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Abstract. This paper considers the correction of determinis-forecasters) of such manual DA techniques is rarely reported
tic forecasts given by a flood forecasting model. A stochasticformally (Seo et al.2009.
correction based on the evolution of an adaptive, multiplica- These manual DA techniques can be formalised to pro-
tive, gain is presented. A number of models for the evolutionduce deterministic assimilation schemes (&€gle et al,
of the gain are considered and the quality of the resulting2009 Moore, 2007). The DA process can also be cast in
probabilistic forecasts assessed. The techniques presented af-probabilistic framework with the aim of constructing the
fer a computationally efficient method for providing proba- predictive distributionP (y,+f |y1;T) of the observation of
bilistic forecasts based on existing flood forecasting systenmsome quantity of interest (e.g. water level or discharge);
output. time steps ahead giveyw.7 = (y1, ..., yr) the observations
of that quantity up to the current time

If the aim of the DA is to improve the predictions of a
hydrological modelM, a common framework (e.diu and
1 Introduction Guptg 2007) is to cast the model in state space form so that

the hydrological states (indexed by time)evolve according
The basis of many operational hydrological forecasting sys+g

tems are process based models producing deterministic fore-
casts. Often significant resources have been invested in ac;+1 = M (s¢, u;, &) D)
quiring these models and users are familiar with their use and
limitations. In many situations such models produce biasegvhere theu, are observed extraneous inputs (e.g. precipi-
or inaccurate predictions of discharge or water leyebg- tation) ande, a stochastic noise. The model states are then
ica et al, 1998 Pappenberger et aR007. This makes the related to the observed values by the observation funétion
issuing of accurate and reliable flood forecasts challenging. @nd stochastic noisg1:

Data assimilation (DA) has been used to address this chal-
lenge in two ways: assimilating observations to improve the’+1 = H(si41. 8r4) - @
process model predictio_ns and assimilgti_ng observations % 1e stochastic termy may be additive, that is
improve the representation of the prediction errors. Human
forfacaster.s widely practise both forms of DA. Maljuglly al- 5,01 =M sy, ur) + .
tering the internal states of the model based on their interpre-
tation of recent model forecast errors may act to improve fu-lt may also act withinM to represent a number of features
ture model predictions. The forecaster may use their knowl-such as noise on the forcing teemor time evolving model
edge of the recent prediction errors of the model in decidingparameters (e.drajaram and Georgakakak989. By cor-
when to issue flood warnings, thereby implicitly utilising the recting the states of the model it may be hoped that pre-
second type of DA. The effectiveness and consistency (acrosgictions derived for unobserved sites (such as the internal
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Table 1. Model considered for the evolution of the gain specified in terms of the state space form it2Eglohg with any parameter
constraints.

Unknwon
Model F11 F12 Fpp G171 Goo Constraints Parametefis

RW 1 0 0 1 0 g=0 (Gz,qn)

LLT 101 1 1 1 (Uz,qn,qg)
DLLT 1 1 1 1 1 qy=gqs o2, qn

RWD 1 1 1 1 0 ¢=0 a2, qn

IRW 1 1 1 0 1 ¢;,=0 o2, g

AR o 0 0 1 0 q¢= (a,dz,qn)
SLLT o« 1 g 1 1 a,ﬁ,az,qn,qg)
SRW  « 1 1 0 1 gy=0 @, 02, g

DT 11 p 1 1 gy=q B.o%qy

nodes of a hydraulic model) may also be improved. This All the techniques outlined above make multiple calls to
of course cannot be validated until observations are taken ahe process model at each time step. The computational cost
these points. of this may be prohibitive for applications in real time when
The operational usefulness of the predictive distributionthe lead times required for decisions about warnings are a
constructed from the above state space formulation is deperconstraint. This is particularly true if the implementation of
dent upon: the filtering algorithm is achieved by providing code that
“wraps” the hydrological model and interacts by altering the

- ar? appropriate description of the distributionspfind initial state and parameter filewerts et al.2010).

& Regardless of the computational technique utilised great
— an adequate solution of the filtering problem inherent in care should be taken in constructing the description ahd
producing the forecasts. ¢ (Beven et al.2008 Kirchner, 2006, particularly if there

Addressing both of these topics introduces a number of bar?:r a%gs;y;tgi?rﬁtlCz%gges'};\r::l\t/gliggt?ohnai? fg;%t’éﬂé?cigata
riers to the operational implementation of this technique. € ‘

If either M or H is non-linear, the solution to the filtering may require the re-analysis of a significant number of his-

problem is not trivial. Approximate solutions to the filtering toric events, itself time consuming.

problem can be provided by a number of algorithms such ag Using DA to impr_ove the forecasts of the difference be-
particle filters (e.gDoucet et al. 200 Moradkhani et al. ween the hydrological model and observed data can often

20053 Weerts and El Seraf2006, non-linear extensions to ?oiigigsgr:jegf?;crﬁg;rgﬂ C&lﬁ%ﬁﬁgﬁg’?g&?'tjggohrgl
the Kalman Filter Rajaram and Georgakakd®989 DaRos P : P

and Borga 1997 Evensen2003 Morackhani etal 2005 128 & S0R B VE NS S R A NS
Reichle et al.2008 or variational technique4.{and Navon y prop ' 9

) ) . from the classical auto-regressive moving average (ARMA)
ZOQl Madsen and Sko'gn132005 Seo et al.2003. Combl_ time series models d8ox and Jenking1994) used opera-
nations of these techniques may also be used §hgmir : . .
etal, 2010. tionally in the UK (Moore, 2007) to more complex semi-

Particle filters, which approximate the desired distribu- parametric methods (e.g(rzysztofc_)wmz and Maranzano

. . . 2004 Maranzano and Krzysztofowic2004).

tions through Monte-Carlo sampling, can be considered the ) ) : .

most flexible, although the computational burden can be To provide reliable forecasts (in the pragmatic and prob-

. . . e abilistic sense), these formulations and others (elgnta-
large Smith et al, 20083 and implementation difficult when . )
&, dominates the observation noideu and Chen 1999. nari and Brath2004 Weerts et al.2011 Seo et al. 2009

have to attempt to capture the potentially complex evolution

The remaining techniques require less computational re- . . .
g q 9 b of the model residuals. These residuals may incorporate a

source but introduce assumptions such as unbounded dis- ; . . .
systematic or temporally varying bias. Reliance on temporal

ributions that may requir reful reparameterization of th . L .
Lbuto s.t at may require carelul repara gte atio o t ecorrelat|on within the residuals must be tempered by the fact
ydrological model if the states are to remain hydrologically

interpretable, e.g. volumes of water in the river channel musga;;hzéggiﬁgﬁlsmggﬂae ?r?g'riséﬁ'oﬂzr%’g c(’;fin g’r‘;'n?alor‘]’l
be greater or equal to zero. y 9 g ydrograp
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Fig. 1. Schematic map showing the upper River and Vyrnwy tributary which both flow from west to east. Gauged locations considered in the
study (circles) and urban areas are shown (hatched). The insert shows the location of the catchment within the UK.

(Todini, 2008 and much higher during recession periods. operational flood forecasting model from the UK. The valid-
Residuals in extreme situations, such as floods may also posty of the assumptions used in parameter estimation is inves-
sess characteristics different to the majority of the data. Furtigated and the usefulness of the uncertainty representations
thermore, each flood may reveal previously unknown short4llustrated.

comings in the hydrological/hydraulic model(s) making their
residuals difficult to predict. In such situations, it may be use-
ful to utilise robust error models and predictive bounds (e.g.

