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The data-based mechanistic (DBM) approach to modelling has been proposed as an alternative to the conceptual

rainfall–runoff (CRR) models commonly used in operational flood forecasting systems. The approach offers a number

of potential advantages, but questions remain over its applicability to lowland UK catchments, its use with

15 min data, the most appropriate model identification and real-time updating approaches, as well as how the flood

forecasting performance of DBM models compares with that of CRR models. This paper applies the DBM approach to

two catchments in south-east England, finding that it is as appropriate for lowland catchments and 15 min data as

for the upland catchments and hourly data of previous studies. It also finds that continuous-time model identification

is superior to discrete-time model identification, and that such models can be applied within a Kalman filter updating

framework. Overall, however, the relatively simple application of DBM modelling could not improve upon the

performance of a more complex CRR model, indicating that further work is required to exploit the potential of the

DBM modelling framework to operational flood forecasting.

Notation
ai transfer function denominator coefficients

bi transfer function numerator coefficients

c scaling coefficient in effective rainfall transformation

F state space model transition parameter matrix

g state space model input parameter vector

h state space model observation vector

I the identity matrix

i arbitrary non-negative integer value

Kt Kalman gain matrix at time step t

k̂k t adaptive gain at time step t

l lead-time (in time steps) of forecast time step

m order of the transfer function numerator polynomial

n order of the transfer function denominator polynomial

Pt Kalman filter state covariance matrix at time step t

Q state space model noise variance ratio matrix

q adaptive gain noise variance ratio

R2
l coefficient of determination at lead-time l

R2
T coefficient of determination (simulation)

rt observed catchment average rainfall at time step t

st variance ratio of the estimate of the adaptive gain at

time step t

t time step index number

t0 time step at which a forecast is made (forecast origin)

ut catchment average effective rainfall at time step t

v t value of arbitrary variable at time step t

x̂xt state space model state vector estimate at time step t

x̂xtþ lj t forecast state vector at lead-time l time steps ahead,

made at time step t

yt gauged instantaneous catchment discharge at time step t

ŷyt estimated instantaneous catchment discharge at time

step t

ŷytþ lj t forecast instantaneous catchment discharge at lead-time

l time steps ahead, made at time step t

z�i backward shift operator, defined such that z�i v t ¼ v t� i

Æ order of auto-regressive error prediction model

ª exponent coefficient in exponential effective rainfall

function

� catchment lag (number of time steps)

�̂� tþ lj t estimated difference between deterministic model flow

forecast and observed flow at lead-time l time steps

ahead, with forecast made at time step t

º0 coefficient in the Kalman filter adaptive variance

relationship

º1 coefficient in the Kalman filter adaptive variance

relationship

�̂� 2
t state space model observation noise variance estimate

at time t

ji auto-regressive model parameters

ø exponent in power law effective rainfall function

1. Introduction
In general, operational fluvial flood forecasting systems require

cascades of rainfall, rainfall–runoff, channel-flow routing and

storm-surge models. In practice, some of these model types can

be omitted (Lettenmaier and Wood, 1993), but rainfall–runoff

models are central to most systems, either for generating the

required forecasts directly or for providing inflow forecasts for

channel-flow routing models. Real-time updating algorithms that

adjust model predictions based upon recent model performance

are often employed to improve forecast accuracy (e.g. Beven,

2009; Lettenmaier and Wood, 1993; Moore, 2007; Refsgaard,

1997; Romanowicz et al., 2006).
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Lumped conceptual rainfall–runoff (CRR) models (Wheater et

al., 1993) are widely used to fulfil the rainfall–runoff modelling

requirement of operational flood forecasting systems (e.g. Guo

et al., 2004; Moore et al., 1994; Rabufetti and Barbero, 2005;

Smith et al., 2003; Vehviläinen et al., 2005; Werner and van

Dijk, 2005; Whitfield, 2005). One of the drawbacks of CRR

models is that they are often over-parameterised, so that it may

not be possible to identify a single, best parameter set for a

specific catchment (Beven, 2001). The practical corollary of this

is that it can introduce uncertainty into predictions made by the

model.

The data-based mechanistic (DBM) modelling approach has

been proposed as a means of identifying and calibrating

model structures that are not over-parameterised while main-

taining a hydrological interpretation of the derived model

structure (e.g. Young, 1998, 2006b). In practice, this involves

identifying the most appropriate model structure from a fairly

general class of models using statistical identification proce-

dures. These procedures exclude unnecessary complexity from

the model structure, allowing optimal parameters to be

determined objectively. The DBM approach contrasts with the

typical application of CRR models where a model structure is

chosen subjectively, without reference to catchment-specific

data. Although this has the potential benefit of including

hydrological process understanding in the model, it also

introduces the potential for making incorrect prior assumptions

and for selecting an over-parameterised model structure, which

may result in sub-optimal model performance. The recent

development of CRR modelling toolkits that facilitate compari-

son of alternate CRR structural components goes some way to

ameliorating this issue (Moore, 2007; Wagener et al., 2002),

but these have not yet been adopted widely in practice and

tend to be based on a relatively limited set of components.

Despite these differences, there are parallels between the two

approaches, and similarities and overlaps between the structur-

al forms of the models used.

The DBM approach has been applied to rainfall–runoff model-

ling (Lees, 2000; McIntyre and Marshall, 2010; Young, 2003;

Young and Beven, 1994) and lends itself naturally to the

incorporation of real-time updating for flood forecasting applica-

tions (Leedal et al., 2009; Lees et al., 1994; Romanowicz et al.,

2006; Young, 2002, 2007; Young and Tomlin, 2000). These

published studies have shown that the approach has promise for

real-time flood forecasting, but most have applied the method-

ology to upland UK catchments using hourly observed data.

