51 research outputs found

    Dynamic evolution of interface roughness during friction and wear processes

    Get PDF
    Dynamic evolution of surface roughness and influence of initial roughness (Sa=0.282 to 6.73 ”m) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 microns. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts

    The permeability of virtual macroporous structures generated by sphere packing models: comparison with analytical models

    Get PDF
    Realistic porous structures typical of those made by replication of packed beds of spherical particles have been produced by a novel modelling method. Fluid dynamics simulation of the permeability of these structures agrees well with experimental measurements and similar modelling of structures derived from X-ray tomographic images. By varying the model structures the “bottleneck” flow concept proposed by analytical models in the literature was substantiated, confirming the high dependence of permeability on the size of the windows connecting the pores but also highlighting the need for accurate determination of the connectivity of the pores for these models to be accurate

    Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: characterisation and mechanical properties

    Get PDF
    Porous Ti with open porosity in the range of 70–80% has been made using Ti powder and a particulate leaching technique using porous, spherical, NaCl beads. By incorporating the Ti powder into a pre-existing network of salt beads, by tapping followed by compaction, salt dissolution and “sintering”, porous structures with uniform density, pore and strut sizes and a predictable level of connectivity have been produced, showing a significant improvement on the structures made by conventional powder mixing processes. Parts made using beads with sizes in the range of 0.5-1.0 mm show excellent promise as porous metals for medical devices, showing structures and porosities similar to those of commercial porous metals used in this sector, with inter-pore connections that are similar to trabecular bone. The elastic modulus (0.86GPa) is lower than those for commercial porous metals and more closely matches that of trabecular bone and good compressive yield strength is retained (21MPa). The ability to further tailor the structure, in terms of the density and the size of the pores and interconnections has also been demonstrated by immersion of the porous components in acid

    Discrete element modelling of the packing of spheres and its application to the structure of porous metals made by infiltration of packed beds of NaCl beads

    Get PDF
    A numerical model, using the discrete element method, has been developed to quantify specific parameters that are pertinent to the packing behaviour of relatively large, spherical NaCl beads and mixtures of beads of different sizes. These parameters have been compared with porosity and connectivity measurements made on porous aluminium castings made by molten metal infiltration into packed beds of such beads, after removal of the NaCl by dissolution. DEM has been found to accurately predict the packing fraction for salt beads with both mono and binary size distributions and from this the pore fractions in castings made by infiltration into packed beds of beads could be predicted. Through simple development of the condition for contacting of neighbouring beads, the number of windows linking neighbouring pores, and their size, could also be predicted across a wide range of small bead additions. The model also enables an insight into the mixing quality and changes in connectivity introduced through the addition of small beads. This work presents significant progress towards the delivery of a simulation based approach to designing preform architectures in order to tailor the resulting porous structures to best suit specific applications

    Modélisation de la compression haute densité des poudres métalliques ductiles par la méthode des éléments discrets