Rougier et al.2009 Vernon et al.2010. . : . o
4 . . This section presents the stochastic error model utilised
This paper considers the use of DA to improve the fore'within this paper and the computation of the predictive distri-
casts of the difference between the output of a determinis- pap P P

tic hydrological model and the observed data. It explores thebutlon. The representation of the stochastic error model and

AT : its evolution i tlined in a stat framework givin
use of a multiplicative gain to correct the deterministic fore- s evolution is outlined in a state space framework giving a

. N ; natural framework for computing the predictive distribution
casts. This gain is evolved stochastically. Forecasts of future puting P

observed values, that is futupg, are expressed as probabil- as afiltering problem.

ity distributions dependent upon both the gain and the de- 1 Error model

terministic forecast of the hydrological model. The approach

presented has been utilised previously for operational floodRecall thatyy.7 = (y1, ..., yr) is a vector ofl’ observations
forecasting (ees et al. 1994. This paper extends previous indexed by time with corresponding deterministic hydrolog-
work by considering a broader family of models for the evo- ical/hydraulic model predictiong1.7. The observatioy; is
lution of the gain and two contrasting parameter estimationthen related to the prediction, by an adaptive gaig, and

2 Methodology

techniques. noise termx, as outlined in Eq.3).
Section2 outlines the error model for providing proba-
bilistic forecasts at a single observational site. In doing so ay: =m;g; + ¢ 3)

family of parsimonious models for the evolution of the gain

are introduced. The use of the linear Kalman filter for DA The gaing; is a time varying correction for the bias in the
and generation of predictive distributions is presented. Meth/nodel forecast. Itis evolved stochastically according to the
ods for estimating the parameters of the model are discusse@cal level Harvey, 1989 or generalised random waldgke-

in Sect.3. Sectiom presents an example application using anman and Young1984 Young et al, 1989 family of models
outlined in this section. An alternative for the evolutiongpf
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Fig. 2. Summary plots of the data available for Welsh bridge during the calibration period. Points represent observed data with the line being
the concatenation of the output of the most recent hydraulic model initialisation. A bias in the prediction of low flows is clearly shown as are
periods of missing data and poor model initialisation.

such as autoregressive moving average processes could alkbT model is deterministic, resulting in the deterministic lo-
be considered. cal linear trend (DLLT) model. Whee is zero, the slope is
The simplest local level model considered is a randomfixed and the evolution of the gain becomes a random walk
walk whereg; is given as the sum of its previous value and with drift (RWD) model, that is
the stochastic noisg. That is
g =g-1+d+n;.
8t =8t—1+n:. 4) . . . . .
Settingq, to zero but allowing positivg: results in an in-
This is referred to as the random walk (RW) model. The localtegrated random walk trend, referred to as the IRW model.
linear trend (LLT) model generalises this by introducing the This often results in a smoother adaptatiogofompared to
sloped; which follows a random walk driven by the stochas- the RW model outlined in Eq4j.

tic noiseg,. Thus, The models outlined above fg; are parsimonious, the
only unknown parameters other thaA being the values of

8 = gi—1+di—1+m (5) noise variance ratiag, andge . A further level of complexity

dy =di_1+&. (6) can be included by incorporating smoothing or damping pa-

rameters. Inclusion of such a parametein Eq. (4) results
Inthis paper itis assumed that along with the stochastic i, 4 first order auto regressive (AR) model for the gain:
noise termg), andg;, are not correlated with each other or in
time. Further, they are realisations of unimodal, symmetric,g, = ag,_1 +1,. (7
unbounded random variables that can be summarised by their
first two moments which are defined using the parametérs  Inclusion of the smoothing parametessdndg) in the local

gy andge as linear trend model gives
El¢] =E[n]=E[&]=0 g =ag—1+di_1+n (8)
Var[e,] = o2 di = Bdi—1+&. 9)

2
Var[n/] = gyo This is referred to as the smoothed local linear trend (SLLT)

Var(&] =q502. model. Two special cases of this are the smoothed ran-
o ) dom walk (SRW) model; in whictg =1 andg, = 0; and

The validity of these assumptions can be assessed from th@e gamped trend (DT) model in whiehy = ¢; anda = 1.

forecast residuals as shown in Sett.Two methods for €s-  nvore general and higher order representations are also possi-

timation of the parameters are presented in Sect. ble such as doubly integrated random walks. Exploration of
Three further local level models can be specified by plac-these is beyond the scope of this paper.

ing constraints on the LLT model. 4, = g¢, the trend in the
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Table 2. Calibration results for Welsh bridge showing the log likelihood and RMSE (bracketed) for various forecast lead times (hours) and
GRW models.

2 6 9 12 18 24

RW  21102.42(0.06) 12875.26(0.15) 10115.31(0.21) 8958.92(0.26) 8431.67 (0.31)  7986.98 (0.36)
AR 21120.65(0.06) 12926.55(0.15) 10187.68(0.21) 9035.47 (0.25) 8480.80 (0.30)  8024.50 (0.35)
LLT  21195.19(0.07) 12033.98(0.18) 8619.67(0.26) 6278.50 (0.33) 3464.42 (0.47)  953.29 (0.63)
DLLT 21100.06 (0.08) 10418.60(0.19) 6846.22 (0.27) 5215.57(0.33)  716.47 (0.47%4174.00 (0.63)

RWD 20939.18 (0.07) 12033.98(0.18) 8619.67 (0.26) 6278.50 (0.33) 3440.96 (0.47)  837.32(0.63)
IRW  21097.79(0.08) 10417.75(0.19) 6846.24 (0.27) 5215.84(0.33) 715.88 (0.473178.99 (0.63)

SRW  22058.78 (0.06) 13342.41(0.15) 10501.56 (0.21) 9430.35(0.25) 8730.26(0.29)  8190.68 (0.34)
DT  22052.24(0.06) 13341.53(0.15) 10501.83 (0.21) 9430.56(0.25) 8730.49 (0.29)  8190.91 (0.34)
SLLT 22076.80 (0.06) 13394.44(0.14) 10564.56 (0.20) 9491.22 (0.25) 8785.71(0.29)  8251.69 (0.33)

2.2 State Space form and variancerzPth where

All the models outlined can be conveniently expressed in aP;y1; = FP;; F'+ GQG'. (14)
. / T

state space form with state vector= [g, d,] describing _ _ . .

the gain ;) and its sloped;). The state vector evolves ac- The noise variance ratio matr@ is constructed as

cording the state transition matiikand system noise matrix

0
G as —| D",
N [ 0 qs]
_ un

¥=Fr1+G [é, ] ’ (10) The f-step ahead prediction of the states given the informa-

: . tion up to timer can be computed by repeated application of
The state vector is related to the observations by Egs. (3 and (L4).
yi=hx +e (11) The f-step ahead prediction error, s, and prediction

) varianceo 2y, 7, can be computed from the forecast states
whereh, = [m, 0] . The values taken b andG depend  using:
upon the local level model selected. Talleutlines the val- o
ues taken in terms of the matrix forms given in EtR)(for Vit fle = Yo+ f =iy pXe e (15)
the various models considered along with any other paramey, . =1+ h;”pﬂrﬂt hets (16)

ter constraints.
Evaluation of these expressions requires knowledge of the

F= [Fll Flz} G= [G“ 0 ] _ (12)  future predictions of the flood forecasting model.
0 F2o 0 G2 When a new observation becomes available it can be used
Two methods for the estimation of the parameters are preto condition the distribution of the gain by updating the mean
sented in SecB. The following sub-section discusses the use and covariance of the one step ahead prediction of the state
of the Kalman filter to generate the expected value and codistribution using Eqs 1(7) to (19) (see for exampl&alman

variance of the predictive distributions. 196(Q for a derivation).
-1
2.3 Prediction using the Kalman filter kiv1=Piiaihi1y, ), (17)
X141 =X g1y H e 1virae (18)