However, lowland UK catchments are of considerable practical

interest as they experience substantial anthropogenic pressure

(Wheater and Peach, 2004) and may require alternative model

formulations due to different hydrological controls and the greater

influence of groundwater (Bell et al., 2009). Furthermore, the

identification algorithms typically used with DBM modelling can

experience problems if used with observed data where the data

interval is short compared with the timescales of the processes

being modelled (Young and Garnier, 2006). Furthermore, they

appear not to have been demonstrated to work satisfactorily at

catchment scale with the 15 min data commonly used in opera-

tional forecasting practice. The forecasting performance of DBM

and CRR models also remains to be compared. Consequently,

questions remain over the utility of DBM flood forecasting

models, which this paper seeks to answer through a number of

case studies.

2. DBM rainfall–runoff modelling
Published applications of the DBM approach to rainfall–runoff

modelling (Section 1) have been based upon spatially lumped,

non-linear, discrete-time (DT), stochastic transfer function mod-

els, used to predict the total stream flow and accompanying

uncertainty bounds on the prediction. This paper does not,

however, calculate or investigate the performance of the uncer-

tainty bounds, as good deterministic (‘best estimate’) perform-

ance is the main requirement in some applications and is a

prerequisite for narrow uncertainty ranges in probabilistic fore-

casting applications.

2.1 The DBM approach

The common formulation of a deterministic DBM rainfall–runoff

model is given by a non-linear effective rainfall transformation:

ut ¼ cf (yt)rt1a:

where the observed flow acts as a surrogate for catchment

wetness (Moore, 1982; Young and Beven, 1994) and a single-

input DT linear transfer function

ŷyt ¼
b0 þ b1z�1 þ b2z�2þ � � � þbmz�m

1þ a1z�1 þ a2z�2þ � � � þanz�n
ut��1b:

or its equivalent difference equation:

ŷyt ¼� a1ŷyt�1 � a2ŷyt�2� � � � �anŷyt�n

þ b0ut�� þ b1ut���1 þ b2ut���2

þ � � � þbmut���m1c:

represents the routing of u to the catchment outlet.

The use of the effective rainfall transformation (Equation 1a),

rather than the explicit soil moisture accounting procedures used

with CRR models, is a notable difference between the two

approaches.

Identification and calibration of a DBM model may be treated as

a three-stage process. The first stage is to identify the structure of

the linear transfer function (the values of n, m and �), for which
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various methodologies could be used (e.g. Box et al., 2008).

However, most previously published applications of DBM model-

ling have identified the model structure by fitting a number of

possible structures to the calibration dataset, assuming ut ¼ rt,

and selecting the most appropriate; this approach has been

followed here. The simplified, refined instrumental variable

(SRIV) algorithm (Young, 1984) is often used for fitting the

model to the data, while the suitability of each structure is

measured by the simulation mode coefficient of determination

(R2
T ) and the Young information criterion (YIC) (Lees, 2000).

The coefficient of determination is similar to the Nash–Sutcliffe

efficiency (Nash and Sutcliffe, 1970) and is a measure of how

well the model explains the observed data, while the YIC is a

heuristic measure that attempts to trade-off performance against

over parameterisation. The selected model structure is denoted by

the triad (n m+1 �) (Lees, 2000).

Once the structure of the transfer function has been estimated, the

form of f (.) can be identified non-parametrically through state-

dependent parameter (SDP) analysis (Young et al., 2001). This is

achieved by using a recursive smoothing algorithm to generate

time-variable estimates of the parameters of the linear transfer

function (usually in a simplified reduced-order form), after first

sorting the calibration data according to the observed flow. The

parameter estimates are then plotted graphically against the

corresponding values of the observed flow to reveal the relation-

ships between them. Assuming that there is little variation in the

transfer function denominator parameters, and a common rela-

tionship between the numerator parameters and the observed flow

can be found and factored out, an appropriate parameterisation of

the relationship is then chosen. This often takes the form of a

power law (Young, 2002):

f (yt) ¼ yøt2a:

or a negative exponential function (Young, 2006a):

f (yt) ¼ 1� exp(�ªyt)2b:

Separating the structural identification of the linear and non-

linear components in this way does not appear to have been

justified theoretically, but seems to work satisfactorily in practice

(see references in Section 1). It may be considered reasonable,

however, as the non-linearity only affects the magnitude, not the

timing, of the response to rainfall.

Finally, the parameters (a1 . . . an, b0 . . . bn) of the linear transfer

function are jointly optimised with the parameters of the non-

linear model, using a suitable non-linear optimisation algorithm

and the SRIV algorithm (or similar) for the transfer function

parameters. The scaling factor c is not generally optimised, but

calculated from mass balance or a constraint on peak rainfall

(e.g. Ratto et al., 2007; Young, 2003).

Once calibrated, the model is interpreted in mechanistic terms,

usually through partial fraction decomposition of the transfer

function into a number of linear reservoirs connected in parallel

or series (Young and Beven, 1994). A commonly occurring

decomposition is two linear stores in parallel (Figure 1), which

can be mechanistically interpreted as the catchment comprising

parallel baseflow and storm-flow paths. If a feasible mechanistic

interpretation of the calibrated model cannot be found, the model

is rejected and alternative forms sought. Finally, the calibrated

model is validated against a dataset not used in its identification

(Young, 2006b).

