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Abstract. This paper considers the correction of determinis-
tic forecasts given by a flood forecasting model. A stochastic
correction based on the evolution of an adaptive, multiplica-
tive, gain is presented. A number of models for the evolution
of the gain are considered and the quality of the resulting
probabilistic forecasts assessed. The techniques presented of-
fer a computationally efficient method for providing proba-
bilistic forecasts based on existing flood forecasting system
output.

1 Introduction

The basis of many operational hydrological forecasting sys-
tems are process based models producing deterministic fore-
casts. Often significant resources have been invested in ac-
quiring these models and users are familiar with their use and
limitations. In many situations such models produce biased
or inaccurate predictions of discharge or water level (Aron-
ica et al., 1998; Pappenberger et al., 2007). This makes the
issuing of accurate and reliable flood forecasts challenging.

Data assimilation (DA) has been used to address this chal-
lenge in two ways: assimilating observations to improve the
process model predictions and assimilating observations to
improve the representation of the prediction errors. Human
forecasters widely practise both forms of DA. Manually al-
tering the internal states of the model based on their interpre-
tation of recent model forecast errors may act to improve fu-
ture model predictions. The forecaster may use their knowl-
edge of the recent prediction errors of the model in deciding
when to issue flood warnings, thereby implicitly utilising the
second type of DA. The effectiveness and consistency (across

forecasters) of such manual DA techniques is rarely reported
formally (Seo et al., 2009).

These manual DA techniques can be formalised to pro-
duce deterministic assimilation schemes (e.g.Cole et al.,
2009; Moore, 2007). The DA process can also be cast in
a probabilistic framework with the aim of constructing the
predictive distributionP

(
yt+f |y1:T

)
of the observation of

some quantity of interest (e.g. water level or discharge);f

time steps ahead giveny1:T = (y1, . . . ,yT ) the observations
of that quantity up to the current timet .

If the aim of the DA is to improve the predictions of a
hydrological modelM, a common framework (e.g.Liu and
Gupta, 2007) is to cast the model in state space form so that
the hydrological states (indexed by time)st evolve according
to

st+1 =M(st ,ut ,εt ) (1)

where theut are observed extraneous inputs (e.g. precipi-
tation) andεt a stochastic noise. The model states are then
related to the observed values by the observation functionH
and stochastic noiseζt+1:

yt+1 =H (st+1,ζt+1) . (2)

The stochastic termεt may be additive, that is

st+1 =M(st ,ut )+ εt .

It may also act withinM to represent a number of features
such as noise on the forcing termut or time evolving model
parameters (e.g.Rajaram and Georgakakos, 1989). By cor-
recting the states of the model it may be hoped that pre-
dictions derived for unobserved sites (such as the internal
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Table 1. Model considered for the evolution of the gain specified in terms of the state space form in Eq. (12) along with any parameter
constraints.

Unknwon
Model F11 F12 F22 G11 G22 Constraints Parametersθ

RW 1 0 0 1 0 qξ = 0
(
σ2,qη

)
LLT 1 1 1 1 1

(
σ2,qη,qξ

)
DLLT 1 1 1 1 1 qη = qξ

(
σ2,qη

)
RWD 1 1 1 1 0 qξ = 0

(
σ2,qη

)
IRW 1 1 1 0 1 qη = 0

(
σ2,qξ

)
AR α 0 0 1 0 qξ = 0

(
α,σ2,qη

)
SLLT α 1 β 1 1

(
α,β,σ2,qη,qξ

)
SRW α 1 1 0 1 qη,= 0

(
α,σ2,qξ

)
DT 1 1 β 1 1 qη = qξ

(
β,σ2,qη

)

nodes of a hydraulic model) may also be improved. This
of course cannot be validated until observations are taken at
these points.

The operational usefulness of the predictive distribution
constructed from the above state space formulation is depen-
dent upon:

– an appropriate description of the distributions ofεt and
ζt ;

– an adequate solution of the filtering problem inherent in
producing the forecasts.

Addressing both of these topics introduces a number of bar-
riers to the operational implementation of this technique.

If eitherM orH is non-linear, the solution to the filtering
problem is not trivial. Approximate solutions to the filtering
problem can be provided by a number of algorithms such as
particle filters (e.g.Doucet et al., 2001; Moradkhani et al.,
2005a; Weerts and El Serafy, 2006), non-linear extensions to
the Kalman Filter (Rajaram and Georgakakos, 1989; DaRos
and Borga, 1997; Evensen, 2003; Moradkhani et al., 2005b;
Reichle et al., 2008) or variational techniques (Li and Navon,
2001; Madsen and Skotner, 2005; Seo et al., 2003). Combi-
nations of these techniques may also be used (e.g.Shamir
et al., 2010).

Particle filters, which approximate the desired distribu-
tions through Monte-Carlo sampling, can be considered the
most flexible, although the computational burden can be
large (Smith et al., 2008a) and implementation difficult when
εt dominates the observation noise (Liu and Chen, 1998).
The remaining techniques require less computational re-
source but introduce assumptions such as unbounded dis-
tributions that may require careful reparameterization of the
hydrological model if the states are to remain hydrologically
interpretable, e.g. volumes of water in the river channel must
be greater or equal to zero.

All the techniques outlined above make multiple calls to
the process model at each time step. The computational cost
of this may be prohibitive for applications in real time when
the lead times required for decisions about warnings are a
constraint. This is particularly true if the implementation of
the filtering algorithm is achieved by providing code that
“wraps” the hydrological model and interacts by altering the
initial state and parameter files (Weerts et al., 2010).

Regardless of the computational technique utilised great
care should be taken in constructing the description ofεt and
ζt (Beven et al., 2008; Kirchner, 2006), particularly if there
may be systematic biases, including phase errors, in the data
or model (Reichle, 2008). The validation of these choices
may require the re-analysis of a significant number of his-
toric events, itself time consuming.

Using DA to improve the forecasts of the difference be-
tween the hydrological model and observed data can often
be performed at minimal computational cost. If a suitable his-
toric record of model output is maintained, the computational
cost of setting up the DA may also be minimal. A wide va-
riety of stochastic models have been proposed. These range
from the classical auto-regressive moving average (ARMA)
time series models ofBox and Jenkins(1994) used opera-
tionally in the UK (Moore, 2007) to more complex semi-
parametric methods (e.g.Krzysztofowicz and Maranzano,
2004; Maranzano and Krzysztofowicz, 2004).

To provide reliable forecasts (in the pragmatic and prob-
abilistic sense), these formulations and others (e.g.Monta-
nari and Brath, 2004; Weerts et al., 2011; Seo et al., 2006)
have to attempt to capture the potentially complex evolution
of the model residuals. These residuals may incorporate a
systematic or temporally varying bias. Reliance on temporal
correlation within the residuals must be tempered by the fact
that the correlation may be non-stationary, often being low
at key times such as during the rising limbs of hydrographs
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Fig. 1.Schematic map showing the upper River and Vyrnwy tributary which both flow from west to east. Gauged locations considered in the
study (circles) and urban areas are shown (hatched). The insert shows the location of the catchment within the UK.

(Todini, 2008) and much higher during recession periods.
Residuals in extreme situations, such as floods may also pos-
sess characteristics different to the majority of the data. Fur-
thermore, each flood may reveal previously unknown short-
comings in the hydrological/hydraulic model(s) making their
residuals difficult to predict. In such situations, it may be use-
ful to utilise robust error models and predictive bounds (e.g.
Rougier et al., 2009; Vernon et al., 2010).

This paper considers the use of DA to improve the fore-
casts of the difference between the output of a determinis-
tic hydrological model and the observed data. It explores the
use of a multiplicative gain to correct the deterministic fore-
casts. This gain is evolved stochastically. Forecasts of future
observed values, that is futureyt , are expressed as probabil-
ity distributions dependent upon both the gain and the de-
terministic forecast of the hydrological model. The approach
presented has been utilised previously for operational flood
forecasting (Lees et al., 1994). This paper extends previous
work by considering a broader family of models for the evo-
lution of the gain and two contrasting parameter estimation
techniques.

Section2 outlines the error model for providing proba-
bilistic forecasts at a single observational site. In doing so a
family of parsimonious models for the evolution of the gain
are introduced. The use of the linear Kalman filter for DA
and generation of predictive distributions is presented. Meth-
ods for estimating the parameters of the model are discussed
in Sect.3. Section4 presents an example application using an

operational flood forecasting model from the UK. The valid-
ity of the assumptions used in parameter estimation is inves-
tigated and the usefulness of the uncertainty representations
illustrated.