The assumptions regarding the stochastic noise terms pres
sented in SecR.1are the minimum required for application
of the linear Kalman filterKalman 1960. Suppose the dis-  To evaluate the above recursions some initial values for
tribution of x; has similar properties to that of the stochastic -’?O\O and POIO are required_ In this paper a representation
noise terms with its expected value and variance given byhased on taking a diffuse initial condition is used. The tech-
%; ando?P,. (whereP; is a 2x 2 matrix), respectively. The niques presented iBurbin and Koopmaif2001, Chapter 5)
Kalman filter can be used to predict future states and assimia|iow the conditional distributions of the states after two time
late the observed data as it becomes available. steps; summarised [x"y2|2 and P2|20-2; to be Computed an-
The one step ahead predictions of the distribution of thegjytically from the first two observation, the corresponding
states, conditional upon the data up to timere given by  model predictions and. A suitable burn-in period denoted
the expected value: 1o (see Sect) is then used before commencing evaluation of
A e the estimation criteria outlined in the following section.
X1t = Fxt\t (13)

i+ 1i+1 = Pryaye — ki1l 1 Pryyy (19)
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Table 3. Fraction of observations at Welsh bridge bracketed by the estimated 95 % prediction intervals during calibration. Bracketed results
are those for the SEFE calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds.
Results are shown for all the time periods, high level2(n) and periods where the hydrograph is rising for different combinations of lead

time (hours) and GRW model.

Period 2 6 9 12 18 24
RW Al 0.98 (0.950.99 0.98 0.950.99 0.97 0.950.97 0.97 0.950.97 0.97 0.950.97 0.96 0.950.96
High  0.950.880.96 0.93(0.860.949 0.92(0.840.92 0.910.810.92 0.89 0.790.90 0.87 0.780.89
Rising 0.970.880.97 0.95(0.880.96 0.95(0.880.95 0.95(0.890.95 0.94 0.890.95 0.94 0.900.95
AR Al 0.98 (0.950.99 0.98 0.950.99 0.97 0.950.97 0.97 0.950.97 0.97 0.950.97 0.96 0.950.96
High  0.950.880.96 0.93(0.870.949 0.92(0.860.92 0.910.840.92 0.89 0.820.90 0.87 0.800.89
Rising 0.970.880.97 0.95(0.880.96 0.95(0.890.95 0.95(0.900.95 0.95(0.900.95 0.94 0.900.95
LLT Al 0.98(0.950.99 0.97 0.950.97 0.97 0.950.97 0.96 0.950.97 0.96 0.950.99 0.95 0.950.99
High  0.94 0.880.95 0.90 0.840.92 0.89 0.820.90 0.88 0.810.89 0.87 0.790.89 0.86 0.780.87)
Rising 0.960.880.97 0.94 0.880.95 0.94 0.890.94 0.94 0.910.94 0.94 0.910.94 0.94 0.910.94)
DLLT Al 0.98(0.950.99 0.97 0.950.97 0.97 0.950.97 0.97 0.950.97 0.96 0.950.99 0.96 0.950.99
High  0.94 0.890.95 0.920.830.92 0.90 0.810.90 0.89 0.800.89 0.88 0.800.89 0.87 0.780.87)
Rising 0.960.880.97 0.95(0.880.95 0.94 0.900.94 0.94 0.900.95 0.94 0.910.94 0.94 0.910.94)
RWD  All 0.98 (0.950.99 0.97 0.950.97 0.97 0.950.97 0.96 0.950.97 0.96 0.950.96 0.96 0.950.96
High  0.93 0.870.95 0.90 0.840.92 0.89 0.820.90 0.88 0.810.89 0.87 0.790.89 0.86 0.780.87)
Rising 0.960.880.97 0.94 0.880.95 0.94 0.890.94 0.94 0.910.94 0.94 0.910.94 0.94 0.910.94)
IRW Al 0.98 (0.950.99 0.97 0.950.97 0.97 0.950.97 0.97 0.950.97 0.96 0.950.96 0.96 0.950.96
High  0.94 0.890.95 0.920.830.92 0.90 0.810.90 0.89 0.800.89 0.88 0.800.89 0.87 0.780.87)
Rising 0.960.880.97 0.95(0.880.95 0.94 0.900.94 0.94 0.900.95 0.94 0.910.94 0.94 0.910.94)
SRW  All 0.98 0.950.99 0.97 0.950.99 0.97 0.950.97 0.97 0.950.97 0.97 0.950.97 0.96 0.950.96
High  0.950.870.99 0.92(0.860.94 0.910.850.92 0.90 0.830.91) 0.89 0.81,0.90 0.88 0.790.89
Rising 0.970.880.97 0.95(0.870.96 0.95(0.880.95 0.95(0.900.95 0.94 0.900.95 0.94 0.910.95
DT Al 0.98 (0.950.99 0.97 0.950.99 0.97 0.950.97 0.97 0.950.97 0.97 0.950.97 0.96 0.950.96
High  0.950.870.99 0.92(0.860.94 0.910.850.92 0.90 0.830.91) 0.89 0.81,0.90 0.88 0.790.89
Rising 0.970.880.97 0.95(.870.96 0.95(0.880.95 0.95(0.900.95 0.94 0.900.95 0.94 0.910.95
SLLT Al 0.98 (0.950.99 0.97 0.950.99 0.97 0.950.97 0.97 0.950.97 0.97 0.950.97 0.96 0.950.99
High  0.950.880.99 0.92(0.870.94 0.910.860.92 0.90 0.830.91) 0.90 0.820.90 0.88 0.81,0.89
Rising 0.970.880.97 0.95(0.880.96 0.95(0.880.95 0.95(0.900.95 0.95(0.910.95 0.95 (0.910.95

3 Estimation

rameter vectop defined for the models considered in Ta-
ble 1. Two estimation techniques are outlined and there re-

tion with varianceozw,+f|,. Under these assumptions the

log likelihood is
This section discusses the estimation of the unknown pa-

sults contrasted in Sect. The first technigque is maximum
likelihood estimation based upon the assumption that the pre-

1’
1) =K -3 Z log (o211 )

2022 T (20)

diction errors are independent realisations of Gaussian ran-
dom variables. This introduces stronger assumptions about
the stochastic noise terms than those introduced in 3dct.  wherek is a constant with respect €0 The maximum like-
The second method which is based on minimising the sumlihood estimate of2 can be computed conditional upon the
of the squared expected forecast errors, is more heuristic. Iother parameters i as
both cases the validity of the error assumptions can be as-
sessed. This is discussed along with the the construction of ,
O’

predictive error bounds.

1 T—n

~ T r—n (21)

AR e
0 1=

3.1 Gaussian maximum likelihood This allowso? to be concentrated out of EqRQ) leaving
(Schweppel965:

1’
1(0\0?) = K =3 Y log(5yi 1)
1=tp

In Gaussian maximum likelihood (GML) estimation, the pa-
rameters® are estimated by maximising the likelihood of the
f-step ahead predictions when it is believed thaty, is

22
drawn independently from a zero mean Gaussian distribu (22)
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Table 4. Precision of the forecasts (see text for definition) during calibration at Welsh bridge. Bracketed results are those for the SEFE
calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds. Results are shown for all
the time periods, high levels-(2 m) and periods where the hydrograph is rising for different combinations of lead time (hours) and GRW

model.