2.2 Real-time flood forecasting formulation

Published applications of the DBM approach to real-time flood

forecasting have used several different updating schemes. These

fall into two broad categories: parameter updating and state

updating (Refsgaard, 1997). Parameter updating is achieved

through an adaptive gain mechanism (Lees et al., 1994) and state

updating through reformulating the identified DBM model in a

stochastic state-space form and setting it within a Kalman filter

algorithm (Young and Tomlin, 2000). Neither of these approaches

models the temporal dependence structure of the errors, however.

The two approaches have also been combined in a number of

different formulations (Leedal et al., 2009; Romanowicz et al.,

2006; Young, 2002), including the use of a variable observation

noise variance in the Kalman filter to account for the hetero-

scedasticity of the errors in the observed data.

The updating framework applied in this paper is adapted from

those previously published. The DBM model is reformulated as a

stochastic state-space model, with the elements of the true, but

unknown, state vector x being the discharges from each pathway

for a parallel pathway model, and the parameter matrix F and the

parameter vectors g and h being calculated from the a and b

parameters of the identified transfer function model (Romanowicz

et al., 2006; Young, 2002). This is then set within a joint Kalman

filter–adaptive gain (KF-AG) algorithm to recursively update the

model states for time steps prior to the commencement of a

forecast (the equations are provided here to give a full description

of the method, but a general understanding of the method should

be possible by reading only the associated text):

Effective
rainfall

Linear
store

(storm flow)

Linear
store

(baseflow)

Catchment
discharge

Rainfall
Non-linear

loss

Figure 1. Example conceptual interpretation of a DBM

rainfall–runoff model decomposed into two linear stores in

parallel (adapted from Young, 2003).

107

Water Management
Volume 165 Issue WM2

An assessment of DBM flood forecasting
models
Vaughan and McIntyre

Downloaded by [ University of Queensland - Central Library] on [23/12/15]. Copyright © ICE Publishing, all rights reserved.



Prediction step:

x̂x
(p)
t ¼ Fx̂x

(c)
t�1 þ gut��3a:

ŷy
(p)
t ¼ hx̂x

(p)
t3b:

�̂� 2
t ¼ º0 þ º1(ŷy

(p)
t )23c:

P
(p)
t ¼ FP

(c)
t�1F

T þ �̂� 2
tQ3d:

with superscript T representing the matrix transpose and super-

scripts (c) and (p) denoting results from the Kalman filter

correction and prediction steps.

Correction step:

K t ¼ P
(p)
t hT(�̂� 2

t þ hP
(p)
t hT)�1

3e:

x̂x
(c)
t ¼ x̂x

(p)
t þ K t(yt � ŷy

(p)
t )3f:

P
(c)
t ¼ (I � K th)P

(p)
t3g:

ŷy
(c)
t ¼ hx̂x

(c)
t3h:

Update adaptive gain:

s
(p)
t ¼ s

(c)
t�1 þ q3i:

s
(c)
t ¼ s

(p)
t � (s

(p)
t ŷy

(c)
t )2[1þ s

(p)
t (ŷy

(c)
t )2]�13j:

k̂k t ¼ k̂k t�1 þ s
(c)
t ŷy

(c)
t (yt � k̂k t�1ŷy

(c)
t )3k:

Filtered flow estimate:

ŷyt ¼ k̂k tŷy
(c)
t3l:

The prediction step of the Kalman filter uses the prediction form

of the stochastic state-space model (Equations 3a and 3b) to

predict the states and the total discharge at a time step for which

observed data are available, based upon the previously estimated

states and the rainfall inputs. Equation 3d estimates the variances

and covariances of the states, which indicate the uncertainty of

the estimate of the state vector.

The Kalman filter correction step then updates the state estimate

(Equation 3f) by an amount that depends upon the difference

between the predicted and observed flow at the time step,

weighted to account for their relative uncertainties. To account

for the heteroscedastic error structure of the observed flows, the

variance of the observed flow is increased with flow magnitude

(Equation 3c). This variance is estimated from the predicted flow,

rather than the observed flow, to allow it to be estimated in the

forecast period to give an estimate of the uncertainty of the

forecast, although this is not required for the work reported here.

The variances and covariances of the updated states are also

revised (Equation 3g). The adaptive gain, which is simply a

multiplier on the filtered flow estimate (Equation 3l), is then

estimated (Equation 3k) using an independent Kalman filter.

Forecasts are made by applying the state-space model prediction

equations recursively at each forecast lead-time l up to the

maximum possible lead-time (restricted to � time steps due to the

need to use the observed flow from � time steps before the

predicted flow in the calculation of the effective rainfall) without

any ensuing correction step:

Forecast step:

x̂xt0þ lj t0 ¼ Fx̂xt0þ l�1j t0 þ gut0þ l��4a:

ŷyt0þ lj t0 ¼ k̂k t0 hx̂xt0þ lj t04b:

The initial condition for the forecast is provided by the updated

state vector at the forecast origin time t0 and the gain is held

constant at its estimate at t0:

The KF-AG algorithm introduces a number of hyperparameters

that control its behaviour. These are: º0 and º1, the coefficients of
the heteroscedastic observation noise equation; q, the noise

variance ratio (NVR) of the adaptive gain; and the elements of the

NVR matrix of the Kalman filter, Q. The NVR matrix is usually

assumed to be diagonal (Young and Tomlin, 2000), in which case

it introduces one hyperparameter for each of the parallel flow
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paths. These hyperparameters may be calibrated automatically

using a non-linear optimisation algorithm to give the optimal

forecast performance at a chosen lead-time (Young, 2002).