2 Methodology

This section presents the stochastic error model utilised
within this paper and the computation of the predictive distri-
bution. The representation of the stochastic error model and
its evolution is outlined in a state space framework giving a
natural framework for computing the predictive distribution
as a filtering problem.

2.1 Error model

Recall thaty1:T = (y1, . . . ,yT ) is a vector ofT observations
indexed by time with corresponding deterministic hydrolog-
ical/hydraulic model predictionsm1:T . The observationyt is
then related to the predictionmt by an adaptive gaingt and
noise termεt as outlined in Eq. (3).

yt =mtgt + εt (3)

The gaingt is a time varying correction for the bias in the
model forecast. It is evolved stochastically according to the
local level (Harvey, 1989) or generalised random walk (Jake-
man and Young, 1984; Young et al., 1989) family of models
outlined in this section. An alternative for the evolution ofgt
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Fig. 2.Summary plots of the data available for Welsh bridge during the calibration period. Points represent observed data with the line being
the concatenation of the output of the most recent hydraulic model initialisation. A bias in the prediction of low flows is clearly shown as are
periods of missing data and poor model initialisation.

such as autoregressive moving average processes could also
be considered.

The simplest local level model considered is a random
walk wheregt is given as the sum of its previous value and
the stochastic noiseηt . That is

gt = gt−1 + ηt . (4)

This is referred to as the random walk (RW) model. The local
linear trend (LLT) model generalises this by introducing the
slopedt which follows a random walk driven by the stochas-
tic noiseξt . Thus,

gt = gt−1 + dt−1 + ηt (5)

dt = dt−1 + ξt . (6)

In this paper it is assumed thatεt , along with the stochastic
noise termsηt andξt , are not correlated with each other or in
time. Further, they are realisations of unimodal, symmetric,
unbounded random variables that can be summarised by their
first two moments which are defined using the parametersσ 2,
qη andqξ as

E[εt ] = E[ηt ] = E[ξt ] = 0

Var[εt ] = σ 2

Var[ηt ] = qησ
2

Var[ξt ] = qξσ
2.

The validity of these assumptions can be assessed from the
forecast residuals as shown in Sect.4. Two methods for es-
timation of the parameters are presented in Sect.3.

Three further local level models can be specified by plac-
ing constraints on the LLT model. Ifqη = qξ , the trend in the

LLT model is deterministic, resulting in the deterministic lo-
cal linear trend (DLLT) model. Whenqξ is zero, the slope is
fixed and the evolution of the gain becomes a random walk
with drift (RWD) model, that is

gt = gt−1 + d + ηt .

Settingqη to zero but allowing positiveqξ results in an in-
tegrated random walk trend, referred to as the IRW model.
This often results in a smoother adaptation ofgt compared to
the RW model outlined in Eq. (4).

The models outlined above forgt are parsimonious, the
only unknown parameters other thanσ 2 being the values of
noise variance ratiosqη andqξ . A further level of complexity
can be included by incorporating smoothing or damping pa-
rameters. Inclusion of such a parameterα in Eq. (4) results
in a first order auto regressive (AR) model for the gain:

gt = αgt−1 + ηt . (7)

Inclusion of the smoothing parameters (α andβ) in the local
linear trend model gives

gt = αgt−1 + dt−1 + ηt (8)

dt = βdt−1 + ξt . (9)

This is referred to as the smoothed local linear trend (SLLT)
model. Two special cases of this are the smoothed ran-
dom walk (SRW) model; in whichβ = 1 andqη = 0; and
the damped trend (DT) model in whichqη = qξ andα = 1.
More general and higher order representations are also possi-
ble such as doubly integrated random walks. Exploration of
these is beyond the scope of this paper.
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Table 2.Calibration results for Welsh bridge showing the log likelihood and RMSE (bracketed) for various forecast lead times (hours) and
GRW models.

2 6 9 12 18 24

RW 21 102.42 (0.06) 12 875.26 (0.15) 10 115.31 (0.21) 8958.92 (0.26) 8431.67 (0.31) 7986.98 (0.36)
AR 21 120.65 (0.06) 12 926.55 (0.15) 10 187.68 (0.21) 9035.47 (0.25) 8480.80 (0.30) 8024.50 (0.35)
LLT 21 195.19 (0.07) 12 033.98 (0.18) 8619.67 (0.26) 6278.50 (0.33) 3464.42 (0.47) 953.29 (0.63)
DLLT 21 100.06 (0.08) 10 418.60 (0.19) 6846.22 (0.27) 5215.57 (0.33) 716.47 (0.47)−4174.00 (0.63)
RWD 20 939.18 (0.07) 12 033.98 (0.18) 8619.67 (0.26) 6278.50 (0.33) 3440.96 (0.47) 837.32 (0.63)
IRW 21 097.79 (0.08) 10 417.75 (0.19) 6846.24 (0.27) 5215.84 (0.33) 715.88 (0.47)−4178.99 (0.63)
SRW 22 058.78 (0.06) 13 342.41 (0.15) 10 501.56 (0.21) 9430.35 (0.25) 8730.26 (0.29) 8190.68 (0.34)
DT 22 052.24 (0.06) 13 341.53 (0.15) 10 501.83 (0.21) 9430.56 (0.25) 8730.49 (0.29) 8190.91 (0.34)
SLLT 22 076.80 (0.06) 13 394.44 (0.14) 10 564.56 (0.20) 9491.22 (0.25) 8785.71 (0.29) 8251.69 (0.33)

2.2 State Space form

All the models outlined can be conveniently expressed in a
state space form with state vectorxt =

[
gt dt

]′ describing
the gain (gt ) and its slope (dt ). The state vector evolves ac-
cording the state transition matrixF and system noise matrix
G as

xt = Fxt−1 + G
[
ηt
ξt

]
. (10)

The state vector is related to the observations by

yt = h′
txt + εt (11)

whereht =
[
mt 0

]′. The values taken byF andG depend
upon the local level model selected. Table1 outlines the val-
ues taken in terms of the matrix forms given in Eq. (12) for
the various models considered along with any other parame-
ter constraints.

F =

[
F11 F12
0 F22

]
G =

[
G11 0

0 G22

]
. (12)

Two methods for the estimation of the parameters are pre-
sented in Sect.3. The following sub-section discusses the use
of the Kalman filter to generate the expected value and co-
variance of the predictive distributions.

2.3 Prediction using the Kalman filter

The assumptions regarding the stochastic noise terms pre-
sented in Sect.2.1are the minimum required for application
of the linear Kalman filter (Kalman, 1960). Suppose the dis-
tribution ofxt has similar properties to that of the stochastic
noise terms with its expected value and variance given by
x̂t andσ 2Pt . (wherePt is a 2× 2 matrix), respectively. The
Kalman filter can be used to predict future states and assimi-
late the observed data as it becomes available.

The one step ahead predictions of the distribution of the
states, conditional upon the data up to timet , are given by
the expected value:

x̂t+1|t = Fx̂t |t (13)

and varianceσ 2Pt+1|t where

Pt+1|t = FPt |t F′
+ GQG′. (14)

The noise variance ratio matrixQ is constructed as

Q =

[
qη 0
0 qξ

]
.

Thef -step ahead prediction of the states given the informa-
tion up to timet can be computed by repeated application of
Eqs. (13) and (14).

The f -step ahead prediction errorνt+f |t and prediction
varianceσ 2ψt+f |t can be computed from the forecast states
using:

νt+f |t = yt+f − h′

t+f x̂t+f |t (15)

ψt+f |t = 1+ h′

t+fPt+f |t ht+f (16)

Evaluation of these expressions requires knowledge of the
future predictions of the flood forecasting model.

When a new observation becomes available it can be used
to condition the distribution of the gain by updating the mean
and covariance of the one step ahead prediction of the state
distribution using Eqs. (17) to (19) (see for exampleKalman,
1960, for a derivation).

kt+1 = P t+1|t ht+1ψ
−1
t+1|t (17)

x̂t+1|t+1 = x̂t+1|t + kt+1νt+1|t (18)

Pt+1|t+1 = Pt+1|t − kt+1h
′

t+1Pt+1|t (19)

To evaluate the above recursions some initial values for
x̂0|0 and P0|0 are required. In this paper a representation
based on taking a diffuse initial condition is used. The tech-
niques presented inDurbin and Koopman(2001, Chapter 5)
allow the conditional distributions of the states after two time
steps; summarised bŷx2|2 andP2|2σ

2; to be computed an-
alytically from the first two observation, the corresponding
model predictions andθ . A suitable burn-in period denoted
t0 (see Sect.4) is then used before commencing evaluation of
the estimation criteria outlined in the following section.
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Table 3.Fraction of observations at Welsh bridge bracketed by the estimated 95 % prediction intervals during calibration. Bracketed results
are those for the SEFE calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds.
Results are shown for all the time periods, high levels (>2m) and periods where the hydrograph is rising for different combinations of lead
time (hours) and GRW model.