Period 2 6 9 12 18 24
RW Al 0.18 (0.040.29 0.330.100.54 0.410.150.66 0.45(0.190.69 0.48 0.230.73 0.50 0.260.76)
High  0.26 0.070.49 0.510.180.91) 0.630.251.14 0.680.291.07 0.77 0.371.15 0.83 0.421.24)
Rising 0.190.040.31) 0.350.110.57 0.43 0.160.7]) 0.47 0.200.739 0.51 0.250.77) 0.54 0.270.8)
AR Al 0.18 (0.040.29 0.330.110.549 0.41 0.160.67 0.44 0.210.69 0.47 0.260.74 0.50 0.31,0.79
High  0.26 0.070.49 0.50 0.190.91) 0.610.271.14 0.67 0.321.07 0.76 0.411.17) 0.83 0.491.27)
Rising 0.190.040.31) 0.350.120.57 0.430.170.7]) 0.46 0.220.739 0.50 0.280.79 0.53 0.320.89)
LLT Al 0.19(0.040.32 0.42 0.130.62 0.59 0.260.89 0.750.421.18 1.080.761.87) 1.39 (1.21,2.65
High  0.24 0.060.54 0.630.221.05 0.870.401.35 1.110.611.70 1.67(1.142.79 2.41 .054.50
Rising 0.200.040.349 0.50 0.140.69 0.700.301.04 0.90 0.511.42 1.41(.022.50 1.71(1.513.32)
DLLT Al 0.19(0.030.31) 0.46 0.170.68 0.63 0.290.96 0.77 0.441.24 1.07 0.801.97 1.42 (1.202.69
High  0.220.040.39 0.670.220.90 0.950.401.31) 1.150.611.70) 1.73@.172.87) 2.46 2.024.53
Rising 0.200.040.32 0.53(0.200.82 0.740.361.17 0.91 0.541.51) 1.31(1.082.66 1.63(1.513.39
RWD Al 0.19 (0.040.31) 0.42(0.130.62 0.590.260.89 0.75(0.421.18 1.08(0.761.87) 1.41(1.212.65
High  0.26 0.070.53 0.63(0.221.05 0.870.401.35 1.110.611.70 1.68(1.142.79 2.45 2.054.50
Rising 0.200.040.33 0.50 0.140.69 0.700.301.04 0.90 0.511.42 1.41(.022.50 1.73(1.513.32)
IRW  All 0.19 (0.040.30 0.46 0.170.69 0.63 0.290.9§ 0.77 0.441.24 1.07 0.801.97 1.42 (1.202.69
High  0.220.040.39 0.670.220.90 0.950.401.31) 1.150.611.70) 1.73(.172.87) 2.46 2.024.53
Rising 0.200.040.32 0.530.200.82 0.740.361.17 0.91 0.541.51) 1.31(1.082.66 1.63(1.513.39
SRW Al 0.17 0.030.30 0.34 0.090.55 0.44 0.130.68 0.49 0.220.74 0.54 0.300.87) 0.57 0.360.99
High  0.21 0.050.49 0.47 0.150.939 0.59 0.231.16 0.67 0.311.09 0.810.431.27) 0.93 0.581.56)
Rising 0.170.040.32 0.37 0.090.59 0.48 0.140.72 0.55(0.250.82 0.62 0.351.09 0.64 0.421.12)
DT Al 0.17 (0.030.30 0.34 0.090.55 0.44 0.130.69 0.49 0.220.74 0.54 0.300.87 0.57 0.360.99
High  0.210.050.49 0.47 0.150.939 0.59 0.231.16 0.67 0.311.09 0.810.431.27) 0.93 0.581.56)
Rising 0.170.040.32 0.370.090.59 0.48 0.140.72 0.55(0.250.82 0.62 0.351.0) 0.64 0.421.12)
SLLT Al 0.17 (0.030.30 0.330.090.55 0.44 0.140.68 0.49 0.220.739 0.550.300.85 0.59 0.380.95
High  0.21 0.050.50 0.46 0.160.939 0.60 0.251.17 0.67 0.301.02 0.830.441.24 0.97 0.611.5))
Rising 0.170.030.32 0.36 0.100.59 0.48 0.150.79 0.54 0.240.80 0.64 0.350.99 0.66 0.431.07)

which is dependent upon the remaining parameters (denotethhe sum of the squared expected forecasting error:
6\o2). This can be numerically optimised to give maximum

likelihood parameter estimates @f
The uncertainty in the predictions can be expressed as per-

centile confidence intervals for the predictions constructed
as: This ensures that the expected value of the forecast is as close

as possible (in terms of average squared error) to the ob-
served data. The minimisation ¢f allows the estimation
of all the parameters i excepto 2. A value foro? can then
be estimated using Eq2Y) if required. The error assump-
tions of the Kalman filter (Sec.1) imply that each pre-
dictive distribution is uni-modal, symmetric and unbounded.
Testing the symmetry of the forecast residuals, for example
sing Wilcoxon sign rank test\ilcoxon, 1945, can indi-

Léate if this assumption is valid. Two methods for construction
of predictive confidence intervals are considered. They make
use of the theoretical symmetry of the forecast distribution
and result in symmetric prediction intervals.

The symmetry of the forecast distribution implies that pre-
diction confidence intervals can be expressed as
The second estimation technique, referred to as SEFE for the
remainder of this paper, is based on the appeal of mlnlmlsmgz,ﬂcx[”“ + ,o,,w

Z Vit fle -

=19

(24)

1
h;+fxf+f\t iKp"‘/szJrf‘\z (23)

werek, is constant dependent upgnand can be computed
from a standard normal distribution; for examplg ~ 1.96.

The normality of the forecast residuals and their correla-
tion can be readily assessed using, for example, quantile an
auto correlation plotsBox and Jenkins1994).

3.2 Minimising the sum of the squared expected
forecast errors

t+flt - (25)
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Fig. 3. Summary plots of the analysis of the 6 h forecast residuals at Welsh Bridge for the DT model calibrated using the Gaussian maximum
likelihood methodology. The upper pane shows the quantile-quantile plot of the standardised residuals compared to a standard normal
distribution. The lower pane shows the auto-correlation of the residuals.

The values ofp, can be estimated empirically as tip¢h metrical empirical estimates and the theoretic upper limits

. for a givenp.
percentile of givenp

_1
Vet £l Ve pie ’ Given the finite population of

residuals, this empirical estimate @f may not be not robust
at high values ofp. The values ofp, can be adapted (for
given p) as more data becomes available. Sequential tests f
symmetry (e.gWeed and Bradleyl971) may be of use in
such situations.

Pukelsheim(1994) gives theoretical results for the upper
limits of p, under the uni-model, symmetric and unbounded
distributional assumptions. Specifically

4 Upper Severn case study

%o illustrate the effectiveness and limitations of the proposed
methodology in an operational setting a case study based on
the upper Severn catchment (UK) is presented. The upper
Severn river network is situated on the border of England
and Wales and shown in Fifj. The River Severn rises in the
Cambrian mountains (741 mAOD) and flows to the north-
east before meeting the Vyrnwy tributary at Crew Green.