2.3 Continuous-time DBM model identification

An alternative approach to linear transfer function model identifi-

cation has been recommended by Young (2004) and applied to

rainfall–runoff simulation modelling by Young (2004) and Ratto

et al. (2007). In this approach, the transfer function is defined and

identified in a continuous-time (CT) form, again described by the

triad (n m+1 �). Fitting CT models follows the same procedure as

described in Section 2.1, but with a modified version of the SRIV

(or similar) algorithm to account for the CT formulation (Young

and Garnier, 2006). The potential advantage of the CT approach

is that it is less susceptible to problems when fitting models to

data where the interval between observations is short compared

with the timescales of the system being modelled (Young and

Garnier, 2006) and hence may be preferable for 15 min data. The

identified CT model can then be converted to a discretely

coincident DT form (O’Connor, 1982; Young et al., 2006) and

recast into the KF-AG updating framework for forecasting.

3. CRR modelling for flood forecasting
Many different CRR models have been used for real-time flood

forecasting and it would be impractical to compare even a

significant sample of them with DBM models. The simplifying

approach taken in this paper is to compare the DBM results with

those of a single CRR model. The most commonly used form of

the probability distributed model (PDM) (Moore, 2007; Moore et

al., 2005) was selected for this purpose as it gives reasonably

good forecasting performance across a range of catchments

(Moore et al., 2000) and hence may be indicative of the flood

forecasting performance attainable with CRR models.

3.1 The probability distributed model

The PDM used in this study is a 12-parameter, lumped CRR

model that conceptualises the catchment as a soil, groundwater

and two (serially connected) surface water stores. All rainfall

enters the catchment through the soil store. Water can leave the

soil store by evaporation, drainage to the groundwater store or

rapid runoff to the first surface store. Catchment discharge is

calculated as the sum of the outflows from the groundwater and

second surface water stores. The soil store represents the spatial

variability of storage capacity with a three-parameter Pareto

distribution, with only the saturated proportion contributing rapid

runoff to the surface water stores. Drainage occurs at a rate

related to the total soil storage, however. The groundwater store

is modelled as a cubic reservoir and the surface stores as linear

reservoirs.

The model has inputs of rainfall and potential evaporation, and

ideally requires long periods of data, typically 5 years, for

calibration, and more for validation. Observed potential evapora-

tion data were not available, so a sine curve was used to estimate

daily potential evaporation (Bell and Moore, 1998) based on a

UK average rate of 1.5 mm/day and a minimum of zero in mid-

winter (Calder et al., 1983). For the purposes of this study, the

12-parameter PDM was implemented in Matlab1:

3.2 Real-time updating of the PDM

A range of real-time updating approaches could be used with the

PDM. State updating could be achieved using either the empirical

scheme derived by Moore (2007) or by reformulating the model

in a stochastic filtering framework similar to the Kalman filter

component of the KF-AG algorithm used with the DBM model.

This latter approach would require the use of a non-linear filter,

however, such as the extended Kalman filter (e.g. Georgakakos,

1986; Refsgaard, 1997) or the ensemble Kalman filter (e.g.

Weerts and El Serafy, 2006). Alternatively, the adaptive gain

component of the KF-AG algorithm could be used to provide a

simple form of parameter updating (e.g. Lees et al., 1994). Error

prediction is also possible using, for example, an auto-regressive

moving-average (ARMA) model (e.g. Moore, 2007) to predict the

differences between the simulated and observed flows in the

forecast period. These predicted errors are then added to the

predictions from the CRR model to give the updated flow

forecasts.

An error prediction scheme was chosen for this study as this

approach is widely used in practice and can be applied to any

conceptual or time-series model, and so is considered better for

the comparative work described in this paper. Moore (2007) notes

that a third-order auto-regressive (AR) model is often sufficient,

so the implemented scheme was constrained to use an AR model:

�̂� t0þ lj t0 ¼ j1�̂� t0þ l�1j t0 þ j2�̂� t0þ l�2j t0

þ � � � þ jÆ�̂� t0þ l�Æj t05:

rather than an ARMA model. Equation 5 is applied recursively to

predict the errors through the forecast period, with the observed

errors being used as initial conditions.

Application of the AR error correction scheme requires the order

Æ to be identified and the parameters j to be calibrated. One

approach to identifying the order is to fit models for a range of

orders and select based on the value of the Akaike information

criterion (AIC) (Akaike, 1974). The AIC measures the perform-

ance of the model, but with a penalty for additional parameters,

so striking a balance between calibration performance and over

parameterisation. AR models of order Æ are denoted as AR(Æ)
models.

4. Case study catchments
Two catchments in south-east England, the River Lod at Halfway

Bridge and the River Wallington at North Fareham (Table 1),

were selected for the case studies. These catchments were chosen

as being relatively natural, while having different geomorphologi-
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cal settings and relatively long flow and tipping-bucket rain gauge

(TBR) records of reasonable quality.

The River Lod is a tributary of the River Rother in West Sussex.

The catchment comprises a mix of sands and clay and is notably

steep in the upper part of the catchment. Although relatively

natural, flows are influenced by mill operation in the lower flow

range. There are two TBRs just outside the catchment (North-

chapel and Iping Mill), from which catchment average rainfall

was estimated using Thiessen polygons.

The Wallington catchment is located in south-east Hampshire. It

comprises sands and clays in the lower part of the catchment, but

chalk in the upper part of the catchment. Catchment average

rainfall was again estimated from one TBR within the catchment

(Worlds End) and another just outside the catchment (Cowplain)

using Thiessen polygons.

5. Model identification and simulation
performance

This section describes the identification and calibration of the DT

DBM models, the calibration of the CRR models and the

validation of their performance as simulation models using

independent test datasets.