Period 2 6 9 12 18 24

RW All 0.98 (0.95,0.98) 0.98 (0.95,0.98) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96)
High 0.95 (0.88,0.96) 0.93 (0.86,0.94) 0.92 (0.84,0.92) 0.91 (0.81,0.92) 0.89 (0.79,0.90) 0.87 (0.78,0.89)
Rising 0.97 (0.88,0.97) 0.95 (0.88,0.96) 0.95 (0.88,0.95) 0.95 (0.89,0.95) 0.94 (0.89,0.95) 0.94 (0.90,0.95)

AR All 0.98 (0.95,0.98) 0.98 (0.95,0.98) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96)
High 0.95 (0.88,0.96) 0.93 (0.87,0.94) 0.92 (0.86,0.92) 0.91 (0.84,0.92) 0.89 (0.82,0.90) 0.87 (0.80,0.89)
Rising 0.97 (0.88,0.97) 0.95 (0.88,0.96) 0.95 (0.89,0.95) 0.95 (0.90,0.95) 0.95 (0.90,0.95) 0.94 (0.90,0.95)

LLT All 0.98 (0.95,0.98) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.97) 0.96 (0.95,0.96) 0.95 (0.95,0.96)
High 0.94 (0.88,0.95) 0.90 (0.84,0.92) 0.89 (0.82,0.90) 0.88 (0.81,0.89) 0.87 (0.79,0.88) 0.86 (0.78,0.87)
Rising 0.96 (0.88,0.97) 0.94 (0.88,0.95) 0.94 (0.89,0.94) 0.94 (0.91,0.94) 0.94 (0.91,0.94) 0.94 (0.91,0.94)

DLLT All 0.98 (0.95,0.98) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96)
High 0.94 (0.89,0.95) 0.92 (0.83,0.92) 0.90 (0.81,0.90) 0.89 (0.80,0.89) 0.88 (0.80,0.88) 0.87 (0.78,0.87)
Rising 0.96 (0.88,0.97) 0.95 (0.88,0.95) 0.94 (0.90,0.94) 0.94 (0.90,0.95) 0.94 (0.91,0.94) 0.94 (0.91,0.94)

RWD All 0.98 (0.95,0.98) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96)
High 0.93 (0.87,0.95) 0.90 (0.84,0.92) 0.89 (0.82,0.90) 0.88 (0.81,0.89) 0.87 (0.79,0.88) 0.86 (0.78,0.87)
Rising 0.96 (0.88,0.97) 0.94 (0.88,0.95) 0.94 (0.89,0.94) 0.94 (0.91,0.94) 0.94 (0.91,0.94) 0.94 (0.91,0.94)

IRW All 0.98 (0.95,0.98) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96)
High 0.94 (0.89,0.95) 0.92 (0.83,0.92) 0.90 (0.81,0.90) 0.89 (0.80,0.89) 0.88 (0.80,0.88) 0.87 (0.78,0.87)
Rising 0.96 (0.88,0.97) 0.95 (0.88,0.95) 0.94 (0.90,0.94) 0.94 (0.90,0.95) 0.94 (0.91,0.94) 0.94 (0.91,0.94)

SRW All 0.98 (0.95,0.98) 0.97 (0.95,0.98) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96)
High 0.95 (0.87,0.96) 0.92 (0.86,0.94) 0.91 (0.85,0.92) 0.90 (0.83,0.91) 0.89 (0.81,0.90) 0.88 (0.79,0.89)
Rising 0.97 (0.88,0.97) 0.95 (0.87,0.96) 0.95 (0.88,0.95) 0.95 (0.90,0.95) 0.94 (0.90,0.95) 0.94 (0.91,0.95)

DT All 0.98 (0.95,0.98) 0.97 (0.95,0.98) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96)
High 0.95 (0.87,0.96) 0.92 (0.86,0.94) 0.91 (0.85,0.92) 0.90 (0.83,0.91) 0.89 (0.81,0.90) 0.88 (0.79,0.89)
Rising 0.97 (0.88,0.97) 0.95 (0.87,0.96) 0.95 (0.88,0.95) 0.95 (0.90,0.95) 0.94 (0.90,0.95) 0.94 (0.91,0.95)

SLLT All 0.98 (0.95,0.98) 0.97 (0.95,0.98) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96)
High 0.95 (0.88,0.96) 0.92 (0.87,0.94) 0.91 (0.86,0.92) 0.90 (0.83,0.91) 0.90 (0.82,0.90) 0.88 (0.81,0.89)
Rising 0.97 (0.88,0.97) 0.95 (0.88,0.96) 0.95 (0.88,0.95) 0.95 (0.90,0.95) 0.95 (0.91,0.95) 0.95 (0.91,0.95)

3 Estimation

This section discusses the estimation of the unknown pa-
rameter vectorθ defined for the models considered in Ta-
ble 1. Two estimation techniques are outlined and there re-
sults contrasted in Sect.4. The first technique is maximum
likelihood estimation based upon the assumption that the pre-
diction errors are independent realisations of Gaussian ran-
dom variables. This introduces stronger assumptions about
the stochastic noise terms than those introduced in Sect.2.1.
The second method which is based on minimising the sum
of the squared expected forecast errors, is more heuristic. In
both cases the validity of the error assumptions can be as-
sessed. This is discussed along with the the construction of
predictive error bounds.

3.1 Gaussian maximum likelihood

In Gaussian maximum likelihood (GML) estimation, the pa-
rametersθ are estimated by maximising the likelihood of the
f -step ahead predictions when it is believed thatνt+f |t is
drawn independently from a zero mean Gaussian distribu-

tion with varianceσ 2ψt+f |t . Under these assumptions the
log likelihood is

l (θ)=K −
1

2

T−f∑
t=t0

log
(
σ 2ψt+f |t

)
−

1

2σ 2

T−f∑
t=t0

ν2
t+f |t ψ

−1
t+f |t (20)

whereK is a constant with respect toθ . The maximum like-
lihood estimate ofσ 2 can be computed conditional upon the
other parameters inθ as

σ̂ 2
=

1

T − f − t0

T−n∑
t=t0

ν2
t+f |t ψ

−1
t+f |t . (21)

This allowsσ 2 to be concentrated out of Eq. (20) leaving
(Schweppe, 1965):

l
(
θ\σ 2

)
=K −

1

2

T−f∑
t=t0

log
(
σ̂ 2ψt+f |t

)
(22)
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Table 4. Precision of the forecasts (see text for definition) during calibration at Welsh bridge. Bracketed results are those for the SEFE
calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds. Results are shown for all
the time periods, high levels (> 2 m) and periods where the hydrograph is rising for different combinations of lead time (hours) and GRW
model.

Period 2 6 9 12 18 24

RW All 0.18 (0.04,0.29) 0.33 (0.10,0.54) 0.41 (0.15,0.66) 0.45 (0.19,0.69) 0.48 (0.23,0.73) 0.50 (0.26,0.76)
High 0.26 (0.07,0.49) 0.51 (0.18,0.91) 0.63 (0.25,1.14) 0.68 (0.29,1.07) 0.77 (0.37,1.15) 0.83 (0.42,1.24)
Rising 0.19 (0.04,0.31) 0.35 (0.11,0.57) 0.43 (0.16,0.71) 0.47 (0.20,0.73) 0.51 (0.25,0.77) 0.54 (0.27,0.81)

AR All 0.18 (0.04,0.29) 0.33 (0.11,0.54) 0.41 (0.16,0.67) 0.44 (0.21,0.69) 0.47 (0.26,0.74) 0.50 (0.31,0.79)
High 0.26 (0.07,0.49) 0.50 (0.19,0.91) 0.61 (0.27,1.14) 0.67 (0.32,1.07) 0.76 (0.41,1.17) 0.83 (0.49,1.27)
Rising 0.19 (0.04,0.31) 0.35 (0.12,0.57) 0.43 (0.17,0.71) 0.46 (0.22,0.73) 0.50 (0.28,0.78) 0.53 (0.32,0.84)

LLT All 0.19 (0.04,0.32) 0.42 (0.13,0.62) 0.59 (0.26,0.88) 0.75 (0.42,1.18) 1.08 (0.76,1.87) 1.39 (1.21,2.65)
High 0.24 (0.06,0.54) 0.63 (0.22,1.05) 0.87 (0.40,1.35) 1.11 (0.61,1.70) 1.67 (1.14,2.79) 2.41 (2.05,4.50)
Rising 0.20 (0.04,0.34) 0.50 (0.14,0.69) 0.70 (0.30,1.04) 0.90 (0.51,1.42) 1.41 (1.02,2.50) 1.71 (1.51,3.32)