Vi — Wit flt 2 The valley is wide and flat in this confluence area, with a
Pri|————|=r| = 92 "7 163. (26)  considerable extent of flood plain. The river then flows east
lﬁ,+2f|, to Shrewsbury. The lower boundary of the 2284kapper

Severn catchment is defined by the gauge at Welsh bridge in
The case = 30 is the three sigma rule; that there is less than Shrewsbury where the median annual flood is greater than
5 % probability of a sample from univariate random variable 284 cumecs. Average annual rainfall can exceed 2500 mm in
random with the aforementioned properties being outside othe head waters of the catchment. The catchment has seen
3 standard deviations from the mean. These upper limits caseven significant flood events in the past twelve years.
be used in two ways. Firstly, they allow for the estimation of The existing flood forecasting model consists of a
conservative prediction confidence intervals, allowing for anumber of simplified rainfall-runoff representations linked
more cautious view to be taken of the prediction uncertainty.to a one dimensional ISIS hydrodynamic model (see
The second use is as a means of analysing the suitability ofittp://www.halcrow.com/isis/default.asfResults are shown
the adaptive gain models considered by contrasting the symfor two sites seen in Fid.: Welsh bridge the lower boundary
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Fig. 4. Summary plots of the analysis of the 6 h forecast residuals for the RW model calibrated using the SEFE methodology. The upper pane
shows the cumulative distributions of the absolute values of the residuals at Welsh Bridge. The solid line being positive residuals and the
dotted line being negative residuals. The lower pane shows the auto-correlation of the residuals.

of the catchment and Llandrinio an internal node of the hy-(2007-2009) are used for validation purposes. The results for
draulic model at which observations are available. The lattereach of the sites are summarised below.
is just upstream of the junction with the major Vyrnwy tribu-
tary and may be affected by backwater effects at flood stages. )
At both sites water levels are observed every 15 min. 4.1 Welsh bridge

Operationally, the flood forecasting model is run with a
15 minute time step and evaluated twice daily. At midnight it Figure2 shows the hydraulic model predictions and observed
is run in a continuous mode using observed inputs and outpudiata at Welsh bridge during the calibration period. Thereis a
data assimilation to generate a set of “warm states” which argystematic over estimation of the water level during periods
used to initialise the forecasts. The first set of forecasts issuedf low flow. Such a systematic bias may arise from the cal-
at midnight (00:00) give up to 36 h lead time using forecastibration of the hydraulic model. If the model was calibrated
precipitation. The second set of forecasts is issued at midto discharge data and the representation of the gauged cross
day (12:00). These forecasts are initialised by evolving thesection poor at shallow depths, such a bias may result. Alter-
“warm states” using the observed meteorological variablesatively an artificially high low water level within the model,
between midnight and midday. Forecast precipitation is thersuch as that seen here, can arise as a means of achieving ac-
used to evaluate the flood forecasting model giving forecastgeptable representations of high water level periods.
of the hydrological variables with up to 36 h lead time. Fur-  The adaptive gain correction could be utilised to correct
ther details can be found Weerts et al(2011). the forecasts in these low flow periods. The difference in re-

The adaptive gain correction is initialised at the start of lationship between the hydraulic model and observed data
each forecast period. The first four hours of forecasts are usefbr the low flow periods and when this model is responding
as a burn-in period for the adaptive gain. Then, in keepingto rainfall suggests that a different calibration of the stochas-
with the operational system, forecasts are issued based aic model for the adaptive gain may be required for each.
the most recent forecast run of the flood forecasting modeFor flooding purposes the response to rainfall is more im-
for which the adaptive gain is burnt in. A single year of portant. Therefore, the calibration and validation criteria are
data (2006) which contains a significant flood event is usedonly evaluated at Welsh bridge for the simulations of the hy-
to identify and estimate the adaptive correction. Three yearsiraulic model which forecast a water level greater than 1 m.
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Fig. 5.Examples of 6 h ahead forecasts given at Welsh bridge for two large flood events during calibration (upper pane) and validation (lower
pane) periods generated using the SLLT model calibrated using the Guassian methodology. The shaded area represents the 95 % predictic
confidence interval with the solid line being the expected value of the predictions. Observed data points are also shown along with the
deterministic model forecast (dotted line).
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Fig. 6. Examples of 6 h ahead forecasts given at Welsh bridge for two large flood events during calibration (upper pane) and validation
(lower pane) periods generated using the RW model calibrated using the SEFE methodology. The shaded area represents the 95 % predictic
confidence interval with the solid line being the expected value of the predictions. Observed data points are also shown along with the
deterministic model forecast (dotted line).
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Table 5. Fraction of observations at Welsh bridge bracketed by the estimated 95 % prediction intervals during validation. Bracketed results
are those for the SEFE calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds.
Results are shown for all the time periods, high level2(m) and periods where the hydrograph is rising for different combinations of lead

time (hours) and GRW model.

Period 2 6 9 12 18 24
RW Al 0.99 (0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.960.99 0.99 0.960.99 0.99 0.950.99
High  1.00 0.931.00 0.99 0.921.00 0.99 0.921.00 0.99 0.901.00 0.99 0.901.00 1.00 0.901.00
Rising 1.000.931.00 1.000.931.00 1.00(0.941.00 1.000.941.00 1.000.951.00 0.99 0.941.00
AR Al 0.99 (0.960.99 0.99 0.960.99 0.99 0.950.99 0.99 0.950.99 0.99 0.940.99 0.99 0.940.99
High  1.00 0.931.00 0.99 0.921.00 0.99 0.911.00 0.99 0.891.00 0.99 0.901.00 0.99 0.91,1.00
Rising 1.000.931.00 1.000.931.00 1.00(0.941.00 1.000.941.00 1.000.951.00 0.99 0.951.00
LLT Al 0.99(0.980.99 0.99 0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.980.99
High  0.99 0.961.00 0.99 0.941.00 0.99 0.931.00 0.99 0.921.00 0.99 0.921.00 0.99 0.941.00
Rising 1.000.931.00 0.99 0.931.00 1.000.941.00 1.000.951.00 0.99 0.961.00 0.99 0.970.99
DLLT Al 0.99(0.980.99 0.99 0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.980.99
High  0.99 0.950.99 0.99 0.891.00 0.99 0.880.99 0.99 0.890.99 0.99 0.910.99 1.00 0.941.00
Rising 1.000.931.00 1.000.921.00 1.000.931.00 1.000.941.00 1.000.951.00 1.00 0.970.99
RWD  All 0.99 (0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.980.99
High  1.00 0.951.00 0.99 0.941.00 0.99 0.931.00 0.99 0.921.00 0.99 0.921.00 0.99 0.941.00
Rising 1.000.931.00 0.99 0.931.00 1.000.941.00 1.000.951.00 0.99 0.961.00 0.99 0.970.99
IRW Al 0.99 (0.980.99 0.99 0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.980.99
High  0.99 0.950.99 0.99 0.891.00 0.99 0.880.99 0.99 0.890.99 0.99 0.910.99 1.00 0.941.00
Rising 1.000.931.00 1.000.921.00 1.000.931.00 1.000.941.00 1.000.951.00 1.00 0.970.99
SRW Al 0.99 0.970.99 0.99 0.960.99 0.99 0.970.99 0.99 0.970.99 0.99 0.960.99 0.99 0.950.99
High  0.99 0.931.00 0.99 0.911.00 0.990.921.00 0.99 0.8§1.00 0.99 0.871.00 0.99 0.881.00
Rising 1.000.941.00 1.000.921.00 1.000.941.00 1.000.941.00 1.000.941.00 0.99 0.941.00
DT Al 0.99 (0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.970.99 0.99 0.960.99 0.99 0.950.99
High  0.99 0.931.00 0.99 0.911.00 0.99 0.921.00 0.99 0.8§1.00 0.99 0.871.00 0.99 0.881.00
Rising 1.000.941.00 1.000.921.00 1.000.941.00 1.000.941.00 1.00 0.941.00 0.99 0.941.00
SLLT Al 0.99 (0.970.99 0.99 0.960.99 0.99 0.950.99 0.99 0.940.99 0.99 0.940.99 0.99 0.940.99
High  0.99 0.931.00 0.99 0.911.00 0.990.911.00 0.99 0.861.00 0.99 0.88§1.00 0.99 0.891.00
Rising 1.000.921.00 1.000.921.00 1.000.931.00 1.000.931.00 0.99 0.941.00 0.99 0.951.00

Table 6. Calibration results for Llandrinio showing the log likelihood and RMSE (bracketed) for various forecast lead times (hours) and
GRW models.