5.1 DBM model identification and calibration

DT DBM models were fitted to 4–5 year periods of 15 min data

for each catchment (Table 2). These datasets are significantly

longer than have been used in previous studies (e.g. Lees, 2000;

McIntyre and Marshall, 2010; Young, 2003; Young and Beven,

1994), but allow a more robust performance assessment and

comparison with the CRR model.

Linear transfer function structures were first identified for each

catchment from the calibration datasets using the SRIV algorithm

from the Captain toolbox for Matlab (LU, 2011; Taylor et al.,

2007), yielding (2 2 27) structures for both catchments. Prelimin-

ary investigation applying SDP analysis to short data periods had

indicated that the negative exponential form of non-linearity

(Equation 2b) was most suitable for these catchments, so this form

was adopted for both catchments without carrying out SDP analy-

sis on the full calibration datasets. This approach was taken

because the direct application of standard forms of non-linearity is

likely to be a more pragmatic approach than SDP analysis of every

catchment in any widespread application of DBM modelling to

operational forecasting. The parameters of these non-linear models

were optimised using a simplex algorithm and the sum of squared

errors as the objective function. Nested within this algorithm, the

linear transfer function was optimised using the SRIV algorithm to

ensure that the optimal combination of non-linear and linear

parameters was found. The optimum parameter sets for both

catchments gave satisfactory performance and had mechanistic

interpretations of two linear stores in parallel (Table 2).

River Lod

at Halfway

Bridge

River Wallington

at North

Fareham

Catchment area: km2 52 111

BFIHost* 0.48 0.64

Maximum elevation: mAOD† 274 248

Station elevation: mAOD 14 4

QMED: m3/s‡ 16.4 17.8

QMED: mm/h 1.135 0.577

* Catchment baseflow index derived from the HOST soil classification
† Metres above Ordnance Datum
‡ Median value of the instantaneous annual maximum discharge
series

Table 1. Descriptive statistics for the case study catchments (CEH,

2010; EA, 2010)

River Lod at Halfway Bridge River Wallington at North Fareham

Dataset

Calibration period start 01/07/02 21:00 07/08/03 00:00

Calibration period end 30/03/07 10:45 30/06/08 23:45

Maximum flow: mm/h 0.962 0.521

Maximum flow/QMED 0.85 0.90

Minimum flow: mm/h 0.002 0.0003

Structure R2T Structure R2T

Performance

DT DBM (2 2 27) 0.82 (2 2 27) 0.85

CRR (PDM) 0.69 (PDM) 0.62

CT-identified DBM (2 2 17) 0.88 (2 2 25) 0.82

Table 2. Calibration datasets and performance
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5.2 Conceptual rainfall–runoff model calibration

PDM CRR models were calibrated for the Lod and Wallington

catchments using the same datasets as for the DT DBM models.

Calibration was carried out using a manual trial-and-error ap-

proach, as is common practice operationally, without any support-

ing automatic optimisation. This may not have found the

statistically optimal parameter set and led to poorer statistical fits

than for the DBM models (Table 2) but was judged to offer an

appropriate compromise between overall fit, performance on peak

events and internal behaviour of the model. To achieve adequate

performance for the Wallington catchment, the rainfall input had

to be reduced significantly to prevent too much water entering the

model. Physically, this is thought to be compensating for a

catchment water balance that is not closed due to the presence of

chalk in the catchment. An alternative approach, therefore, would

have been to use a conceptual model that explicitly represents

subsurface outflows (e.g. Moore and Bell, 2002), but this was

beyond the scope of the present study.

5.3 Simulation model performance

The simulation performance of the DBM models was tested using

independent validation datasets of similar lengths to the calibra-

tion datasets (Table 3), but which included peak inflows that were

substantially higher than those encountered during calibration.

For the Lod catchment, it was not possible to have a sufficiently

long single validation period due to periods of missing data, so

two shorter periods were used.

Preliminary investigation, involving fitting and validating DT DBM

models to datasets of similar lengths to those used in previously

published studies, had produced validation values of 0.83 (Lod) and

0.88 (Wallington). These values are within the ranges reported by

other published studies, which gave confidence in the applicability

of the approach to the case study catchments. The performances of

the DT DBM models for the full, multi-year calibration and

validation datasets reported here (Table 3) are, however, a little

worse than for other published studies. This is likely to be due to

the much greater degree of extrapolation outside the calibration

range in these longer datasets. The CRR model had comparable

performance to the DT DBMmodels for the Wallington catchment,

and, in the second data period, for the Lod catchment, (Table 3),

despite a significantly poorer fit in calibration. Figure 2 shows

example hydrographs from the models for the Wallington catch-

ment for a 10 day sub-period of the validation dataset.

The simulation of the peaks is less satisfactory than the overall fit,

River Lod at

Halfway Bridge

(dataset 1)

River Lod at

Halfway Bridge

(dataset 2)

River Wallington

at North Fareham

Dataset

Validation period start 23/04/01 20:45 03/04/07 09:30 01/09/99 00:00

Validation period end 28/06/02 16:45 19/08/09 18:45 30/06/03 23:45

Maximum flow: mm/h 1.426 2.596 1.619

Maximum flow/QMED 1.26 2.29 2.81

Ratio of maximum flows in validation

and calibration

1.48 2.70 3.11

Minimum flow: mm/h 0.004 0.000 0.001

Structure R2T Structure R2T Structure R2T

Performance

DT DBM (2 2 27) 0.81 (2 2 27) 0.76 (2 2 27) 0.76

CRR (PDM) 0.68 (PDM) 0.74 (PDM) 0.77

CT-identified DBM (2 2 17) 0.84 (2 2 17) 0.81 (2 2 25) 0.84

Table 3. Validation datasets and performance

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
0

0·1

0·2

0·3
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0·5

Time index: days
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m
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Observed
DBM DT
CRR
DBM CT-identified