DLLT All 0.19 (0.03,0.31) 0.46 (0.17,0.68) 0.63 (0.29,0.96) 0.77 (0.44,1.24) 1.07 (0.80,1.97) 1.42 (1.20,2.69)
High 0.22 (0.04,0.39) 0.67 (0.22,0.90) 0.95 (0.40,1.31) 1.15 (0.61,1.71) 1.73 (1.17,2.87) 2.46 (2.02,4.53)
Rising 0.20 (0.04,0.32) 0.53 (0.20,0.82) 0.74 (0.36,1.17) 0.91 (0.54,1.51) 1.31 (1.08,2.66) 1.63 (1.51,3.38)

RWD All 0.19 (0.04,0.31) 0.42 (0.13,0.62) 0.59 (0.26,0.88) 0.75 (0.42,1.18) 1.08 (0.76,1.87) 1.41 (1.21,2.65)
High 0.26 (0.07,0.53) 0.63 (0.22,1.05) 0.87 (0.40,1.35) 1.11 (0.61,1.70) 1.68 (1.14,2.79) 2.45 (2.05,4.50)
Rising 0.20 (0.04,0.33) 0.50 (0.14,0.69) 0.70 (0.30,1.04) 0.90 (0.51,1.42) 1.41 (1.02,2.50) 1.73 (1.51,3.32)

IRW All 0.19 (0.04,0.30) 0.46 (0.17,0.68) 0.63 (0.29,0.96) 0.77 (0.44,1.24) 1.07 (0.80,1.97) 1.42 (1.20,2.69)
High 0.22 (0.04,0.39) 0.67 (0.22,0.90) 0.95 (0.40,1.31) 1.15 (0.61,1.71) 1.73 (1.17,2.87) 2.46 (2.02,4.53)
Rising 0.20 (0.04,0.32) 0.53 (0.20,0.82) 0.74 (0.36,1.17) 0.91 (0.54,1.51) 1.31 (1.08,2.66) 1.63 (1.51,3.38)

SRW All 0.17 (0.03,0.30) 0.34 (0.09,0.55) 0.44 (0.13,0.68) 0.49 (0.22,0.74) 0.54 (0.30,0.87) 0.57 (0.36,0.98)
High 0.21 (0.05,0.48) 0.47 (0.15,0.93) 0.59 (0.23,1.16) 0.67 (0.31,1.03) 0.81 (0.43,1.27) 0.93 (0.58,1.56)
Rising 0.17 (0.04,0.32) 0.37 (0.09,0.59) 0.48 (0.14,0.72) 0.55 (0.25,0.82) 0.62 (0.35,1.02) 0.64 (0.42,1.12)

DT All 0.17 (0.03,0.30) 0.34 (0.09,0.55) 0.44 (0.13,0.68) 0.49 (0.22,0.74) 0.54 (0.30,0.87) 0.57 (0.36,0.98)
High 0.21 (0.05,0.49) 0.47 (0.15,0.93) 0.59 (0.23,1.16) 0.67 (0.31,1.03) 0.81 (0.43,1.27) 0.93 (0.58,1.56)
Rising 0.17 (0.04,0.32) 0.37 (0.09,0.59) 0.48 (0.14,0.72) 0.55 (0.25,0.82) 0.62 (0.35,1.02) 0.64 (0.42,1.12)

SLLT All 0.17 (0.03,0.30) 0.33 (0.09,0.55) 0.44 (0.14,0.68) 0.49 (0.22,0.73) 0.55 (0.30,0.85) 0.59 (0.38,0.95)
High 0.21 (0.05,0.50) 0.46 (0.16,0.93) 0.60 (0.25,1.17) 0.67 (0.30,1.02) 0.83 (0.44,1.24) 0.97 (0.61,1.51)
Rising 0.17 (0.03,0.32) 0.36 (0.10,0.58) 0.48 (0.15,0.73) 0.54 (0.24,0.80) 0.64 (0.35,0.98) 0.66 (0.43,1.07)

which is dependent upon the remaining parameters (denoted
θ\σ 2). This can be numerically optimised to give maximum
likelihood parameter estimates ofθ .

The uncertainty in the predictions can be expressed as per-
centile confidence intervals for the predictions constructed
as:

h′

t+f x̂t+f |t ± κpσ̂ψ
1
2
t+f |t (23)

wereκp is constant dependent uponp and can be computed
from a standard normal distribution; for exampleκ95 ≈ 1.96.

The normality of the forecast residuals and their correla-
tion can be readily assessed using, for example, quantile and
auto correlation plots (Box and Jenkins, 1994).

3.2 Minimising the sum of the squared expected
forecast errors

The second estimation technique, referred to as SEFE for the
remainder of this paper, is based on the appeal of minimising

the sum of the squared expected forecasting error:

Sf =

T−f∑
t=t0

ν2
t+f |t . (24)

This ensures that the expected value of the forecast is as close
as possible (in terms of average squared error) to the ob-
served data. The minimisation ofSf allows the estimation
of all the parameters inθ exceptσ 2. A value forσ 2 can then
be estimated using Eq. (21) if required. The error assump-
tions of the Kalman filter (Sect.2.1) imply that each pre-
dictive distribution is uni-modal, symmetric and unbounded.
Testing the symmetry of the forecast residuals, for example
using Wilcoxon sign rank test (Wilcoxon, 1945), can indi-
cate if this assumption is valid. Two methods for construction
of predictive confidence intervals are considered. They make
use of the theoretical symmetry of the forecast distribution
and result in symmetric prediction intervals.

The symmetry of the forecast distribution implies that pre-
diction confidence intervals can be expressed as

h′

t+f x̂t+f |t ± ρpψ
1
2
t+f |t . (25)
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Fig. 3.Summary plots of the analysis of the 6 h forecast residuals at Welsh Bridge for the DT model calibrated using the Gaussian maximum
likelihood methodology. The upper pane shows the quantile-quantile plot of the standardised residuals compared to a standard normal
distribution. The lower pane shows the auto-correlation of the residuals.

The values ofρp can be estimated empirically as thepth

percentile of

∣∣∣∣νt+f |t ψ
−

1
2

t+f |t

∣∣∣∣. Given the finite population of

residuals, this empirical estimate ofρp may not be not robust
at high values ofp. The values ofρp can be adapted (for
givenp) as more data becomes available. Sequential tests for
symmetry (e.g.Weed and Bradley, 1971) may be of use in
such situations.

Pukelsheim(1994) gives theoretical results for the upper
limits of ρp under the uni-model, symmetric and unbounded
distributional assumptions. Specifically

Pr


∣∣∣∣∣∣∣
yt −µt+f |t

ψ
−

1
2

t+f |t

∣∣∣∣∣∣∣ ≥ r

 ≤
4σ 2

9r2
r > 1.63σ. (26)

The caser = 3σ is the three sigma rule; that there is less than
5 % probability of a sample from univariate random variable
random with the aforementioned properties being outside of
3 standard deviations from the mean. These upper limits can
be used in two ways. Firstly, they allow for the estimation of
conservative prediction confidence intervals, allowing for a
more cautious view to be taken of the prediction uncertainty.
The second use is as a means of analysing the suitability of
the adaptive gain models considered by contrasting the sym-

metrical empirical estimates and the theoretic upper limits
for a givenp.

4 Upper Severn case study

To illustrate the effectiveness and limitations of the proposed
methodology in an operational setting a case study based on
the upper Severn catchment (UK) is presented. The upper
Severn river network is situated on the border of England
and Wales and shown in Fig.1. The River Severn rises in the
Cambrian mountains (741 mAOD) and flows to the north-
east before meeting the Vyrnwy tributary at Crew Green.
The valley is wide and flat in this confluence area, with a
considerable extent of flood plain. The river then flows east
to Shrewsbury. The lower boundary of the 2284 km2 upper
Severn catchment is defined by the gauge at Welsh bridge in
Shrewsbury where the median annual flood is greater than
284 cumecs. Average annual rainfall can exceed 2500 mm in
the head waters of the catchment. The catchment has seen
seven significant flood events in the past twelve years.