2 6 9 12 18 24
RW —523.75(0.23) —3879.11 (0.50) —4576.16 (0.57) —4868.47 (0.61) —5135.70(0.65) —5446.65 (0.67)
AR —466.31(0.22) —3783.83(0.49) —4486.50 (0.55) —4773.20(0.59) —5020.97 (0.62) —5307.53 (0.63)
LLT —545.97 (0.27) —7493.31(0.82) —10235.82 (1.26) —12565.22 (1.72) —16020.44 (2.62) —18463.92 (3.53)
DLLT  —551.17 (0.30) —12282.72(0.83) —10196.52 (1.26) —12429.47 (1.72) —15729.97 (2.63) —18467.72 (3.53)
RWD -1707.44(0.31) —8560.98 (0.97) —11395.47 (1.47) —13713.16 (1.98) —17016.15 (3.02) —19875.52 (4.04)
IRW  —545.97(0.31) —12294.39 (0.82) —10192.66 (1.26) —12425.94 (1.72) —15726.36 (2.62) —18463.99 (3.53)
SRW 171053 (0.20) —307.89(0.34) —111554(0.38) —1515.08 (0.40) —2109.19 (0.43) —2588.85 (0.45)
DT 1709.51 (0.20)  —308.10 (0.34) —1115.58 (0.38) —1515.08 (0.40) —2109.19(0.43) —2588.85 (0.45)
SLLT  1710.53(0.20) —307.89(0.34) —1115.36(0.38) —1513.65(0.40) —2092.73(0.42) —2553.96 (0.44)

Table2 presents the log likelihood and root mean squaredthe decay in information about the future values of the gain
error (RMSE) summaries of the calibration results at variousor its gradient through the use of damping parameters. The
forecast lead times. For both calibration methodologies, theRMSE of the deterministic model prediction (based on al-
performance of the LLT model along with its special casesways using the most recent model run) is 0.37. At lead times
DLLT, RWD and IRW decays much more rapidly with lead greater than 12 hours, none of the models achieves a sig-
time than the alternative models. This suggests that as witlmificant decrease in the RMSE, though they still provide an
the SLLT, SRW and DT models there is the need to recognisestimate of the forecast uncertainty.
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Fig. 7. Examples of 6 h ahead forecasts given at Llanrinio for two large flood events during calibration (upper pane) and validation (lower
pane) periods generated using the SLLT model calibrated using the SEFE methodology with empirical error bounds. The shaded area
represents the 95 % prediction confidence interval with the solid line being the expected value of the predictions. Observed data points are
also shown along with the deterministic model forecast (dotted line).

Calibration with the GML methodology allows model se- calibration data that is consistent with the error assumptions
lection to be performed using time series identification crite-outlined in Sect2.1 A similar pattern to the empirical re-
ria, such as the AlCAkaike, 1974 or BIC (Schwarz 1978. sults for the coverage of the high and rising flows categories
This leads to the selection of the SLLT at all the lead timesis shown.
considered. The RMSE results of the SEFE calibration sug- The high percentages for coverage when using the Gaus-
gest that at shorter lead times, a more parsimonious modeskian likelihood calibration at short forecast lead times sup-
such as the RW, may be suitable. Further analysis of the preport the suggestion that the assumptions used in deriving the
dictive performance of the models can be gained by examiniikelihood may not be valid. However, at lead times up to
ing the coverage and precision of the forecasts shown for theix hours, there is less evidence of systematic differences in
calibration period in Table3 and4. the percentage of observations covered in the three discharge

Table 3 shows the percentage of points falling within the categories. As with the SEFE calibration at longer lead times,
95 % prediction confidence interval for various lead timesthe coverage of the high flow category deteriorates for all the
during calibration. Results are shown for three categories: thenodels.
whole period, high water levels greater than 2m and rising The results in Tablegd summarise the precision of the
parts of the observed hydrograph whefe; > y;. By defi- of the forecasts through the mean of the forecasts standard
nition the empirical bounds derived from the SEFE method-deviation over each flow category. The empirically derived
ology bracket 95 % of all the (calibration) observations. Cov- forecast error bounds are, especially at lead times up to six
erage of the high and rising flow categories for this method-hours, significantly sharper than the theoretical upper limit
ology is less than 95 % for all models and lead times. Cover-and those resulting from the Gaussian calibration.
age of high flows decreases with increasing lead time for all Figure 3 shows two summary plots of the standardised
the models. This indicates that the pooling of the residuals in6 h forecast residuals of the SLLT model calibrated us-
computing the empirical bounds may not be appropriate. Theéng the Gaussian likelihood methodology. The upper pane
values ofk,, or indeed the model parameters, may be stateshows a quantile-quantile plot of the standardised residual

or time dependentypung 2002 Young et al, 2001). v A1, "3 i istributi
X 2 i+f110 Y, ), against a standard norm distribution. The
The theoretical prediction bounds of the SEFE methodol-oyier tails present in the distribution for the standardised

ogy give in all cases percentages of coverage based on all tr]Pesiduals indicates that the Gaussian assumption may not be
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Table 7.Fraction of observations at Llandrinio bracketed by the estimated 95 % prediction intervals during calibration. Bracketed results are
those for the SEFE calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds. Results
are shown for all the time period, high levels 4 m) and periods where the hydrograph is rising for different combinations of lead time

(hours) and GRW model.

Period 2 6 9 12 18 24
RW Al 0.97 (0.950.97 0.97 0.950.97 0.96 0.950.97 0.96 0.950.96 0.96 0.950.96 0.95 0.950.95
High  0.96 0.940.96 0.940.900.94 0.93(0.890.949 0.930.890.99 0.920.890.92 0.91 0.880.9)
Rising 0.950.890.95 0.95(0.880.95 0.94 0.890.949 0.94 0.890.949 0.94 0.900.94 0.93 0.890.93
AR Al 0.97 (0.950.97 0.97 0.950.97 0.96 0.950.99 0.96 0.950.96 0.96 0.950.96 0.95 0.950.95
High  0.96 0.950.969 0.940.920.949 0.93(0.910.94 0.930.900.99 0.920.910.92 0.91 0.900.9)
Rising 0.950.910.95 0.950.920.95 0.94 0.920.94 0.94 0.920.949 0.94 0.930.94 0.93 0.930.93
LLT Al 0.97 (0.950.97 0.96 0.950.97 0.96 0.950.969 0.96 0.950.99 0.95 0.950.95 0.95 0.950.95
High  0.950.940.96 0.940.900.949 0.93(0.890.939 0.920.890.99 0.910.890.92 0.91 0.880.9)
Rising 0.950.910.95 0.950.900.95 0.94 0.910.94 0.94 0.920.94 0.94 0.930.94 0.93 0.91,0.93
DLLT Al 0.97 (0.950.97 0.97 0.950.97 0.96 0.950.96 0.96 0.950.969 0.95 0.950.95 0.95 0.950.95
High  0.950.950.96 0.940.900.949 0.93(0.890.939 0.920.890.99 0.910.890.92 0.91 0.880.9)
Rising 0.950.910.95 0.950.900.95 0.94 0.910.94 0.94 0.920.94 0.94 0.930.94 0.93 0.91,0.93
RWD  All 0.97 (0.950.97 0.96 0.950.97 0.96 0.950.99 0.96 0.950.96 0.95(0.950.95 0.95 (0.950.95
High  0.950.930.95 0.930.900.949 0.930.890.99 0.920.890.99 0.910.890.92 0.90 0.880.9)
Rising 0.950.900.95 0.950.910.95 0.94 0.920.94 0.94 0.930.949 0.94 0.930.94 0.93 0.91,0.93
IRW Al 0.97 (0.950.97 0.97 0.950.97 0.96 0.950.99 0.96 0.950.96 0.95 0.950.95 0.95 0.950.95
High  0.950.950.96 0.940.900.94 0.93(0.890.939 0.920.890.99 0.910.890.92 0.91 0.880.9)
Rising 0.950.910.95 0.950.900.95 0.94 0.910.94 0.94 0.920.94 0.94 0.930.94 0.93 0.91,0.93
SRW Al 0.97 0.950.97 0.96 0.950.97 0.96 0.950.96 0.96 0.950.96 0.95(0.950.95 0.95 (0.950.95
High  0.950.950.96 0.92(0.880.949 0.890.870.939 0.88 0.860.92 0.87 0.860.91) 0.87 0.860.9)
Rising 0.950.900.95 0.93(0.890.949 0.92(0.890.94 0.910.900.94 0.91 0.900.94 0.91 0.900.93
DT Al 0.97 (0.950.97 0.96 0.950.97 0.96 0.950.99 0.96 0.950.96 0.95 0.950.95 0.95 0.950.95
High  0.950.950.96 0.92(0.880.949 0.89(0.870.939 0.88 0.860.92 0.87 0.860.91) 0.87 0.860.9)
Rising 0.950.900.95 0.93(0.890.949 0.92(0.890.94 0.910.900.94 0.91 0.900.94 0.91 0.900.93
SLLT Al 0.97 (0.950.97 0.96 0.950.97 0.96 0.950.96 0.96 0.950.96 0.95 0.950.95 0.95 0.950.95
High  0.950.950.96 0.92(0.880.949 0.89 0.870.939 0.88 0.860.99 0.87 0.870.92 0.87 0.870.9)
Rising 0.950.900.95 0.93(0.890.949 0.920.900.94 0.910.900.94 0.91 0.910.94 0.91 0.91,0.93