Figure 2. Example simulated hydrographs for the Wallington

catchment at North Fareham (validation; observed data within

calibration range)
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with consistent underprediction of the peaks above the calibration

range for both the DT DBM and CRR models (Figures 3(a) and

3(b)), which is in accordance with previous studies (Gan and

Burges, 1990a, 1990b; Seibert, 2003). This behaviour is particu-

larly marked for the DT DBM model of the Wallington catchment,

although much less so for the DT DBM model for the Lod. The

degree of underprediction also tends to increase with the magni-

tude of the peak. The timing errors of the simulated peaks (Figures

3(c) and 3(d)) show substantial scatter and some tendency towards

increasing lateness as the peak magnitude increases.

6. Forecasting performance
This section describes the use of real-time updating algorithms

with the models and their application to forecasting for the case

study catchments.

6.1 Real-time data assimilation formulations

The DT DBM models were recast into the KF-AG updating

framework (Equations 3 and 4) and the hyperparameters for each

model were jointly optimised on the calibration datasets using the

shuffled complex evolution algorithm (Duan et al., 1992). In each

case, the hyperparameters were optimised by minimising the sum

of squared errors of the forecast at the maximum lead-time

possible for that model (i.e. � in the model structure).

AR error models were identified and fitted to both CRR models,

based upon the AIC criterion, using the whole of their respective

calibration datasets. An AR(4) model was identified for Lod and

an AR(5) for Wallington.

6.2 Forecasting performance comparison

The forecasting performance of each model was assessed by

applying it to its validation dataset as an independent perform-

ance test; Figure 4 shows example forecast hydrographs. For the

assessment, forecasts were generated using each 15 min data

point as a forecast origin time and assessed using a number of

different metrics.

6.2.1 Lead-time coefficient of determination

The lead-time coefficient of determination is defined as:

R2
l ¼ 1�

var(ŷytþ lj t � ytþ l)

var(ytþ l)6:
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Figure 3. Comparison of the magnitude and timing of the

simulations of observed peaks of greater than 0.5 3 QMED

(validation)
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with its maximum value of 1 indicating a perfect forecast.

For the DT DBM models, the variation of R2
l with lead-time

(Figures 5 and 6) is comparable to published results (Young,

2002; Young and Tomlin, 2000) and shows that good overall

agreement between the forecasts and the observations is achiev-

able. On this measure, the CRR model outperforms the DT DBM

models for both catchments, albeit by a relatively small margin,

except for longer lead-times on the Lod catchment.

6.2.2 Lead-time quantiles of the percentage errors for

consequential forecasts

For forecasts designated as consequential, the percentage errors

are calculated as:

ŷyt0þ lj t0 � yt0þ l

yt0þ l

3 100%
7:

In this study, consequential forecasts are defined as those

forecasts with at least one value greater than 0.5 3 QMED

(QMED is the median value of the instantaneous annual maxi-

mum discharge series) to exclude forecasts that would be consid-

ered trivial in operational use from the analysis.

The 5, 50 and 95% quantiles of the percentage errors for the

consequential forecasts for different lead-times (Figure 7) show

the CRR models having a narrower spread of errors at shorter

lead-times and the DT DBM models having a narrower spread at

longer lead-times. The 50% quantile for the CRR model is closer

to zero than for the DT DBM, except at longer lead-times for the

Wallington catchment, indicating that the CRR model has less

tendency to over or underestimate.

6.2.3 Lead-time threshold crossing

The ability to forecast threshold crossings is commonly measured

by the probability of detection (POD) and false alarm ratio

(FAR). POD is defined as the proportion of observed threshold
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CRR AR

Time index: days

12
18

12
18

·2

12
18

·4

12
18

·6

12
18

·8

12
19

12
19

·2

12
19

·4

12
19

·6

12
19

·8

12
20

12
18

12
18

·2

12
18

·4

12
18

·6

12
18

·8

12
19

12
19

·2

12
19

·4

12
19

·6

12
19

·8

12
20

12
18

12
18

·2

12
18

·4

12
18

·6

12
18

·8

12
19

12
19

·2

12
19

·4

12
19

·6

12
19

·8

12
20

12
18

12
18

·2

12
18

·4

12
18

·6

12
18

·8

12
19

12
19

·2

12
19

·4

12
19

·6

12
19

·8

12
20

12
18

12
18

·2

12
18

·4

12
18

·6

12
18

·8

12
19

12
19

·2

12
19

·4

12
19

·6

12
19

·8

12
20

0

0·2

0·4

0·6

Fl
ow

: m
m

/h

Observed
Forecast

0

0·2

0·4

0·6

Time index: days

0

0·2

0·4

0·6

DBM DT (2 2 27) AR

0

0·2

0·4

0·6

DBM CT-identified (2 2 25) KF-AG

0

0·2

0·4

0·6

Fl
ow

: m
m

/h

DBM CT-identified (2 2 25) AR

Time index: days

Fl
ow

: m
m

/h

Figure 4. Example forecast hydrographs for each forecasting

method for the Wallington catchment at North Fareham

(validation; observed data within calibration range). For clarity,

forecasts with origin times at 1 h intervals are shown
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Figure 5. Validation of lead-time forecasting performance for the

Lod catchment at Halfway Bridge
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Figure 7. Exceedance quantiles of the errors in the consequential

forecasts for (a) River Lod at Halfway Bridge and (b) River

Wallington at North Fareham (validation)
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crossings that were forecast and FAR as the proportion of forecast

threshold crossings that were not followed by an observed thresh-

old crossing. Both measures have the range [0, 1], with 1 being a

perfect score for POD and 0 being perfect for FAR.

