover was remediated by 2043 and maintained until solar geoengineering was terminated. We found quantifying climate side effects problematic because internal climate variability hampered detection of regional climate changes beyond the Arctic. Nevertheless, through decision maker learning and the accumulation of at least 10 years time series data exploited through an annual review cycle, uncertainties in observations and forcings were successfully managed

    Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface

    Get PDF
    There is a strong drive towards hyperresolution earth system models in order to resolve finer scales of motion in the atmosphere. The problem of obtaining more realistic representation of terrestrial fluxes of heat and water, however, is not just a problem of moving to hyperresolution grid scales. It is much more a question of a lack of knowledge about the parameterisation of processes at whatever grid scale is being used for a wider modelling problem. Hyperresolution grid scales cannot alone solve the problem of this hyperresolution ignorance. This paper discusses these issues in more detail with specific reference to land surface parameterisations and flood inundation models. The importance of making local hyperresolution model predictions available for evaluation by local stakeholders is stressed. It is expected that this will be a major driving force for improving model performance in the future. Keith BEVEN, Hannah CLOKE, Florian PAPPENBERGER, Rob LAMB, Neil HUNTE

    The effect of multitasking on the communication skill and clinical skills of medical students

    Get PDF
    Abstract Background Mental workload is an abstract concept that perceives cognition as the brain having a small and finite capacity to process information, with high levels of workload associated with poor performance and error. While an individual may be able to complete two different tasks individually, a combination of tasks may lead to cognitive overload and poor performance. In many high-risk industries, it is common to measure mental workload and then to redesign tasks until cognitive overload is avoided. This study aimed to measure the effect of multitasking on the mental workload and performance of medical students completing single and combined clinical tasks. Methods Medical students who had completed basic clinical skills training in a single undergraduate Medical School completed four standardised tasks for a total of four minutes each, consisting of: inactivity, listening, venepuncture and a combination of listening and venepuncture. Task performance was measured using standard binary checklists and with mental workload measured using a secondary task method. Results The tasks were successfully completed by 40 subjects and as expected, mental workload increased with task complexity. Combining the two tasks showed no difference in the associated mental workload and performance at venepuncture (p = 0.082) However, during the combined task, listening appeared to deteriorate (p < 0.001). Conclusions If staff are expected to simultaneously complete multiple tasks then they may preferentially shed communication tasks in order to maintain their performance of physical tasks, leading to the appearance of poor communication skills. Although this is a small-scale study in medical students it suggests that the active assessment and management of clinician workload in busy clinical settings may be an effective strategy to improve doctor-patient communication

    Adaptive correction of deterministic models to produce probabilistic forecasts

    Get PDF
    This paper considers the correction of deterministic forecasts given by a flood forecasting model. A stochastic correction based on the evolution of an adaptive, multiplicative, gain is presented. A number of models for the evolution of the gain are considered and the quality of the resulting probabilistic forecasts assessed. The techniques presented offers a computationally efficient method for providing probabilistic forecasts based on existing flood forecasting system output
    corecore