The existing flood forecasting model consists of a
number of simplified rainfall-runoff representations linked
to a one dimensional ISIS hydrodynamic model (see
http://www.halcrow.com/isis/default.asp). Results are shown
for two sites seen in Fig.1: Welsh bridge the lower boundary
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Fig. 4.Summary plots of the analysis of the 6 h forecast residuals for the RW model calibrated using the SEFE methodology. The upper pane
shows the cumulative distributions of the absolute values of the residuals at Welsh Bridge. The solid line being positive residuals and the
dotted line being negative residuals. The lower pane shows the auto-correlation of the residuals.

of the catchment and Llandrinio an internal node of the hy-
draulic model at which observations are available. The latter
is just upstream of the junction with the major Vyrnwy tribu-
tary and may be affected by backwater effects at flood stages.
At both sites water levels are observed every 15 min.

Operationally, the flood forecasting model is run with a
15 minute time step and evaluated twice daily. At midnight it
is run in a continuous mode using observed inputs and output
data assimilation to generate a set of “warm states” which are
used to initialise the forecasts. The first set of forecasts issued
at midnight (00:00) give up to 36 h lead time using forecast
precipitation. The second set of forecasts is issued at mid-
day (12:00). These forecasts are initialised by evolving the
“warm states” using the observed meteorological variables
between midnight and midday. Forecast precipitation is then
used to evaluate the flood forecasting model giving forecasts
of the hydrological variables with up to 36 h lead time. Fur-
ther details can be found inWeerts et al.(2011).

The adaptive gain correction is initialised at the start of
each forecast period. The first four hours of forecasts are used
as a burn-in period for the adaptive gain. Then, in keeping
with the operational system, forecasts are issued based on
the most recent forecast run of the flood forecasting model
for which the adaptive gain is burnt in. A single year of
data (2006) which contains a significant flood event is used
to identify and estimate the adaptive correction. Three years

(2007–2009) are used for validation purposes. The results for
each of the sites are summarised below.

4.1 Welsh bridge

Figure2 shows the hydraulic model predictions and observed
data at Welsh bridge during the calibration period. There is a
systematic over estimation of the water level during periods
of low flow. Such a systematic bias may arise from the cal-
ibration of the hydraulic model. If the model was calibrated
to discharge data and the representation of the gauged cross
section poor at shallow depths, such a bias may result. Alter-
natively an artificially high low water level within the model,
such as that seen here, can arise as a means of achieving ac-
ceptable representations of high water level periods.

The adaptive gain correction could be utilised to correct
the forecasts in these low flow periods. The difference in re-
lationship between the hydraulic model and observed data
for the low flow periods and when this model is responding
to rainfall suggests that a different calibration of the stochas-
tic model for the adaptive gain may be required for each.
For flooding purposes the response to rainfall is more im-
portant. Therefore, the calibration and validation criteria are
only evaluated at Welsh bridge for the simulations of the hy-
draulic model which forecast a water level greater than 1 m.
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Fig. 5.Examples of 6 h ahead forecasts given at Welsh bridge for two large flood events during calibration (upper pane) and validation (lower
pane) periods generated using the SLLT model calibrated using the Guassian methodology. The shaded area represents the 95 % prediction
confidence interval with the solid line being the expected value of the predictions. Observed data points are also shown along with the
deterministic model forecast (dotted line).

Fig. 6. Examples of 6 h ahead forecasts given at Welsh bridge for two large flood events during calibration (upper pane) and validation
(lower pane) periods generated using the RW model calibrated using the SEFE methodology. The shaded area represents the 95 % prediction
confidence interval with the solid line being the expected value of the predictions. Observed data points are also shown along with the
deterministic model forecast (dotted line).
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Table 5.Fraction of observations at Welsh bridge bracketed by the estimated 95 % prediction intervals during validation. Bracketed results
are those for the SEFE calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds.
Results are shown for all the time periods, high levels (> 2 m) and periods where the hydrograph is rising for different combinations of lead
time (hours) and GRW model.

Period 2 6 9 12 18 24

RW All 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.96,0.99) 0.99 (0.96,0.99) 0.99 (0.95,0.99)
High 1.00 (0.93,1.00) 0.99 (0.92,1.00) 0.99 (0.92,1.00) 0.99 (0.90,1.00) 0.99 (0.90,1.00) 1.00 (0.90,1.00)
Rising 1.00 (0.93,1.00) 1.00 (0.93,1.00) 1.00 (0.94,1.00) 1.00 (0.94,1.00) 1.00 (0.95,1.00) 0.99 (0.94,1.00)

AR All 0.99 (0.96,0.99) 0.99 (0.96,0.99) 0.99 (0.95,0.99) 0.99 (0.95,0.99) 0.99 (0.94,0.99) 0.99 (0.94,0.99)
High 1.00 (0.93,1.00) 0.99 (0.92,1.00) 0.99 (0.91,1.00) 0.99 (0.89,1.00) 0.99 (0.90,1.00) 0.99 (0.91,1.00)
Rising 1.00 (0.93,1.00) 1.00 (0.93,1.00) 1.00 (0.94,1.00) 1.00 (0.94,1.00) 1.00 (0.95,1.00) 0.99 (0.95,1.00)

LLT All 0.99 (0.98,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.98,0.99)
High 0.99 (0.96,1.00) 0.99 (0.94,1.00) 0.99 (0.93,1.00) 0.99 (0.92,1.00) 0.99 (0.92,1.00) 0.99 (0.94,1.00)
Rising 1.00 (0.93,1.00) 0.99 (0.93,1.00) 1.00 (0.94,1.00) 1.00 (0.95,1.00) 0.99 (0.96,1.00) 0.99 (0.97,0.99)

DLLT All 0.99 (0.98,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.98,0.99)
High 0.99 (0.95,0.99) 0.99 (0.89,1.00) 0.99 (0.88,0.99) 0.99 (0.89,0.99) 0.99 (0.91,0.99) 1.00 (0.94,1.00)
Rising 1.00 (0.93,1.00) 1.00 (0.92,1.00) 1.00 (0.93,1.00) 1.00 (0.94,1.00) 1.00 (0.95,1.00) 1.00 (0.97,0.99)

RWD All 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.98,0.99)
High 1.00 (0.95,1.00) 0.99 (0.94,1.00) 0.99 (0.93,1.00) 0.99 (0.92,1.00) 0.99 (0.92,1.00) 0.99 (0.94,1.00)
Rising 1.00 (0.93,1.00) 0.99 (0.93,1.00) 1.00 (0.94,1.00) 1.00 (0.95,1.00) 0.99 (0.96,1.00) 0.99 (0.97,0.99)

IRW All 0.99 (0.98,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.98,0.99)
High 0.99 (0.95,0.99) 0.99 (0.89,1.00) 0.99 (0.88,0.99) 0.99 (0.89,0.99) 0.99 (0.91,0.99) 1.00 (0.94,1.00)
Rising 1.00 (0.93,1.00) 1.00 (0.92,1.00) 1.00 (0.93,1.00) 1.00 (0.94,1.00) 1.00 (0.95,1.00) 1.00 (0.97,0.99)

SRW All 0.99 (0.97,0.99) 0.99 (0.96,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.96,0.99) 0.99 (0.95,0.99)
High 0.99 (0.93,1.00) 0.99 (0.91,1.00) 0.99 (0.92,1.00) 0.99 (0.88,1.00) 0.99 (0.87,1.00) 0.99 (0.88,1.00)
Rising 1.00 (0.94,1.00) 1.00 (0.92,1.00) 1.00 (0.94,1.00) 1.00 (0.94,1.00) 1.00 (0.94,1.00) 0.99 (0.94,1.00)

DT All 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.97,0.99) 0.99 (0.96,0.99) 0.99 (0.95,0.99)
High 0.99 (0.93,1.00) 0.99 (0.91,1.00) 0.99 (0.92,1.00) 0.99 (0.88,1.00) 0.99 (0.87,1.00) 0.99 (0.88,1.00)
Rising 1.00 (0.94,1.00) 1.00 (0.92,1.00) 1.00 (0.94,1.00) 1.00 (0.94,1.00) 1.00 (0.94,1.00) 0.99 (0.94,1.00)

SLLT All 0.99 (0.97,0.99) 0.99 (0.96,0.99) 0.99 (0.95,0.99) 0.99 (0.94,0.99) 0.99 (0.94,0.99) 0.99 (0.94,0.99)
High 0.99 (0.93,1.00) 0.99 (0.91,1.00) 0.99 (0.91,1.00) 0.99 (0.86,1.00) 0.99 (0.88,1.00) 0.99 (0.89,1.00)
Rising 1.00 (0.92,1.00) 1.00 (0.92,1.00) 1.00 (0.93,1.00) 1.00 (0.93,1.00) 0.99 (0.94,1.00) 0.99 (0.95,1.00)

Table 6. Calibration results for Llandrinio showing the log likelihood and RMSE (bracketed) for various forecast lead times (hours) and
GRW models.