For these case studies, the thresholds were defined as multiples of

QMED. To count as a successful detection, a forecast threshold

crossing had to occur no earlier than 3 h before an observed

crossing and no later than 1.5 h after the observed crossing.

These asymmetric limits were used because, in an operational

context, a forecast of a threshold crossing time that is earlier than

the observed threshold crossing time is less problematic than a

forecast of a threshold crossing time that is later than the

observed threshold crossing time.

Only the lowest threshold considered (0.5 3 QMED), which is

within the calibration range of the models, has enough observed

threshold crossings to make any general statements about the

threshold crossing performance. For this threshold, the CRR

models generally out perform the DT DBM models (Figure 8).

6.2.4 Lead-time quantiles of the percentage errors for

peak magnitude forecasts

The percentage errors for the forecasts of the magnitude of the

observed peaks are calculated using Equation 7, after peaks have

been matched allowing for timing differences. For the Lod

catchment, Figure 9 shows the CRR model having a greater

tendency to underestimate than the DT DBM model, but a

narrower spread of errors. This situation is broadly reversed for

the Wallington catchment, although the differences are much less

pronounced.

7. Alternative DBM modelling approaches
The analysis above has revealed that, overall, CRR models tended

to perform better than DT DBM models for both simulation and

forecasting, except at longer lead-times. With the aim of identify-
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Figure 8. Threshold exceedance forecasting performance for the

0.5 3 QMED threshold (validation) for (a) River Lod at Halfway

Bridge and (b) River Wallington at North Fareham
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ing scope for improvements, this section investigates whether this

is due to the underlying DBM model or the real-time updating

algorithm.

7.1 Continuous-time DBM model identification

Identification and calibration of CT models for the case study

catchments yielded a (2 2 17) model for the Lod and a (2 2 25)

model for the Wallington, both with negative exponential non-

linearities. These CT models were converted to discretely coin-

cident DT form (Young et al., 2006) for simulation and were

found to be able to simulate the overall catchment behaviour

better than the previously identified DT models for both catch-

ments in validation (Table 3) and the Lod catchment in calibra-

tion (Table 2). The calibration performance for the CT-identified

model of the Wallington was only slightly worse than that of the

DT model (Table 2). Figure 2 shows an example hydrograph for a

period within the calibration range. Figure 3 shows that the

CT-identified DBM models have similar difficulties as the other

models in extrapolating to peaks beyond the calibration range,

although the approach performs better than the other approaches

on the Wallington catchment.

7.2 Forecasting performance of the alternative

approaches

For forecasting purposes, the discretely coincident DT forms of

the CT-identified models were recast into the KF-AG updating

algorithm and the hyperparameters optimised on the calibration

datasets. AR error prediction models were also fitted to both the

original DT and the CT-identified DBM models, as an alternative

to the KF-AG algorithm, using the same procedure as used for the

CRR model. The performance of these forecasting models was

assessed using the same measures and independent validation data

as above. Example forecast hydrographs are shown in Figure 4.

The statistical fits of the forecasts (Figures 5 and 6) show the

CT-identified models producing overall better forecasts than the

original DT models, except for the Wallington catchment where

the DT models are a little better at shorter lead-times. The error
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Figure 9. Exceedance quantiles of the errors in the forecasts of

observed peaks greater than 0.5 3 QMED for (a) River Lod at

Halfway Bridge and (b) River Wallington at North Fareham

(validation)
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quantiles (Figure 7) show the CT-identified model for the Lod

catchment having less spread and a lesser tendency to over-

estimate than the DT model. For the Wallington catchment,

however, the spreads of the errors are similar, but the CT-

identified model shows a greater tendency to overestimate. The

threshold crossing performance of the CT-identified models is

better than that of the original DT models (Figure 8), although

there is little overall difference in the FAR for the Wallington

catchment. There is also little overall difference between the peak

forecasting performance of the CT-identified and DT models: the

CT-identified model for Lod has less spread (but a greater

tendency to underestimate) than the DT model, while this

situation is reversed on the Wallington catchment (Figure 9).

The overall fit of the forecasts, as measured by R2
l over the range

of lead-times, also shows that the AR error prediction resulted in

overall better forecasts than the KF-AG algorithm for both the

DT and CT-identified DBM models, except at longer lead-times

(Figures 5 and 6). This pattern is repeated in the lead-time error

quantiles (Figure 7), but not in the lead-time threshold crossing

performance, where the KF-AG algorithm gives very marginally

better performance overall (Figure 8). The peak error quantiles

also show no discernable overall performance difference between

the two updating approaches, despite small variations between

them (Figure 9). All the performance differences between the AR

and KF-AG updating algorithms are relatively small, however,

indicating that the underlying model is a greater cause of the

performance difference than the real-time updating algorithm.

7.3 CT-identified DBM and CRR forecasting

performance

The overall fit of the forecasts (Figures 5 and 6) shows the CRR

models generally outperforming the CT-identified DBM models,

but the CT-identified models beginning to improve on the CRR

performance at longer lead-times. The error quantiles (Figure 7)

show the same behaviour, except for an increasing tendency for

the CT-identified model to overestimate with lead-time on the

Wallington catchment (although the overestimates tend not to be

as large as those from the CRR model, so the CT-identified model

may be more acceptable). The CT-identified models marginally

outperform the CRR models in their threshold crossing perform-

ance (Figure 8), although the differences are small, while the

peak errors from the CRR models are better constrained than

those from the CT-identified models, despite the CT-identified

model of the Wallington having a lesser tendency to under-

estimate (Figure 9).