    No full text
    This Ph.D. manuscript synthesises three years of research dedicated to numerical and theoretical studies of high density powder compaction. During cold compaction process, the compaction stage is among the most sensitive powder metallurgy's stages, because it has a strong impact on the mechanical properties of the final part. It is necessary to find a numerical approach to control and to optimize the high density powder compaction (density value above 0:9). We propose to model by the discrete element method the behaviour of powder which is observed experimentally under dierent loading paths. To date, the discrete element simulations are not able to model the powder compaction for high density values (density is limited at 0:85). To go beyond this limit, we present a contact model implemented into a discrete element open-source software (Yade). This new contact model is based on a normal contact law which integrates in its expression the local density parameter. This new local variable takes into account the incompressibility of the material which appears at density values above 0:85. In order to realize more realistic simulations, a new geometric algorithm to generate polydisperse sphere packings is developed. This new numerical tool is able to generate very fast large sphere assemblies with dierent properties controlled by the user as: density distribution, the minimal and maximal size of spheres. With the contact model capable of reproducing the granular interaction up to high density value and the geometric algorithm which generates sphere assemblies similar to powder, we realize simulations of isostatic and closed die compaction for various types of powder (copper, aluminium, iron). The results are directly compared with those obtained by multi-particle finite element method and by experimental tests. These comparisons allow to validate and test the robustness of the contact model developed here. Finally, we investigate the evolution of aluminium powder assembly composed with an initial graded density distribution during the closed die compaction.Ce mémoire de thÚse synthétise trois années de recherches dédiées à l'étude numérique et théorique de la compression à haute densité de poudres métalliques. Des diérentes phases qu'intÚgrent la métallurgie des poudres, la phase de compression à froid de la poudre est l'une des phases les plus sensibles de ce procédé de fabrication, car elle influence les propriétés mécaniques de la piÚce finale. Il est donc nécessaire de mettre en place une approche numérique qui permet de contrÎler et d'optimiser la compression de poudre jusqu'à de fortes valeurs de compacité (compacité supérieure à 0:9). Pour cela, nous proposons de reproduire par la méthode des éléments discrets le comportement de la poudre observé expérimentalement sous diérents types de chargement. A ce jour, les simulations via cette méthode sont limitées à une valeur de compacité ne dépassant pas 0:85. Pour dépasser ces limitations, nous présentons un modÚle de contact implémenté dans un code éléments discrets libre (Yade). Ce nouveau modÚle de contact est développé sur la base de la loi de contact normal qui intÚgre le terme de densité locale des particules dans son expression, afin de prendre en compte l'incompressibilité des grains se produisant à des valeurs de compacité supérieures à 0:85. Dans le but de procéder à des simulations plus réalistes, un nouvel algorithme géométrique de génération d'empilements de sphÚres polydisperses est développé. Ce nouvel outil numérique est capable de générer trÚs rapidement de grands assemblages de sphÚres en contact tout en contrÎlant diérents paramÚtres comme la distribution de la compacité, la taille minimale et maximale des sphÚres. Avec le modÚle de contact capable de reproduire l'interaction entre les grains et la création d'un algorithme pouvant générer des assemblages de sphÚres similaires à un tas de poudres, nous procédons à des simulations de compression isostatique et en matrice pour diérents types de poudres (cuivre, aluminium, fer). Les résultats obtenus sont directement comparés à ceux issus des simulations éléments finis multi-particules et de l'expérience. Ces comparaisons permettent ainsi de valider et de tester la robustesse du modÚle de contact développé. Pour finir, nous investiguons sur la base de nos divers développements validés, l'évolution d'une poudre d'aluminium avec un gradient de compacité au cours d'une compression en matrice

    ENQUETE TELEPHONIQUE SUR UN CAS SIMULE PEDIATRIQUE

    No full text
    ST QUENTIN EN YVELINES-BU (782972101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Discrete element method to simulate continuous material by using the cohesive beam model

    Get PDF
    The mechanical behavior of materials is usually simulated by the continuous mechanics approach. However, simulation of non-continuous phenomena like multi fracturing is not well adapted to a continuous description. In this case, the discrete element method (DEM) is a good alternative because it naturally takes into account discontinuities. Many researchers have shown interest in this approach for wear and fracture simulation. The problem is that, while DEM is well adapted to simulate discontinuities, it is not suitable to simulate continuous behavior. In problems of wear or fracture, material is composed of continuous parts and discontinuous interfaces. The aim of the present work is to improve the ability of DEM to simulate the continuous part of the material using cohesive bond model. Continuous mechanics laws cannot be used directly within a DEM formulation. A second difficulty is that the volume between the discrete elements creates an artificial void inside thematerial. This paper proposes a methodology that tackles these theoretical difficulties and simulates, using a discrete element model, any material defined by a Young’s modulus, Poisson’s ratio and density, to fit the static and dynamic mechanical behavior of the material. The chosen cohesive beam model is shown to be robust concerning the influence of the discrete element sizes. This method is applied to a material which can be considered as perfectly elastic: fused silica
    • 

    corecore