2 6 9 12 18 24

RW −523.75 (0.23) −3879.11 (0.50) −4576.16 (0.57) −4868.47 (0.61) −5135.70 (0.65) −5446.65 (0.67)
AR −466.31 (0.22) −3783.83 (0.49) −4486.50 (0.55) −4773.20 (0.59) −5020.97 (0.62) −5307.53 (0.63)
LLT −545.97 (0.27) −7493.31 (0.82) −10235.82 (1.26) −12565.22 (1.72) −16020.44 (2.62) −18463.92 (3.53)
DLLT −551.17 (0.30) −12282.72 (0.83) −10196.52 (1.26) −12429.47 (1.72) −15729.97 (2.63) −18467.72 (3.53)
RWD −1707.44 (0.31) −8560.98 (0.97) −11395.47 (1.47) −13713.16 (1.98) −17016.15 (3.02) −19875.52 (4.04)
IRW −545.97 (0.31) −12294.39 (0.82) −10192.66 (1.26) −12425.94 (1.72) −15726.36 (2.62) −18463.99 (3.53)
SRW 1710.53 (0.20) −307.89 (0.34) −1115.54 (0.38) −1515.08 (0.40) −2109.19 (0.43) −2588.85 (0.45)
DT 1709.51 (0.20) −308.10 (0.34) −1115.58 (0.38) −1515.08 (0.40) −2109.19 (0.43) −2588.85 (0.45)
SLLT 1710.53 (0.20) −307.89 (0.34) −1115.36 (0.38) −1513.65 (0.40) −2092.73 (0.42) −2553.96 (0.44)

Table2 presents the log likelihood and root mean squared
error (RMSE) summaries of the calibration results at various
forecast lead times. For both calibration methodologies, the
performance of the LLT model along with its special cases
DLLT, RWD and IRW decays much more rapidly with lead
time than the alternative models. This suggests that as with
the SLLT, SRW and DT models there is the need to recognise

the decay in information about the future values of the gain
or its gradient through the use of damping parameters. The
RMSE of the deterministic model prediction (based on al-
ways using the most recent model run) is 0.37. At lead times
greater than 12 hours, none of the models achieves a sig-
nificant decrease in the RMSE, though they still provide an
estimate of the forecast uncertainty.
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Fig. 7. Examples of 6 h ahead forecasts given at Llanrinio for two large flood events during calibration (upper pane) and validation (lower
pane) periods generated using the SLLT model calibrated using the SEFE methodology with empirical error bounds. The shaded area
represents the 95 % prediction confidence interval with the solid line being the expected value of the predictions. Observed data points are
also shown along with the deterministic model forecast (dotted line).

Calibration with the GML methodology allows model se-
lection to be performed using time series identification crite-
ria, such as the AIC (Akaike, 1974) or BIC (Schwarz, 1978).
This leads to the selection of the SLLT at all the lead times
considered. The RMSE results of the SEFE calibration sug-
gest that at shorter lead times, a more parsimonious model,
such as the RW, may be suitable. Further analysis of the pre-
dictive performance of the models can be gained by examin-
ing the coverage and precision of the forecasts shown for the
calibration period in Tables3 and4.

Table3 shows the percentage of points falling within the
95 % prediction confidence interval for various lead times
during calibration. Results are shown for three categories: the
whole period, high water levels greater than 2 m and rising
parts of the observed hydrograph whereyt+1 > yt . By defi-
nition the empirical bounds derived from the SEFE method-
ology bracket 95 % of all the (calibration) observations. Cov-
erage of the high and rising flow categories for this method-
ology is less than 95 % for all models and lead times. Cover-
age of high flows decreases with increasing lead time for all
the models. This indicates that the pooling of the residuals in
computing the empirical bounds may not be appropriate. The
values ofκp, or indeed the model parameters, may be state
or time dependent (Young, 2002; Young et al., 2001).

The theoretical prediction bounds of the SEFE methodol-
ogy give in all cases percentages of coverage based on all the

calibration data that is consistent with the error assumptions
outlined in Sect.2.1. A similar pattern to the empirical re-
sults for the coverage of the high and rising flows categories
is shown.

The high percentages for coverage when using the Gaus-
sian likelihood calibration at short forecast lead times sup-
port the suggestion that the assumptions used in deriving the
likelihood may not be valid. However, at lead times up to
six hours, there is less evidence of systematic differences in
the percentage of observations covered in the three discharge
categories. As with the SEFE calibration at longer lead times,
the coverage of the high flow category deteriorates for all the
models.

The results in Tables4 summarise the precision of the
of the forecasts through the mean of the forecasts standard
deviation over each flow category. The empirically derived
forecast error bounds are, especially at lead times up to six
hours, significantly sharper than the theoretical upper limit
and those resulting from the Gaussian calibration.

Figure 3 shows two summary plots of the standardised
6 h forecast residuals of the SLLT model calibrated us-
ing the Gaussian likelihood methodology. The upper pane
shows a quantile-quantile plot of the standardised residual

νt+f |t σ̂
−1ψ

−
1
2

t+f |t against a standard norm distribution. The
heavier tails present in the distribution for the standardised
residuals indicates that the Gaussian assumption may not be
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Table 7.Fraction of observations at Llandrinio bracketed by the estimated 95 % prediction intervals during calibration. Bracketed results are
those for the SEFE calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds. Results
are shown for all the time period, high levels (> 4 m) and periods where the hydrograph is rising for different combinations of lead time
(hours) and GRW model.

Period 2 6 9 12 18 24

RW All 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.95 (0.95,0.95)
High 0.96 (0.94,0.96) 0.94 (0.90,0.94) 0.93 (0.89,0.94) 0.93 (0.89,0.93) 0.92 (0.89,0.92) 0.91 (0.88,0.91)
Rising 0.95 (0.89,0.95) 0.95 (0.88,0.95) 0.94 (0.89,0.94) 0.94 (0.89,0.94) 0.94 (0.90,0.94) 0.93 (0.89,0.93)

AR All 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.95 (0.95,0.95)
High 0.96 (0.95,0.96) 0.94 (0.92,0.94) 0.93 (0.91,0.94) 0.93 (0.90,0.93) 0.92 (0.91,0.92) 0.91 (0.90,0.91)
Rising 0.95 (0.91,0.95) 0.95 (0.92,0.95) 0.94 (0.92,0.94) 0.94 (0.92,0.94) 0.94 (0.93,0.94) 0.93 (0.93,0.93)

LLT All 0.97 (0.95,0.97) 0.96 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.95 (0.95,0.95) 0.95 (0.95,0.95)
High 0.95 (0.94,0.96) 0.94 (0.90,0.94) 0.93 (0.89,0.93) 0.92 (0.89,0.93) 0.91 (0.89,0.92) 0.91 (0.88,0.91)
Rising 0.95 (0.91,0.95) 0.95 (0.90,0.95) 0.94 (0.91,0.94) 0.94 (0.92,0.94) 0.94 (0.93,0.94) 0.93 (0.91,0.93)

DLLT All 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.95 (0.95,0.95) 0.95 (0.95,0.95)
High 0.95 (0.95,0.96) 0.94 (0.90,0.94) 0.93 (0.89,0.93) 0.92 (0.89,0.93) 0.91 (0.89,0.92) 0.91 (0.88,0.91)
Rising 0.95 (0.91,0.95) 0.95 (0.90,0.95) 0.94 (0.91,0.94) 0.94 (0.92,0.94) 0.94 (0.93,0.94) 0.93 (0.91,0.93)

RWD All 0.97 (0.95,0.97) 0.96 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.95 (0.95,0.95) 0.95 (0.95,0.95)
High 0.95 (0.93,0.95) 0.93 (0.90,0.94) 0.93 (0.89,0.93) 0.92 (0.89,0.93) 0.91 (0.89,0.92) 0.90 (0.88,0.91)
Rising 0.95 (0.90,0.95) 0.95 (0.91,0.95) 0.94 (0.92,0.94) 0.94 (0.93,0.94) 0.94 (0.93,0.94) 0.93 (0.91,0.93)

IRW All 0.97 (0.95,0.97) 0.97 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.95 (0.95,0.95) 0.95 (0.95,0.95)
High 0.95 (0.95,0.96) 0.94 (0.90,0.94) 0.93 (0.89,0.93) 0.92 (0.89,0.93) 0.91 (0.89,0.92) 0.91 (0.88,0.91)
Rising 0.95 (0.91,0.95) 0.95 (0.90,0.95) 0.94 (0.91,0.94) 0.94 (0.92,0.94) 0.94 (0.93,0.94) 0.93 (0.91,0.93)