8. Discussion
The DBM approach to rainfall–runoff modelling offers a number

of potential advantages for real-time flood forecasting applica-

tions. Model identification and calibration is relatively objective

(Young, 2003; Young and Beven, 1994) and faster than manual

calibration of a CRR model, and models may be used to forecast

stage directly from rainfall without introducing uncertainty due to

rating curves (Romanowicz et al., 2006). The principal downside

to the approach, using published formulations, is that the maxi-

mum forecast lead-time is limited to the length of the natural

catchment lag because of the use of observed flow in the effective

rainfall calculation (Equation 1a). Although this constraint can be

relaxed a little by artificially increasing the lag used, while

accepting a reduction in forecast accuracy (Lees et al., 1994), the

formulation cannot be used to predict the impact of forecast

rainfall. This makes the approach unsuitable for fast-responding

catchments with particularly short lag times and longer-term

‘outlook’ forecasts, both of which are operationally important.

An approach to removing this limitation has been demonstrated

for simulation modelling (Young, 2003), but its utility for

forecasting applications has not yet been established.

The results of this study demonstrate that, relative to previous

applications to upland UK catchments using hourly data, the

DBM approach is equally suited to rainfall–runoff simulation and

forecasting for lowland UK catchments using 15 min data. They

also show that CT-identified models may be expected to perform

better than, or at least no worse than, DT-identified models across

a range of performance measures. This suggests that future

research and applications of DBM rainfall–runoff modelling

should concentrate on DBM models identified using CT algo-

rithms.

The study has also demonstrated the feasibility of applying

CT-identified DBM models in a KF-AG algorithm for real-time

forecasting. The results indicate, however, that the use of AR

error prediction tends to give better forecasting performance for

both DT and CT-identified DBM models than the more commonly

used KF-AG algorithm, although the KF-AG algorithm does

appear to be a little more effective at longer lead-times. Further

development and comparison of updating approaches is therefore

required, including KF-AG hyperparameter optimisation schemes

and the use of full ARMA error prediction models, as well as

combining KF-AG and ARMA approaches. It is likely, however,

that the relative performance of the different approaches will be

case specific (Refsgaard, 1997).

Comparison of the CRR and DBM results revealed that the CRR

model in general gives slightly better forecasting performance

than either the DT- or CT-identified DBM models, although not at

longer lead-times for some performance measures. This observed

difference in forecasting performance can be ascribed to differ-

ences in model structure and calibration since the performance

difference between a given model with different updating ap-

proaches was much smaller than the differences between models.

The principal structural differences between the CRR and DBM

models are the greater complexity of the runoff generation

conceptualisation, non-linearity in the groundwater routing and

the variable split of runoff between the quick flow and baseflow

paths in the PDM.

For the DBM models, alternative effective rainfall formulations

could be determined through more detailed catchment-specific
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SDP analysis, possibly modelling the soil moisture dynamics

explicitly (e.g. Young, 2003). Alternatively, conceptual runoff

generation components could be combined with linear transfer

function routing components identified using DBM approaches.

Such a hybrid approach would, however, introduce more sub-

jectivity into model identification and care would be needed to

maintain the DBM philosophy of deriving the model structure

from data to avoid the risk of proliferating the number of ‘brand-

name’ CRR models (Moore et al., 2005). SDP analysis could also

be used to identify non-linearities in the routing components (e.g.

McIntyre et al., 2011).

Both DBM and CRR model types demonstrated unsatisfactory

performance when extrapolating beyond the range of the calibra-

tion data. Further investigation is required to identify the extent

to which this is due to errors in the input and observed output

data used for validation and the extent to which both DBM and

CRR model structures and calibration methodologies require

improvement. Such improvements may require the incorporation

of hydrological process understanding in the model structures,

leading to hybrid DBM–CRR models or using DBM method-

ologies to inform the selection of CRR structural components

(e.g. Ratto et al., 2007).

The scope of this study has been relatively limited:

(a) it involved only two catchments

(b) it placed restrictions on the form of the DBM effective

rainfall non-linearity

(c) it restricted the routing representation to linear transfer

functions

(d ) the SRIV method of identification may have been replaced by

more sophisticated instrumental variable methods.

Furthermore, this study investigated only one CRR model struc-

ture, which was calibrated manually and so is unlikely to be

optimal. Consequently, further work, using a wider range of model

structures and catchments and an improved estimation of potential

evaporation, is required to confirm the generality of these findings.

9. Conclusion
This work has shown that discrete-time (DT) DBM models can

be applied to lowland UK catchments, using 15 min data, with

simulation-mode performance comparable to more complex CRR

models and to previously published applications to relatively

impermeable catchments using hourly data. However, this simple

application of DT DBM models to flood forecasting, including a

state and parameter updating scheme, could not generally im-

prove upon the performance of a more complex CRR model,

except at the longer lead-times used.

The study has also shown that DBM models identified using

continuous-time algorithms can be incorporated into a KF-AG

algorithm for real-time forecasting and may perform significantly

better than DBM models identified in DT. It has further found

that a simple AR error predictor can outperform the more

commonly used KF-AG updating algorithm.

Finally, both DBM and CRR models performed unsatisfactorily

when extrapolating beyond the range of the calibration data. This

is an issue of considerable practical significance and further

research is required to understand the causes of this problem and

identify solutions.
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