valid. The residual distribution is approximately symmetric. idation period. The high percentages for the GML methodol-
Therefore, the use of the Kalman filter may be a valid approx-ogy further support the suggestion that the assumptions used
imation, even if the resulting prediction confidence intervalsin deriving the likelihood may not be valid. The results for
are not appropriately defined. The lower plot indicates thatthe SEFE calibration indicate that the symmetrical empiri-
the residuals are correlated up to at least a lag of 28 samplesal estimation of,, derived during calibration perform well

or 7 h, approximately the forecast lead time. This and the lowin the validation period. The predictive bounds derived us-
correlation value suggest that the conditional independencéng the theoretical upper limit appear to bracket around 99 %
assumption, while not strictly valid, may be a reasonable ap-of the data during the validation period, suggesting they are
proximation. unduly conservative.

The forecast residuals of the SEFE methodology can also Figure 5 shows the predictions made using the SLLT
be assessed. The lower pane of Hgshows the auto- model calibrated using the Gaussian methodology for the
correlation pattern in the residuals of the RW model fitted largest flood events at Welsh bridge in the calibration and val-
by the SEFE methodology for a 6 h leadtime. The correlationidation periods. The results are encouraging with the adap-
within the residuals lower and less persistent at longer laggive gain acting to correct the model forecast towards the ob-
than for the Gaussian calibration. The upper pane of #ig. served values. During both the calibration and validation pe-
shows the cumulative distributions of the positive standard-riod adaptive gain methodology is able to correct for errors
ised residuals along with that of the absolute value of negain both the timing and magnitude of the hydrograph peaks as
tive standardised residuals. It indicates a lack of symmetry inwell as the receding limb.
the residuals confirmed by a Wilcoxon sign rank test. The calibration event (upper pane) highlights that the

Table 5 shows the percentage of observations falling methodology is not able to correct for highly erroneous
within the 95 % prediction confidence interval during the val- model forecasts. The validation results (lower pane) also
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Table 8. Precision of the forecasts (see text for definition) during calibration at Llandrinio. Bracketed results are those for the SEFE
calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds. Results are shown for all the
time period, high levelsx 4 m) and periods where the hydrograph is rising for different combinations of lead time (hours) and GRW model.

Period 2 6 9 12 18 24
RW Al 0.74(0.131.24 1.03(0.391.56 1.09(0.511.66 1.110.611.68 1.120.701.70  1.130.711.72
High  1.00 0.272.53 1.510.592.39 1.680.81,2.62 1.770.992.7§  1.87(1.222.99  1.96 (1.273.09
Rising 0.760.141.33 1.070.401.63 1.140541.74 1.160.641.77) 1.180.751.80  1.20 0.761.89
AR Al 0.73(0.131.24 1.020.431.56 1.080.531.66 1.100.601.69 1.110.701.79  1.120.741.74
High  0.99 0.272.52 1.49(0.642.36 1.650.832.61) 1.740.972.79  1.84(1.192.94  1.92 (1.323.10
Rising 0.750.141.33 1.060.441.63 1.130561.74 115063179 1.170.741.89  1.190.791.8§
LLT Al 0.86(0.111.72 1.830.783.0) 2.64(.244.43 3.31(.675.75 455@.378.15  6.77 3.0911.2)
High  1.010.233.49 2.83(.114.3) 4.11(1.826.49 5.642.689.29 8.96 4.5615.67 13.68 6.2222.50
Rising 0.900.121.84 2.010.853.3]) 3.18(1.525.40 4.20@.197.5) 5.99@.3011.35  9.35@.3515.79
DLLT Al 0.86(0.101.90 2.47 0.783.09 2.72(1.244.41) 351(.675.79 4.98@.368.19  6.773.0811.19
High  1.010.193.60 4.55@.114.3) 4.14(1.826.49 5.79.689.20 9.67 4.5515.69 13.69 6.2022.49
Rising 0.900.112.0) 2.69 0.853.3]) 3.29(1.515.37) 4.542.187.49 6.83@.2911.30  9.35 @4.3315.69
RWD Al 0.92(0.181.43 2.050.873.39 2.90(.395.1) 3.80(1.876.92 5.35@.8610.4§  7.53 @.0115.37)
High  1.220.372.99 3.29(.315.10 4.77@.107.69 6.623.0211.159 10.66 6.4920.09 15.47 8.0530.83
Rising 0.970.201.54 2.250.953.7]) 3.45(.706.22 4.82@.469.09  7.15@.0714.90 10.24 6.81,22.24
IRW Al 0.86(0.101.99 2.47 0.783.0) 2.72(1.244.41) 351(.665.7) 4.98@.378.11)  6.77 3.0811.15
High  1.010.193.59 4.55@.114.3) 4.14(1.826.49 5.79.679.19 9.66 4.5515.60 13.68 6.2022.49
Rising 0.900.112.05 2.690.853.3]) 3.29(1.515.37) 4.542.187.49 6.82@3.2911.29  9.34 4.3215.69
SRW  All 0.66 0.101.29 0.88(0.521.36 1.020.731.57 1.110.911.7]) 1.25@.141.99  1.43(.352.22
High  0.710.202.51) 0.970.601.57 1.100.841.80 1.23(.072.0)  1.60(1.552.69  1.97 (.963.23
Rising 0.670.111.39 0.910.541.42 1.100.801.79 1.26(.051.97  1.50(.392.3§  1.77 (.71,2.80
DT Al 0.66 (0.101.29 0.880.521.36 1.020.731.57 1.110.911.7) 1.25(0.141.99  1.43(1.352.29
High  0.710.212.55 0.970.601.57 1.100.841.80 1.23(.072.0)  1.60(1.552.69  1.97 (.963.23
Rising 0.670.111.39 0.910.541.42 1.100.801.79 1.26(.051.97  1.50(.392.3§  1.77 (.71,2.80
SLLT Al 0.66 (0.101.29 0.880.511.35 1.020.721.57 1.110.871.7)  1.24(.091.90  1.41(1.292.17
High  0.710.212.60 0.970.591.55 1.100.831.80 1.23(1.042.0)  1.59(1.502.629  1.94 (1.903.17
Rising 0.670.111.39 0.910.541.40 1.100.791.7) 1.26(.001.9§  1.49(1.332.3)  1.75(.622.7)

reveal one aspect of how the adaptive gain behaves in a legwedicts a water level greater than 1.8 m. None of the models
than ideal situation. During January there is a period wherédor the adaptive gain produce a RMSE lower than that of the
no observations are taken. During this time, the predictionuncorrected model (0.39) for lead times greater than 9 h. This
interval can at first be seen to gradually widen, as no fur-time is shorter than that at Welsh bridge which is consistent
ther observations are available to condition the correction ofwith the location of the gauging site closer to the headwaters
the current simulation of the flood forecasting model. Then,of the catchment. As for Welsh bridge the deterioration in
when the next run of the flood forecasting model becomegperformance is more marked for gain models, which include
available the gain cannot be initialised, so no forecasts ar@a gradient term but do not include a damping parameter.
issued. In such situations, the forecaster making operational The coverage probabilities during calibration (TaBi@are
decisions may wish to consider the past simulation of theless dependant upon the water level than those at Welsh
flood forecasting model and the corresponding adaptive gainbridge. In keeping with the Welsh bridge results, the preci-