SRW All 0.97 (0.95,0.97) 0.96 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.95 (0.95,0.95) 0.95 (0.95,0.95)
High 0.95 (0.95,0.96) 0.92 (0.88,0.94) 0.89 (0.87,0.93) 0.88 (0.86,0.92) 0.87 (0.86,0.91) 0.87 (0.86,0.91)
Rising 0.95 (0.90,0.95) 0.93 (0.89,0.94) 0.92 (0.89,0.94) 0.91 (0.90,0.94) 0.91 (0.90,0.94) 0.91 (0.90,0.93)

DT All 0.97 (0.95,0.97) 0.96 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.95 (0.95,0.95) 0.95 (0.95,0.95)
High 0.95 (0.95,0.96) 0.92 (0.88,0.94) 0.89 (0.87,0.93) 0.88 (0.86,0.92) 0.87 (0.86,0.91) 0.87 (0.86,0.91)
Rising 0.95 (0.90,0.95) 0.93 (0.89,0.94) 0.92 (0.89,0.94) 0.91 (0.90,0.94) 0.91 (0.90,0.94) 0.91 (0.90,0.93)

SLLT All 0.97 (0.95,0.97) 0.96 (0.95,0.97) 0.96 (0.95,0.96) 0.96 (0.95,0.96) 0.95 (0.95,0.95) 0.95 (0.95,0.95)
High 0.95 (0.95,0.96) 0.92 (0.88,0.94) 0.89 (0.87,0.93) 0.88 (0.86,0.93) 0.87 (0.87,0.92) 0.87 (0.87,0.91)
Rising 0.95 (0.90,0.95) 0.93 (0.89,0.94) 0.92 (0.90,0.94) 0.91 (0.90,0.94) 0.91 (0.91,0.94) 0.91 (0.91,0.93)

valid. The residual distribution is approximately symmetric.
Therefore, the use of the Kalman filter may be a valid approx-
imation, even if the resulting prediction confidence intervals
are not appropriately defined. The lower plot indicates that
the residuals are correlated up to at least a lag of 28 samples,
or 7 h, approximately the forecast lead time. This and the low
correlation value suggest that the conditional independence
assumption, while not strictly valid, may be a reasonable ap-
proximation.

The forecast residuals of the SEFE methodology can also
be assessed. The lower pane of Fig.4 shows the auto-
correlation pattern in the residuals of the RW model fitted
by the SEFE methodology for a 6 h leadtime. The correlation
within the residuals lower and less persistent at longer lags
than for the Gaussian calibration. The upper pane of Fig.4
shows the cumulative distributions of the positive standard-
ised residuals along with that of the absolute value of nega-
tive standardised residuals. It indicates a lack of symmetry in
the residuals confirmed by a Wilcoxon sign rank test.

Table 5 shows the percentage of observations falling
within the 95 % prediction confidence interval during the val-

idation period. The high percentages for the GML methodol-
ogy further support the suggestion that the assumptions used
in deriving the likelihood may not be valid. The results for
the SEFE calibration indicate that the symmetrical empiri-
cal estimation ofρp derived during calibration perform well
in the validation period. The predictive bounds derived us-
ing the theoretical upper limit appear to bracket around 99 %
of the data during the validation period, suggesting they are
unduly conservative.

Figure 5 shows the predictions made using the SLLT
model calibrated using the Gaussian methodology for the
largest flood events at Welsh bridge in the calibration and val-
idation periods. The results are encouraging with the adap-
tive gain acting to correct the model forecast towards the ob-
served values. During both the calibration and validation pe-
riod adaptive gain methodology is able to correct for errors
in both the timing and magnitude of the hydrograph peaks as
well as the receding limb.

The calibration event (upper pane) highlights that the
methodology is not able to correct for highly erroneous
model forecasts. The validation results (lower pane) also
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Table 8. Precision of the forecasts (see text for definition) during calibration at Llandrinio. Bracketed results are those for the SEFE
calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds. Results are shown for all the
time period, high levels (> 4 m) and periods where the hydrograph is rising for different combinations of lead time (hours) and GRW model.

Period 2 6 9 12 18 24

RW All 0.74 (0.13,1.24) 1.03 (0.39,1.56) 1.09 (0.51,1.66) 1.11 (0.61,1.68) 1.12 (0.70,1.70) 1.13 (0.71,1.72)
High 1.00 (0.27,2.53) 1.51 (0.59,2.38) 1.68 (0.81,2.62) 1.77 (0.99,2.76) 1.87 (1.22,2.93) 1.96 (1.27,3.09)
Rising 0.76 (0.14,1.33) 1.07 (0.40,1.63) 1.14 (0.54,1.74) 1.16 (0.64,1.77) 1.18 (0.75,1.80) 1.20 (0.76,1.84)

AR All 0.73 (0.13,1.24) 1.02 (0.43,1.56) 1.08 (0.53,1.66) 1.10 (0.60,1.69) 1.11 (0.70,1.72) 1.12 (0.74,1.74)
High 0.99 (0.27,2.52) 1.49 (0.64,2.36) 1.65 (0.83,2.61) 1.74 (0.97,2.75) 1.84 (1.19,2.94) 1.92 (1.32,3.10)
Rising 0.75 (0.14,1.33) 1.06 (0.44,1.63) 1.13 (0.56,1.74) 1.15 (0.63,1.78) 1.17 (0.74,1.82) 1.19 (0.79,1.86)

LLT All 0.86 (0.11,1.72) 1.83 (0.78,3.02) 2.64 (1.24,4.43) 3.31 (1.67,5.75) 4.55 (2.37,8.15) 6.77 (3.09,11.21)
High 1.01 (0.23,3.49) 2.83 (1.11,4.32) 4.11 (1.82,6.49) 5.64 (2.68,9.22) 8.96 (4.56,15.67) 13.68 (6.22,22.56)
Rising 0.90 (0.12,1.84) 2.01 (0.85,3.31) 3.18 (1.52,5.40) 4.20 (2.19,7.52) 5.99 (3.30,11.35) 9.35 (4.35,15.76)

DLLT All 0.86 (0.10,1.90) 2.47 (0.78,3.02) 2.72 (1.24,4.41) 3.51 (1.67,5.72) 4.98 (2.36,8.12) 6.77 (3.08,11.16)
High 1.01 (0.19,3.60) 4.55 (1.11,4.32) 4.14 (1.82,6.48) 5.79 (2.68,9.20) 9.67 (4.55,15.62) 13.69 (6.20,22.46)
Rising 0.90 (0.11,2.02) 2.69 (0.85,3.31) 3.29 (1.51,5.37) 4.54 (2.18,7.49) 6.83 (3.29,11.30) 9.35 (4.33,15.68)

RWD All 0.92 (0.18,1.43) 2.05 (0.87,3.39) 2.90 (1.39,5.11) 3.80 (1.87,6.92) 5.35 (2.86,10.48) 7.53 (4.01,15.37)
High 1.22 (0.37,2.93) 3.29 (1.31,5.10) 4.77 (2.10,7.69) 6.62 (3.02,11.15) 10.66 (5.49,20.09) 15.47 (8.05,30.83)
Rising 0.97 (0.20,1.54) 2.25 (0.95,3.71) 3.45 (1.70,6.22) 4.82 (2.46,9.09) 7.15 (4.07,14.90) 10.24 (5.81,22.24)

IRW All 0.86 (0.10,1.93) 2.47 (0.78,3.02) 2.72 (1.24,4.41) 3.51 (1.66,5.72) 4.98 (2.37,8.11) 6.77 (3.08,11.15)
High 1.01 (0.19,3.58) 4.55 (1.11,4.32) 4.14 (1.82,6.48) 5.79 (2.67,9.19) 9.66 (4.55,15.60) 13.68 (6.20,22.44)
Rising 0.90 (0.11,2.05) 2.69 (0.85,3.31) 3.29 (1.51,5.37) 4.54 (2.18,7.48) 6.82 (3.29,11.29) 9.34 (4.32,15.66)

SRW All 0.66 (0.10,1.29) 0.88 (0.52,1.36) 1.02 (0.73,1.57) 1.11 (0.91,1.71) 1.25 (1.14,1.93) 1.43 (1.35,2.22)
High 0.71 (0.20,2.51) 0.97 (0.60,1.57) 1.10 (0.84,1.80) 1.23 (1.07,2.02) 1.60 (1.55,2.63) 1.97 (1.96,3.23)
Rising 0.67 (0.11,1.38) 0.91 (0.54,1.42) 1.10 (0.80,1.72) 1.26 (1.05,1.97) 1.50 (1.39,2.36) 1.77 (1.71,2.80)