Figure 6 shows the predictions made for the same eventsion of forecasts issued using the SEFE methodology, with
using the RW model calibrated using the SEFE methodologyempirical error bounds, is higher than that of the gaussian
with empirical prediction bounds. Visual comparison with calibration methodology. In validatior®) all the prediction
Fig. 5 shows the forecasts to be more precise, but failing toerror bounds appear conservative, bracketing a higher pro-
capture the rising limb of the validation hydrograph. portion of the observations than would be expected.

Figure 7 shows the 6h lead item forecasts for two large
calibration vents at Llandrinio. As at Welsh bridge the tech-
. ) . . nique cannot correct for highly erroneous model outputs
Tabless, 7 and8 summarise the performance in calibration of such as those around the 6 December 2006. An earlier pe-

the adaptive gain models at Llandrinio. As at Welsh bridge,riod on the 3 December 2006 highlights the importance of
there is a bias in the baseflow of the hydraulic model. Per-

formance is assessed only when the flood forecasting model

4.2 Llandrinio
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Table 9. Fraction of observations at Llandrinio bracketed by the estimated 95 % prediction intervals during validation. Bracketed results are
those for the SEFE calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds. Results
are shown for all the time period, high levels 4 m) and periods where the hydrograph is rising for different combinations of lead time

(hours) and GRW model.

Period 2 6 9 12 18 24
RW Al 0.99 (0.980.99 0.99 0.980.99 0.99 0.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.98
High  0.99 0.990.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.970.99
Rising 0.990.960.99 0.980.960.99 0.98 0.960.99 0.98 0.960.99 0.98 0.960.99 0.98 0.960.99
AR Al 0.99 (0.980.99 0.99 0.980.99 0.99 0.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.97,0.99
High  0.99 0.990.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.990.99 0.99 0.950.99
Rising 0.990.960.99 0.980.980.99 0.98 0.970.99 0.98 0.970.99 0.98 0.980.99 0.98 0.980.99
LLT Al 0.99 (0.960.99 0.99 0.980.99 0.99 0.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.99
High  0.99 0.990.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.950.99
Rising 0.990.920.99 0.99 0.970.99 0.980.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.99
DLLT Al 0.99(0.970.99 0.99 0.980.99 0.99 0.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.99
High  0.99 0.990.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.950.99
Rising 0.990.940.99 0.99 0.970.99 0.980.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.99
RWD  All 0.99 (0.980.99 0.99 0.980.99 0.99 0.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.98
High  0.99 0.990.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.950.99
Rising 0.990.970.99 0.99 0.980.99 0.980.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.99
IRW Al 0.99 (0.970.99 0.99 0.980.99 0.99 0.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.99
High  0.99 0.990.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.99 0.950.99
Rising 0.990.950.99 0.99 0.970.99 0.980.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.99
SRW  All 0.99 0.980.99 0.99 0.980.99 0.99 0.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.98
High  0.99 0.990.99 0.99 0.970.99 0.980.960.99 0.97 0.960.99 0.96 0.950.99 0.95 0.950.99
Rising 0.990.960.99 0.98(0.970.99 0.980.960.99 0.97 0.960.99 0.97 0.960.99 0.96 0.960.99
DT Al 0.99 (0.980.99 0.99 0.980.99 0.99 0.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.99
High  0.99 0.990.99 0.99 0.970.99 0.980.960.99 0.97 0.960.99 0.96 0.950.99 0.95 0.950.99
Rising 0.990.960.99 0.98(0.970.99 0.980.960.99 0.97 0.960.99 0.97 0.960.99 0.96 0.960.99
SLLT Al 0.99 (0.970.99 0.99 0.980.99 0.99 0.980.99 0.98 0.980.99 0.98 0.980.99 0.98 0.980.99
High  0.99 0.990.99 0.99 0.970.99 0.98(0.970.99 0.97 0.960.99 0.96 0.970.99 0.96 0.970.99
Rising 0.990.940.99 0.98(0.970.99 0.980.970.99 0.97 0.970.99 0.97 0.970.99 0.97 0.970.99

assimilating further observations after initialisation of the data assimilation methodology is able to perform adequately
gain to improve the precision of the forecasts. on small basins where the response to rainfall is more rapid
and timing errors, due perhaps to errors in the rainfall fore-
cast, are more severe (s&lfieri et al., 2011, for some initial
results).

In an operational setting, only the linear Kalman filter
The results presented in this paper indicate that comparaevolving two states needs to be evaluated. Though not dis-
tively simple error models combined with real time data as-cussed this can be readily implemented in spreadsheet pack-
similation can provide probabilistic forecasts. ages without recourse to more complex programming. This

Results are shown for a medium size river basin. Two cali-makes the addition of these data assimilation techniques
bration methodologies are presented. Detailed residual anato existing deterministic forecasting systems Comparati\/e]y
ysis suggests that, though the error assumptions used in thesgaightforward with a very low “cost of entry”.
derivations are not SatiSﬁEd, they can produce probabilistic A number of future deve|opments can be proposed_ Fir5t|y’
forecasts with conservative coverage and precision of the oranalysis of the results suggests that recognition of state or
der of 10% of the observed water level. The selection oftime dependency within the model paramet&isung 2002
which calibration methodology performs most adequately re-smith et al, 2008t may be worthy of exploration. Recognis-
quires consideration on a case by case basis. Techniques f@ig that the gain at different sites may be correlated opens up
making this selection are presented. a further line for future research. If such correlations can be

The lead times at which the expected value of the forecastgyccessfully exploited, it will both increase the robustness of
can be seem to improve the RMSE of the uncorrected modethe data assimilation scheme to missing observations and po-

predictions depends upon the time it takes for the catchmenfentially allow forecast updating at sites where very limited
to respond at the gauged site. It remains to be seen if such a

5 Conclusions

www.hydrol-earth-syst-sci.net/16/2783/2012/ Hydrol. Earth Syst. Sci., 16, 2783799 2012



2798 P. J. Smith et al.: Adaptive correction of deterministic models

data are available (e.g. locations only observed during the.ees, M. J., Young, P. C., Ferguson, S., Beven, K. J., and Burns,
calibration of a hydraulic model). The exploration of such J.: An adaptive flood warning scheme for the River Nith at

strategies is the subject of on-going research. Dumfries, in: 2nd Inter-national Conference on River Flood Hy-
draulics, edited by: White, W. R. and Watts, J., Wiley, Chichester,
1994,

Li, Z. J. and Navon, I. M.: Optimality of variational data assimila-
tion and its relationship with the Kalman filter and smoother, Q.
J. Roy. Meteorol. Soc., 127, 661-683, 2001.

Liu, J. S. and Chen, R.: Sequential Monte Carlo methods for dy-
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