DT All 0.66 (0.10,1.29) 0.88 (0.52,1.36) 1.02 (0.73,1.57) 1.11 (0.91,1.71) 1.25 (1.14,1.93) 1.43 (1.35,2.22)
High 0.71 (0.21,2.55) 0.97 (0.60,1.57) 1.10 (0.84,1.80) 1.23 (1.07,2.02) 1.60 (1.55,2.63) 1.97 (1.96,3.23)
Rising 0.67 (0.11,1.38) 0.91 (0.54,1.42) 1.10 (0.80,1.72) 1.26 (1.05,1.97) 1.50 (1.39,2.36) 1.77 (1.71,2.80)

SLLT All 0.66 (0.10,1.29) 0.88 (0.51,1.35) 1.02 (0.72,1.57) 1.11 (0.87,1.71) 1.24 (1.09,1.90) 1.41 (1.29,2.17)
High 0.71 (0.21,2.60) 0.97 (0.59,1.55) 1.10 (0.83,1.80) 1.23 (1.04,2.02) 1.59 (1.50,2.62) 1.94 (1.90,3.17)
Rising 0.67 (0.11,1.38) 0.91 (0.54,1.40) 1.10 (0.79,1.71) 1.26 (1.00,1.96) 1.49 (1.33,2.31) 1.75 (1.62,2.71)

reveal one aspect of how the adaptive gain behaves in a less
than ideal situation. During January there is a period where
no observations are taken. During this time, the prediction
interval can at first be seen to gradually widen, as no fur-
ther observations are available to condition the correction of
the current simulation of the flood forecasting model. Then,
when the next run of the flood forecasting model becomes
available the gain cannot be initialised, so no forecasts are
issued. In such situations, the forecaster making operational
decisions may wish to consider the past simulation of the
flood forecasting model and the corresponding adaptive gain.

Figure6 shows the predictions made for the same event
using the RW model calibrated using the SEFE methodology
with empirical prediction bounds. Visual comparison with
Fig. 5 shows the forecasts to be more precise, but failing to
capture the rising limb of the validation hydrograph.

4.2 Llandrinio

Tables6, 7and8summarise the performance in calibration of
the adaptive gain models at Llandrinio. As at Welsh bridge,
there is a bias in the baseflow of the hydraulic model. Per-
formance is assessed only when the flood forecasting model

predicts a water level greater than 1.8 m. None of the models
for the adaptive gain produce a RMSE lower than that of the
uncorrected model (0.39) for lead times greater than 9 h. This
time is shorter than that at Welsh bridge which is consistent
with the location of the gauging site closer to the headwaters
of the catchment. As for Welsh bridge the deterioration in
performance is more marked for gain models, which include
a gradient term but do not include a damping parameter.

The coverage probabilities during calibration (Table7) are
less dependant upon the water level than those at Welsh
bridge. In keeping with the Welsh bridge results, the preci-
sion of forecasts issued using the SEFE methodology, with
empirical error bounds, is higher than that of the gaussian
calibration methodology. In validation (9) all the prediction
error bounds appear conservative, bracketing a higher pro-
portion of the observations than would be expected.

Figure7 shows the 6 h lead item forecasts for two large
calibration vents at Llandrinio. As at Welsh bridge the tech-
nique cannot correct for highly erroneous model outputs
such as those around the 6 December 2006. An earlier pe-
riod on the 3 December 2006 highlights the importance of

Hydrol. Earth Syst. Sci., 16, 2783–2799, 2012 www.hydrol-earth-syst-sci.net/16/2783/2012/



P. J. Smith et al.: Adaptive correction of deterministic models 2797

Table 9.Fraction of observations at Llandrinio bracketed by the estimated 95 % prediction intervals during validation. Bracketed results are
those for the SEFE calibration with the italicised and bold values corresponding to the empirical and theoretical symmetric bounds. Results
are shown for all the time period, high levels (> 4 m) and periods where the hydrograph is rising for different combinations of lead time
(hours) and GRW model.

Period 2 6 9 12 18 24

RW All 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)
High 0.99 (0.99,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.97,0.99)
Rising 0.99 (0.96,0.99) 0.98 (0.96,0.99) 0.98 (0.96,0.98) 0.98 (0.96,0.98) 0.98 (0.96,0.98) 0.98 (0.96,0.98)

AR All 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.97,0.98)
High 0.99 (0.99,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.99,0.99) 0.99 (0.98,0.99)
Rising 0.99 (0.96,0.99) 0.98 (0.98,0.99) 0.98 (0.97,0.98) 0.98 (0.97,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)

LLT All 0.99 (0.96,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)
High 0.99 (0.99,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99)
Rising 0.99 (0.92,0.99) 0.99 (0.97,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)

DLLT All 0.99 (0.97,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)
High 0.99 (0.99,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99)
Rising 0.99 (0.94,0.99) 0.99 (0.97,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)

RWD All 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)
High 0.99 (0.99,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99)
Rising 0.99 (0.97,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)

IRW All 0.99 (0.97,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)
High 0.99 (0.99,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99)
Rising 0.99 (0.95,0.99) 0.99 (0.97,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)

SRW All 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)
High 0.99 (0.99,0.99) 0.99 (0.97,0.99) 0.98 (0.96,0.99) 0.97 (0.96,0.99) 0.96 (0.95,0.99) 0.95 (0.95,0.99)
Rising 0.99 (0.96,0.99) 0.98 (0.97,0.98) 0.98 (0.96,0.98) 0.97 (0.96,0.98) 0.97 (0.96,0.98) 0.96 (0.96,0.98)

DT All 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)
High 0.99 (0.99,0.99) 0.99 (0.97,0.99) 0.98 (0.96,0.99) 0.97 (0.96,0.99) 0.96 (0.95,0.99) 0.95 (0.95,0.99)
Rising 0.99 (0.96,0.99) 0.98 (0.97,0.98) 0.98 (0.96,0.98) 0.97 (0.96,0.98) 0.97 (0.96,0.98) 0.96 (0.96,0.98)

SLLT All 0.99 (0.97,0.99) 0.99 (0.98,0.99) 0.99 (0.98,0.99) 0.98 (0.98,0.98) 0.98 (0.98,0.98) 0.98 (0.98,0.98)
High 0.99 (0.99,0.99) 0.99 (0.97,0.99) 0.98 (0.97,0.99) 0.97 (0.96,0.99) 0.96 (0.97,0.99) 0.96 (0.97,0.99)
Rising 0.99 (0.94,0.99) 0.98 (0.97,0.98) 0.98 (0.97,0.98) 0.97 (0.97,0.98) 0.97 (0.97,0.98) 0.97 (0.97,0.98)

assimilating further observations after initialisation of the
gain to improve the precision of the forecasts.

5 Conclusions

The results presented in this paper indicate that compara-
tively simple error models combined with real time data as-
similation can provide probabilistic forecasts.

Results are shown for a medium size river basin. Two cali-
bration methodologies are presented. Detailed residual anal-
ysis suggests that, though the error assumptions used in these
derivations are not satisfied, they can produce probabilistic
forecasts with conservative coverage and precision of the or-
der of 10 % of the observed water level. The selection of
which calibration methodology performs most adequately re-
quires consideration on a case by case basis. Techniques for
making this selection are presented.

The lead times at which the expected value of the forecasts
can be seem to improve the RMSE of the uncorrected model
predictions depends upon the time it takes for the catchment
to respond at the gauged site. It remains to be seen if such a

data assimilation methodology is able to perform adequately
on small basins where the response to rainfall is more rapid
and timing errors, due perhaps to errors in the rainfall fore-
cast, are more severe (seeAlfieri et al., 2011, for some initial
results).

In an operational setting, only the linear Kalman filter
evolving two states needs to be evaluated. Though not dis-
cussed this can be readily implemented in spreadsheet pack-
ages without recourse to more complex programming. This
makes the addition of these data assimilation techniques
to existing deterministic forecasting systems comparatively
straightforward with a very low “cost of entry”.

A number of future developments can be proposed. Firstly,
analysis of the results suggests that recognition of state or
time dependency within the model parameters (Young, 2002;
Smith et al., 2008b) may be worthy of exploration. Recognis-
ing that the gain at different sites may be correlated opens up
a further line for future research. If such correlations can be
successfully exploited, it will both increase the robustness of
the data assimilation scheme to missing observations and po-
tentially allow forecast updating at sites where very limited
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data are available (e.g. locations only observed during the
calibration of a hydraulic model). The exploration of such
strategies is the subject of on-going research.
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